Probability on graphs winter term 2024/2025 Problem set 1

Michał Kotowski

Problem 1. Let $G \sim G(n, p)$ and let \mathcal{A} be the property that G contains at least one cycle. Find the threshold function $p^* = p^*(n)$ for \mathcal{A} .

Problem 2. Let $G \sim G(n, 1/2)$. Find the largest possible $k = k_n$ such that G contains a clique of size at least k_n a.a.s.

Problem 3. As in the lecture, for any graph H let

$$m(H) = \max \left\{ \frac{e(H')}{v(H')} \, : \, H' \subseteq H, e(H') \ge 1 \right\},$$

where e(H') is the number of edges in H', v(H') is the number of vertices in H' and the maximum is over all subgraphs H' of H with at least one edge.

Let $G \sim G(n, p)$. Prove that for a fixed graph H the threshold for the property "G contains at least one copy of H" is $p^*(n) = n^{-1/m(H)}$.

Problem 4. Consider the set $[n] = \{1, \ldots, n\}$. A k-term arithmetic progression is a subset of [n] of the form $\{m, m+a, \ldots, m+(k-1)a\}$ for some $m, a \in [n]$. Let S_p be a randomly chosen subset of [n] obtained by including each $i \in [n]$ independently with probability p. For fixed $k \geq 3$ find the threshold $p^* = p^*(n)$ for the property " S_p contains at least one k-term arithmetic progression".