Probability on graphs winter term 2024/2025 Problem set 5

Michał Kotowski

Problem 1. Let $G \sim G(n,p)$ with $p = \frac{1-\varepsilon}{n}$, $\varepsilon > 0$. We consider the strictly subcritical case, corresponding to $\varepsilon \in (0,1)$ being fixed, and the barely subcritical case, corresponding to $\varepsilon = \lambda n^{-1/3}$ with $\varepsilon = o(1)$, but $\lambda \to \infty$ as $n \to \infty$.

Prove that in both cases with high probability all connected components of G contain at most one cycle (in other words, for each component its number of edges |E| and vertices |V| satsifies $|E| - |V| + 1 \le 1$).

Problem 2. Let $\lambda > 1$ and $G \sim G(n, \frac{\lambda}{n})$. Let $\chi_{\lambda} = \mathbb{E}|\mathcal{C}(v)|$ be the expected size of the connected component of any fixed vertex v in G. Prove that

$$\chi_{\lambda} = \zeta_{\lambda}^2 n (1 + o(1)),$$

where ζ_{λ} is the survival probability of a Poisson branching process with parameter λ .

Problem 3. For a graph G let its 2-core $G^{(2)}$ be a graph obtained from G by successively removing vertices of degree 0 or 1 (i.e., at each step we remove a vertex of degree 0 or 1 until all remaining vertices have degree at least 2). Let $|G^{(2)}|$ denote its number of vertices.

Let $\lambda > 1$ and $G \sim G\left(n, \frac{\lambda}{n}\right)$. Let $\eta_{\lambda} = 1 - \zeta_{\lambda}$ be the extinction probability of a Poisson branching process with parameter λ .

- (a) Prove that $\mathbb{E}|G^{(2)}| = (1 \lambda \eta_{\lambda})\zeta_{\lambda}n(1 + o(1)).$
- (b) (bonus) Prove that in fact $|G^{(2)}| = (1 \lambda \eta_{\lambda})\zeta_{\lambda}n(1 + o(1))$ with high probability.