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Summary. We show that no Erdös–Sierpiński mapping from R to R can be
additive.

1. Introduction

Let N and M denote the ideals of Lebesgue measure zero and meager subsets
of the real line, respectively.

Definition 1.1. A bijection f : R −→ R is called an Erdös–Sierpiński mapping
(on R) if

∀X ⊆ R (X ∈M⇔ f [X] ∈ N ) & (X ∈ N ⇔ f [X] ∈M).

It is well known that the existence of an Erdös–Sierpiński mapping is consistent
with ZFC:

Theorem 1.2 (Erdös – Sierpiński, see [1]). Assume CH. Then there exists an Erdös
– Sierpiński mapping.

The existence of such a function is independent from ZFC. Recall that for an
ideal I, we define non(I) = min{|X| : X 6∈ I}. The following fact shows that it is
consistent that an Erdös – Sierpiński mapping does not exist:

Theorem 1.3 (see [1]). It is consistent that non(M) 6= non(N ).

An Erdös–Sierpiński mapping is an isomorphism of the structures 〈R,N〉 and
〈R,M〉 and thus preserves basic set-theoretical properties of the ideals of measure
and category. It need not, however, preserve additive properties of these ideals, i.e.
properties which concern translations of sets from an ideal (see [1] for examples of
such properties). This motivates the following question, attributed to Cz. Ryll-
Nardzewski:

Is it consistent that there exists an Erdös–Sierpiński mapping f : R −→ R such,
that

∀x, y ∈ R f(x + y) = f(x) + f(y)?

In [2] T. Bartoszyński showed that the answer is negative if we replace R by
the space 2ω with addition modulo 2 (equipped with the canonical natural product
measure). In this paper we modify his proof to obtain the same answer for the
original question about R.
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It is usually much more convenient to investigate properties of measure and
category in 2ω than in R as technical parts of proofs are easier to handle there. On
the other hand, the space R is a much more natural object for a mathematician
than the space 2ω. Although these spaces reveal many similarities, it was (in the
author’s opinion) not obvious how to make Bartoszyński’s argument work for R.
Roughly speaking, the problem is caused by the different relations of the group
structure with measure and topology in these spaces.

The basic idea of our proof is based on the original proof for 2ω; we introduce,
however, a couple of tricks which make these arguments work for R.

In our opinion, there is a need for developing a universal technique which could
”translate” additive properties of the ideals of measure and category between R
and 2ω. The purpose of writing this paper, beside solving the problem for R, was
to present of the methods we used for this particular problem, in hope that they
might become a part of a more universal technique.

2. Notation

We use a standard set-theoretical notation. In particular, by ω we denote the set
of natural numbers. We identify a natural number n with the set of its predecessors:
n = {0, 1, ..., n − 1}. In particular 2 = {0, 1}. When X ⊆ ω, by 2X we denote the
set of binary sequences with domain X.

We use an additive notation for group operations. If G is a group, A ⊆ G and
t ∈ G then by t + A we denote a translation of A by t, i.e. the set {t + a : a ∈ A}.
Similarly, when A,B ⊆ G, then by A + B we denote the set {a + b : a ∈ A, b ∈ B}.

We will say that a family A of subsets of a group G is translation invariant, if
for every A ⊆ G and for every t ∈ G we have A ∈ A ⇔ A + t ∈ A.

A family I ⊆ P (X) is called an ideal on X if it is closed under taking finite
unions and subsets.

A family I ⊆ P (X) is called a filter on X if it is closed under taking finite
intersections and supersets. When I is an ideal on X, then by I∗ we denote it’s
dual filter, i.e. the family {X \A : A ∈ I}.

When A is any set and κ is a cardinal number, by [A]κ we denote the family of
subsets of A of cardinality κ.

Further notation will be introduced throughout the paper.

3. Translatability of ideals and filters

Let us begin with the notion of κ-translatability introduced by Carlson in [3]:

Definition 3.1. Let I be a translation invariant ideal on a commutative group G.
We say that I is κ-translatable, if

∀A ∈ I ∃B ∈ I ∀T ∈ [G]κ ∃t ∈ G

T + A ⊆ t + B.

The following characterization was also observed in [3]:

Proposition 3.2. Let I be a translation invariant ideal on a commutative group
G and let F = I∗ be the dual filter. Then I is κ-translatable if and only if

∀A ∈ F ∃B ∈ F ∀T ∈ [G]κ ∃t ∈ G

T + B ⊆ t + A.
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One of the most important results concerning the notion of κ-translatability in
[3] was the following theorem:

Theorem 3.3. The ideal M is ω-translatable.

It is clear, that if an additive Erdös – Sierpiński mapping existed, than the ideal
N would also be ω-translatable. Hence, to show that an additive Erdös–Sierpiński
mapping does not exist, it is sufficient to show that the idealN is not 2-translatable.
We will prove this theorem in the next section.

4. Main result

4.1. More specific notation and terminology. For technical reasons, we will
work rather in the set (0, 1] with addition modulo 1 than in R. We can also think
of this group either as R/Z or the unit circle on the complex plane. Let N ((0, 1])
denote the ideal of null (with respect to the Lebesgue measure on (0, 1]) subsets of
this space.

If not otherwise stated, by a binary expansion of a number x ∈ (0, 1] we mean
the non-terminating expansion, i.e. the one that is not eventually equal to 0. Note,
that every x ∈ (0, 1] has such an expansion.

We will identify a number x ∈ (0, 1] with such a binary expansion, treated as a
binary sequence defined on the set ω\{0}. For instance, if x = 0, 10101010... then
x(1) = 1 and x(2) = 0 and so on.

If s is a finite binary sequence, than by [s] we denote the set of those numbers
in (0, 1], which have non-terminating binary expansion extending s. Also if I ⊆ ω
and J ⊆ 2I , then by [J ] we denote the set {x ∈ (0, 1] : x ¹ I ∈ J}.

By µ we denote the Lebesgue measure on (0, 1]. By µ2 we denote the Lebesgue
measure on (0, 1]2.

4.2. Some basic facts.

Lemma 4.1. Let K = (a, b) ⊆ R and let X ⊆ K be a measurable set of positive
measure. Then there exists x ∈ X such, that:

dist(x,R\K) ≥ µ(X)
3

.

Proof. Otherwise we would have X ⊆ [a, a+ µ(X)
3 )∪ (b− µ(X)

3 , b], and thus µ(X) ≤
2
3µ(X) - a contradiction. ¤
Definition 4.2. Let S be a real number such that 0 < S ≤ 1. We say that
X ⊆ (0, 1] is S-periodic, if

∀x ∈ (0, 1] x ∈ X ⇔ x + S ∈ X.

We leave the proof of the following fact as an easy exercise:

Proposition 4.3. For every S ∈ (0, 1] the family of S-periodic sets forms a
translation-invariant algebra of subsets of (0, 1]. ¤
Proposition 4.4. Let I be a finite subset of ω and J ⊆ 2I . Then [J ] is 1

2minI−1

periodic.

Proof. Note, that the number 1
2minI−1 has a terminating binary expansion which

is equal to 0 on the set [min I,∞). Thus adding a number 1
2minI−1 to an arbitrary

number x ∈ (0, 1] does not change x ¹ I. ¤
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The last proposition can be partially reversed:

Proposition 4.5. If X is 1
2m periodic, then the question whether x belongs to X

does not depend on the first m places of the binary expansion of x.

Proof. Adding the number
1

2m
= 0, 00 . . . 0︸ ︷︷ ︸

m−1 zeros

1000...

to x, we change x ¹ {1, ..., m} into the lexicographically next element of 2{1,...,m}

while the following places of the expansion remain unchanged. Thus adding 1
2m to

x several times we can obtain any initial segment of binary expansion of length m
without affecting the fact that x does (or does not) belong to X. ¤

4.3. Main theorem.

Theorem 4.6. The ideal N ((0, 1]) of null subsets of (0, 1] is not 2-translatable.

Proof. We begin with the following lemma (compare also with lemma 7 from [2]):

Lemma 4.7. If J ′ is a Borel subset of (0, 1], δ = 1−µ(J ′) and ε > δ2 then the set
S = {t ∈ (0, 1] : µ(J ′ ∪ (t + J ′)) > 1− ε} is measurable and

µ(S) ≥ 1− δ2

ε
.

Proof. Let Z = {〈z, t〉 ∈ (0, 1]2 : z ∈ J ′ ∪ (t + J ′)}. Obviously Z is Borel. Observe
that S = {t ∈ (0, 1] : µ(Zt) > 1− ε}, so S is measurable.

For every z ∈ (0, 1] we have

Zz = {t ∈ (0, 1] : z ∈ J ′ ∪ (t + J ′)} = {t ∈ (0, 1] : z ∈ J ′ ∨ t ∈ z − J ′}.
Thus

(0, 1] \ Zz = ((0, 1] \ J ′)× ((0, 1] \ (z − J ′)),
so

µ(Zz) = 1− δ2.

From the Fubini theorem we obtain:

1− δ2 = µ2(Z) =
∫

S

µ((Z)t)dµ +
∫

(0,1]\S
µ((Z)t)dµ.

We have ∫

S

µ((Z)t)dµ ≤ µ(S)

and ∫

(0,1]\S
µ((Z)t)dµ ≤ (1− ε)(1− µ(S)).

Finally
1− δ2 ≤ µ(S) + (1− ε)(1− µ(S))

and after easy transformations:

µ(S) ≥ 1− δ2

ε
.

¤
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Now we prove our main theorem. Following the idea of the proof for 2ω, we
define a set A, which will witness non-translatability of N ((0, 1]) in the following
way:

Fix a partition of the set ω\{0} into consecutive finite disjoint intervals 〈In : n >
0〉 such that |In| = 2n+3. One can easily check that the following inequalities hold:

• 1
2|In| < 1

n5

• 1
2|In| ≤ 1

12 ( 1
n2 − 1

n5 ) for n > 1.

For every n > 0 choose Jn ⊆ 2In such that:

1− 1
n2

+
1
n5

>
|Jn|
2|In| > 1− 1

n2
.

Moreover, let us demand that Jn consists of the first |Jn| consecutive (in the
sense of the lexicographical ordering of 2In) elements of 2In .

We will define the set A as follows: we take F =
⋂

m

⋃
n>m((0, 1]\[Jn]) and put

A = (0, 1]\F . Clearly µ(F ) = 0, so A ∈ N ∗.
We will show that for every B ∈ N ∗ there are numbers x1, x2 such that:

∀x ∈ (0, 1] (x1 + B) ∪ (x2 + B) 6⊆ (x + A).

In fact, we will put x1 = 0 and construct y ∈ (0, 1] such that

∀x ∈ (0, 1] B ∪ (y + B) 6⊆ (x + A).

For this purpose let us take any closed set C of positive measure such that
C ⊆ B\Q. We will construct y ∈ (0, 1] such that:

∀x ∈ (0, 1] C ∪ (y + C) 6⊆ (x + A).

Without loss of generality we may assume that for every open set U ⊆ (0, 1]
we have µ(U ∩ C) > 0 ∨ U ∩ C = ∅ (if not, consider C ′ = C \ ⋃{(p, q) : p, q ∈
Q ∧ µ((p, q) ∩ C) = 0} instead). Notice that in this situation for every s ∈ 2<ω we
also have µ([s]∩C) > 0∨ [s]∩C = ∅. Although the set [s] is not open in (0, 1], it is
of the form (p, q], where p, q ∈ Q. So if (p, q] ∩ C 6= ∅ then (p, q) ∩ C 6= ∅, because
C ∩Q = ∅.

Let λn = 1− µ([Jn]) and εn = 1
4λn. We inductively define:

(1) A strictly increasing sequence of natural numbers 〈nk : k ∈ ω〉,
(2) Sets J ′nk

⊆ 2Ink such that for every c ∈ C and s ∈ J ′nk+1
exists c′ ∈ C such

that c¹ I1 ∪ ... ∪ Ink
= c′¹ I1 ∪ ... ∪ Ink

∧ c′¹ Ink+1 = s,
(3) Sets Sk ⊆ (0, 1] such that µ(Sk) > 1− 1

4k+1 and

∀t ∈ Sk µ([J ′nk
] ∪ (t + [J ′nk

])) > 1− εnk
.

Remark 4.8. Condition 2. guarantees that for every choice of uk ∈ J ′nk
exists c ∈ C

such that
∀k ∈ ω c¹ Ink

= uk.

Indeed: using 2. we may construct c ∈ C inductively. Having defined
c¹ I1,∪... ∪ Ink

∈ C¹ I1,∪... ∪ Ink
for some k ∈ ω we look at Ink+1 . We know that

c¹ I1,∪... ∪ Ink
is a restriction of an element of C to the set I1,∪... ∪ Ink

, hence,
by 2., the sequence c¹ I1,∪... ∪ Ink

can be extended onto I1,∪... ∪ Ink+1 such that
c ¹ Ink+1 = uk+1 and c¹ I1,∪... ∪ Ink+1 = d¹ I1,∪... ∪ Ink+1 for some d ∈ C. As C
is closed, we see that c ∈ C.

Now we are ready to give the construction. Suppose that we have already defined
ni, J

′
ni

, Si, for i ≤ k. We look at C¹ I1 ∪ ... ∪ Ink
- a (finite!) set of restrictions of
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elements of C to the interval I1 ∪ ... ∪ Ink
. Let t be the number of elements of this

set; we may write C¹ I1 ∪ ... ∪ Ink
as {s1, ...st}. By our assumptions about C we

know that for every s ∈ C¹ I1 ∪ ... ∪ Ink
the set [s] ∩ C has positive measure.

Using the Lebesgue density theorem we can find l > nk and rs ⊃ s for every
s ∈ C¹ I1 ∪ ... ∪ Ink

such that dom(rs) = I1 ∪ ... ∪ Il and the set

P = 2I1∪...∪Il ×
t⋂

i=1

{x¹ (|rsi
|, ω) : rsi

⊆ x ∈ C} ⊆ (0, 1]

has positive measure. To see this, observe that for every s ∈ C¹ I1 ∪ ... ∪ Ink
we

can find its extension rs such that µ([rs] ∩ C) > t−1
t µ([rs]). Then

t⋂

i=1

{x¹ (|rsi
|, ω) : rsi

⊆ x ∈ C}

has positive measure in 2[max Il+1,∞).
For m > l we look at the sets

J ′m = {x¹ Im : x ∈ P}
We have

P ⊆ {x ∈ (0, 1] : ∀m > l x¹ Im ∈ J ′m}
so the set on the right side of the above inclusion has positive measure, hence:

∏
m

µ([J ′m]) > 0.

Let δm = 1− µ([J ′m]), then we have:
∏
m

(1− δm) > 0.

One can easily check that

∏
m

(1− 1
2k+3

√
1

m2
− 1

m5
) = 0,

so for infinitely many m ∈ ω

1− δm > 1− 1
2k+3

√
1

m2
− 1

m5
.

Let nk+1 be the first such m > l. One can easily verify that the set J ′nk+1
satisfies

condition 2.
Notice that the inequality

1− δnk+1 > 1− 1
2k+3

√
1

(nk+1)2
− 1

(nk+1)5

holds, so

δ2
nk+1

<
1

4k+3
(

1
(nk+1)2

− 1
(nk+1)5

).

On the other hand, the set Jnk+1 has been chosen in such a way that

1
(nk+1)2

− 1
(nk+1)5

< λnk+1
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(recall that we have put λnk+1 = 1− µ([Jnk+1 ]).) If we multiply both sides by 1
4k+3

we get:
1

4k+3
(

1
(nk+1)2

− 1
(nk+1)5

) <
λnk+1

4k+3
.

Finally:

δ2
nk+1

<
1

4k+3
(

1
nk+1

2
− 1

nk+1
5
) <

λnk+1

4k+3
,

so
δ2
nk+1

λnk+1

<
1

4k+3
.

In other words
δ2
nk+1

1
4λnk+1

<
1

4k+2
.

We have put εnk+1 =
λnk+1

4 , hence we have:

δ2
nk+1

1
4λnk+1

=
δ2
nk+1

εnk+1

<
1

4k+2
.

In particular δ2
nk+1

<
εnk+1

4 . From lemma 4.7 we immediately get the set Sk+1 =
{t ∈ (0, 1] : µ([J ′nk+1

]∪ (t + [J ′nk+1
])) > 1− εnk+1} ⊆ (0, 1]2 as needed. This finishes

the construction.
Notice that as µ(Sk) > 1− 1

4k+1 , we see that
⋂

k Sk 6= ∅. Let us take any y such
that y ∈ ⋂

k Sk. We will check that

∀x ∈ (0, 1] (C) ∪ (y + C) 6⊆ (x + A).

For this purpose take any x ∈ (0, 1]. From the condition 3. and from the fact that
y ∈ Sk and µ([Jnk

])) = 1− λnk
< 1− εnk

we see that for every k ∈ ω

[J ′nk
] ∪ (y + [J ′nk

]) 6⊆ x + [Jnk
].

Moreover, we know that µ([J ′nk
] ∪ (y + [J ′nk

])) ≥ 1 − εnk
; on the other hand

µ(x + [Jnk
]) = 1− λnk

. Hence

µ([J ′nk
] ∪ (y + [J ′nk

]) \ (x + [Jnk
])) ≥ (1− εnk

)− (1− λnk
) = λnk

− εnk
,

so for every k ∈ ω either

µ([J ′nk
] \ (x + [Jnk

])) ≥ λnk
− εnk

2
or

µ((y + [J ′nk
]) \ (x + [Jnk

])) ≥ λnk
− εnk

2
.

We will assume that the second case holds for infinitely many k. As our proof
will not refer to any specific properties of y, if this is true for the first case only,
the same arguments work if we put y = 0.

Let us denote by U ⊆ ω the set of such k that

µ((y + [J ′nk
]) \ (x + [Jnk

])) ≥ λnk
− εnk

2
.

We will construct z ∈ C such that y + z 6∈ x + A. To do this, for every k ∈ U we
will choose vk ∈ (0, 1] to have y + vk ∈ (y + [J ′nk

])\(x + [Jnk
]).

Notice, that as the sets (x− y) + [Jnk
] and [J ′nk

] are 1

2
|I1∪...∪Ink−1| periodic, this

property of vk does not depend on the first min Ink
−1 terms of it’s binary expansion.
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On the other hand, if the distance of vk from the set (x− y)+ [Jnk
] is positive, this

property does not depend on sufficiently far terms of the binary expansion of vk.
We will show, that it is possible to choose vk such that the numbers of the terms
which are ”essential” for this property belong to Ink

. To get this, it is sufficient to
choose vk in such way that dist(vk, (x − y) + [Jnk

]) > 1

2
|I1∪...∪Ink

| . We will show,
that it is possible.

Let us look closer at the set [Jnk
]. As we have noticed, it is 1

2
|I1∪...∪Ink−1| periodic.

As the elements if Jnk
were lexicographically consecutive, the interval (0, 1] can be

divided into 2|I1∪...∪Ink−1| subintervals [s] = (ps, qs] for s ∈ 2I1∪...∪Ink−1 , such that
there are rs ∈ (ps, qs) such that [Jnk

] ∩ (ps, qs] = (ps, rs]. In other words:

[Jnk
] =

⋃
s

(ps, rs]; (0, 1]\[Jnk
] =

⋃
s

(rs, qs].

We know that

µ((y + [J ′nk
])) \ (x + [Jnk

])) ≥ λnk
− εnk

2
,

so

µ(((y − x) + [J ′nk
])) \ [Jnk

]) ≥ λnk
− εnk

2
.

The set (y − x) + [J ′nk
] is also 1

2
|I1∪...∪Ink−1| - periodic. Moreover, it is easy to

see that if s, t ∈ 2I1∪...∪Ink−1 then

(ps, qs] = (pt, qt] +
i

2|I1∪...∪Ink−1|

and

(rs, qs] = (rt, qt] +
i

2|I1∪...∪Ink−1|

for some i < 2|I1∪...∪Ink−1|. It follows that for every s, t ∈ 2I1∪...∪Ink−1 the following
holds:

µ(((y − x) + [J ′nk
] ∩ [rs, qs)) = µ(((y − x) + [J ′nk

]) ∩ [rt, qt)).

Hence, for every s ∈ 2I1∪...∪Ink−1

µ(((y − x) + [J ′nk
]) ∩ [rs, qs)) ≥ λnk

− εnk

2
1

2|I1∪...∪Ink−1| .

Fix any s ∈ 2I1∪...∪Ink−1 . By lemma 4.1 there is vk ∈ [J ′nk
] such that (y−x)+vk ∈

(rs, qs) and

dist((y−x)+vk, (0, 1]\(rs, qs)) = dist((y−x)+vk, [Jnk
]) ≥ λnk

− εnk

6
1

2|I1∪...∪Ink−1| .

From vk we expect that

dist((y − x) + vk, [Jnk
]) = dist(vk, (x− y) + [Jnk

]) >
1

2|I1∪...∪Ink
| .

Thus it is sufficient to show that
λnk

− εnk

6
1

2|I1∪...∪Ink−1| >
1

2|I1∪...∪Ink
| ;

equivalently:
λnk

− εnk

6
>

2|I1∪...∪Ink−1|

2|I1∪...∪Ink
| =

1
2|Ink

| .
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Let us remind that we have put εnk
= 1

4λnk
, so in particular λnk

− εnk
>

λnk

2 .
From this, we get:

λnk
− εnk

6
>

λnk

12
.

On the other hand, we know that λnk
≥ 1

nk
2 − 1

nk
5 .

Finally:
λnk

− εnk

6
>

λnk

12
≥ 1

12
(

1
nk

2
− 1

nk
5
) ≥ 1

2|Ink
|

(the last inequality follows from the choice of In).
We have constructed vk ∈ [J ′nk

] such that

z¹ Ink
= vk¹ Ink

=⇒ y + z 6∈ x + [Jnk
]

for any z ∈ (0, 1]. But vk¹ Ink
∈ J ′nk

, so by remark 4.8, there exists z ∈ C such
that

∀k ∈ U z¹ Ink
= vk¹ Ink

.

We see that y + z ∈ y + C but for infinitely many k ∈ ω we have y + z 6∈ x + [Jnk
].

Hence:
y + z ∈ (y + C) ∩ (x + F ) = (y + C)\(x + A),

so
(y + C) 6⊆ (x + A).

¤

Theorem 4.9. The ideal N is not 2-translatable.

Proof. Notice that the group (0, 1] with addition modulo 1 is isomorphic with R/Z.
Let π : R −→ (0, 1] be the natural epimorphism. Note, that π preserves the measure
ideal, i.e.:

X ∈ N ⇔ π[X] ∈ N ((0, 1]).

Now suppose that the ideal N is 2-translatable. Take any A ∈ N ((0, 1]), and
consider π−1[A] ∈ N . Let B ⊆ (0, 1] be such that for every t1, t2 ∈ R exists t ∈ R
that

(t1 + π−1[A]) ∪ (t2 + π−1[A]) ⊆ t + B.

Then for every s1, s2 ∈ (0, 1] we would have:

(s1 + A) ∪ (s2 + A) ⊆ s + π[B]

for some s ∈ (0, 1]. To see this, consider ti such that π(ti) = si for i ∈ {1, 2} and
take s = π(t). But that means that N ((0, 1]) is 2-translatable - a contradiction. ¤

5. Final remarks and acknowledgments

In [2] T. Bartoszyński showed that there is no additive Erdös–Sierpiński map-
ping from 2ω to 2ω in the same way, i.e. showing that the ideal N (2ω) is not
2-translatable. It was known earlier (see [3]) that the ideal M(2ω) of meager sub-
sets of 2ω is ω-translatable.

Let us point out that our proof gives us a little stronger property than the
negation of 2-translatability. In fact, by careful analysis of our proof, we can obtain



10 MARCIN KYSIAK

Corollary 5.1. There exists a set A ∈ N such that for every B ∈ N the set of
those y ∈ R such that

∀x ∈ R A ∪ (y + A) 6⊆ x + B

has full measure.

Proof. Observe that to choose y we could take any element of the set
⋂

k Sk, which
appeared in our construction. This set was constructed to have measure not smaller
than 2

3 . By refining the appropriate estimations we could obtain instead a set of
measure greater than 1− ε for any given ε > 0. The corollary follows easily. ¤

Using the same techniques one can improve T. Bartoszyński’s proof to obtain an
analogous corollary for 2ω.

The result for R which is presented here was included earlier in the author’s
Master’s Thesis written under supervision of prof. P. Zakrzewski. I would like to
thank him for a great supervision and a lot of help with preparing this paper.
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