Probability on graphs winter term 2024/2025 Problem set 4

Michał Kotowski

Problem 1. Let X_1, \ldots, X_n be independent random variables with X_i having Bernoulli distribution with parameter p_i . Let $\lambda = \sum_{i=1}^n p_i$. Prove that if $X = X_1 + \ldots + X_n$ and $Y \sim \text{Poiss}(\lambda)$, then there exists a coupling (X, Y) such that

$$\mathbb{P}(X \neq Y) \le \sum_{i=1}^{n} p_i^2.$$

Deduce that if $X \sim \operatorname{Bin}(n, \frac{\lambda}{n})$ and $Y \sim \operatorname{Poiss}(\lambda)$, then there exists a coupling (X, Y) for which $\mathbb{P}(X \neq Y) \leq \frac{\lambda^2}{n}$.

Problem 2. Prove that if T is the total progeny of a branching process with offspring distribution X satisfying $\mu = \mathbb{E}X < 1$, then

$$\mathbb{E}T = \frac{1}{1-\mu}$$

Use this to deduce that for $\lambda < 1$ the mean size of the connected component of a given vertex in a $G(n, \frac{\lambda}{n})$ graph satisfies $\mathbb{E}|\mathcal{C}(v)| \leq \frac{1}{1-\lambda}$.

Problem 3. As in the lecture, let S_t be the number of active vertices in the exploration process in the G(n, p) graph at time t.

(a) For any $k \leq n$ prove the following equality in distribution:

$$S_t + t - k \sim \operatorname{Bin}(n - k, 1 - (1 - p)^t).$$

(b) Show that for $l \ge t$ we have, conditionally on S_t ,

$$S_l + (l-t) - S_t \sim Bin(n-t-S_t, 1-(1-p)^{l-t}).$$

Problem 4. Given a graph G, an ε -cut is a partition of V(G) into two disjoint sets A and B such that $|A| = \varepsilon n$, $B = (1 - \varepsilon)n$ and there are no edges between A and B.

(a) Prove that if $|\mathcal{C}_{max}|$ is the size of the largest connected component of G, then there exists an ε -cut in G with $\varepsilon \geq 0$ satisfying

$$\left|\varepsilon - \frac{1}{2}\right| \le \frac{1}{2} \frac{|\mathcal{C}_{max}|}{n}.$$

(b) Prove that if $\lambda > 4 \log 2$, then with high probability the largest component in $G(n, \frac{\lambda}{n})$ has size at least $\delta(\lambda)n$ for some constant $\delta(\lambda) > 0$ depending on λ . *Hint:* look at the probability that there exists an ε -cut with ε close to $\frac{1}{2}$.