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Zadania należy rozwiązać pisemnie i oddać na ćwiczeniach w czwartek 29 V 2025 (lub wysłać
mailem przed rozpoczęciem ćwiczeń).

Zadanie 1. Załóżmy, że współczynniki cp, cp+1, . . . , cq są nierosnące i nieujemne. Wykazać, że dla
x /∈ 2πZ zachodzi nierówność ∣∣∣∣∣
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Zadanie 2. Wyznaczyć promień zbieżności R szeregu potęgowego
∞∑
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i wykazać, że jego suma f(x) spełnia dla x ∈ (−R,R) równanie f ′(x) = 1 + xf(x).
Zadanie 3. Wyznaczyć jawny wzór na sumę szeregu potęgowego danego wzorem:
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Zadanie 4. Dla zadanego ciągu an niech Sn =
n∑
k=0
ak oraz Tn = S0+...+Snn+1 . Wykazać, że jeśli ciąg

Tn jest ograniczony, to szeregi potęgowe
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są zbieżne dla |x| < 1 oraz zachodzi równość
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Zadanie 5. Rozwinąć następujące funkcje w szereg Taylora wokół 0 i określić, na jakim zbiorze
otrzymany szereg jest zbieżny:
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