Probability on graphs winter term 2024/2025 Problem set 7

Michał Kotowski

Problem 1. Let $m_+ = m_+(n)$, $m_- = m_-(n)$ be such that $m_+ = o(\sqrt{n})$ and $\sqrt{n} = o(m_-)$. Let μ_n be the Bin(n, 1/2) distribution, ν_n the Bin $(n - m_+, 1/2)$ distribution and η_n – the Bin $(n - m_-, 1/2)$ distribution. Prove that

$$d_{\rm TV}(\mu_n,\nu_n) \to 0$$

and

 $d_{\rm TV}(\mu_n,\eta_n) \to 1$

as $n \to \infty$.

Problem 2. Let G = (V, E) be a *d*-regular graph, $d \ge 3$. Consider the simple random walk on *G* and assume that it is irreducible and aperiodic. Prove the following lower bound on the mixing time

$$t_{\min}(\varepsilon) \ge \frac{\log\left(|V|(1-\varepsilon)/3\right)}{\log(d-1)}.$$

Problem 3. Consider the coupon collector problem with n coupons – at each step we draw one coupon out of n possible types, with each type of coupon equally likely. Let τ be the first time at which at least one coupon of each type has been collected.

(a) Prove that $\mathbb{E}\tau = n \sum_{k=1}^{n} \frac{1}{k}$ and for any c > 0 we have $\mathbb{P}(\tau > \lceil n \log n + cn \rceil) \le e^{-c}.$

(b) Let $I_j(t)$ be the indicator of the event that the *j*-th type of coupon has not been collected by time *t*. Let $R(t) = \sum_{j=1}^{n} I_j(t)$. Prove that the random variables $I_j(t)$ are negatively correlated and setting $p_t = (1 - \frac{1}{n})^t$ we have

$$\mathbb{E}R_t = np_t,$$

$$\operatorname{Var}R_t \le np_t(1-p_t) \le \frac{n}{4}$$