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Abstract We study stochastic dynamics of the Prisoner’s Dilemma game on random
Erdös-Rényi and Barabási-Albert networks with a cost of maintaining a link between
interacting players. Stochastic simulations show that when the cost increases, the
population of players located on Barabási-Albert network undergoes a sharp transi-
tion from an ordered state, where almost all players cooperate, to a state in which
both cooperators and defectors coexist. At the critical cost, the population oscillates
in time between these two states. Such a situation is not present in the Erdös-Rényi
network. We provide some heuristic analytical arguments for the phase transition
and the value of the critical cost in the Barabási-Albert network.
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1. Introduction
Cooperation between unrelated individuals in human and animal societies

is an intriguing issue in biology and social sciences [1, 2, 3, 4, 5, 6]. One can
describe it within the framework of evolutionary game theory and especially
the Prisoner’s Dilemma game. In this game, two players simultaneously decide
whether to cooperate or to defect. The mutual cooperation gives both of
them the reward R which is higher than the punishment P resulting from
the mutual defection. However, a cooperating player is tempted to defect
to receive the highest payoff T leaving the other cooperating player with the
lowest payoff S. Payoff inequalities S < P < R < T imply that defection gives
a player a higher payoff than cooperation regardless of a strategy adopted by
its opponent. Therefore rational individuals defect in spite of the fact that
they would be better off if they cooperated.

In the framework of evolutionary game theory [7, 8, 9], payoffs are inter-
preted as numbers of offspring who inherit strategies of their parents. The
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evolution of very large (infinite) populations is usually modeled by differen-
tial or difference replicator equations which describe time changes of fractions
of the population of individuals playing given strategies [10, 11]. In the case
of the Prisoner’s Dilemma, the long-run of such dynamics is the population
consisting of just defectors.

In replicator dynamics, players receive average payoffs weighted by fre-
quencies of strategies in the infinite population. However, real populations are
finite and individuals receive payoffs (not average payoffs) which result from
interactions with random opponents in well-mixed populations or neighbors
in spatially structured populations. In their pioneering paper [12], Nowak and
May located players on regular graphs and allowed them to interact only with
their neighbors. The payoff of any player is then the sum of payoffs resulting
from individual games. In discrete time moments, players imitate neighbors
with the highest payoff obtained in the previous round, making perhaps mis-
takes. In stationary states of such stochastic dynamics, various structures of
coexisting cooperators and defectors were observed [13, 14]. Since then various
versions of spatial Prisoner’s Dilemma and other games have been extensively
studied, see a review paper [15]. It was shown and generally understood that
cooperation can be maintained in space-structured populations. Cooperating
players tend to form clusters, receive high payoffs and therefore are immune
to invasion by defectors. Recently there appeared papers indicating that the
structure of a network on which players are located may play a significant role
in promoting the cooperation. Various non-regular and random graphs were
investigated. In particular, Santos and Pacheco [16, 17] shown that the scale-
free Barabási-Albert network favors cooperation for a large range of game
parameters.

In such a heterogeneous graph, there are vertices with many edges, the
so-called hubs. Players located on hubs interact with many individuals. It was
shown that existence of hubs favors cooperation. However, maintaining social
ties can be costly. It is natural therefore to introduce participation costs in
spatial games. It was shown in [18] that participation costs reduce the advan-
tage of heterogeneous networks in maintaining a high level of cooperation.

Here we study the equilibrium behavior of the imitation dynamics of sys-
tems of interacting individuals playing the Prisoner’s Dilemma game on ran-
dom Erdös-Rényi [19] and Barabási-Albert networks [20, 21]. The stochastic
dynamics in spatial games are similar to stochastic updating in the Ising and
lattice-gas models in statistical mechanics. However, in spatial games, in gen-
eral there does not exist a global order parameter, like the energy or free
energy in the Ising model, which the system wants to optimize. Similarities
and differences between stochastic dynamics in spatial games and in systems
of many interacting particles were discussed in [15, 22, 23].

Critical phenomena in random networks were studied very extensively,
for a review see [24], mean-field approximation in the Ising model on the
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Barabási-Albert network was used in [26, 27], phase transitions in voter mod-
els were analysed in [28, 29, 30]. We have performed Monte-Carlo simulations
to explore dependence of the cooperation level in the stationary state of the
imitation dynamics on the participating cost. We report that in the case of
the Barabási-Albert network we observe a critical value of the cost at which
a population changes abruptly from a high to a lower level of cooperation.
This follows up constructions and simulations presented in [31]

2. Model
Players are located on vertices of the Erdös-Rényi (ER) [19] and the

Barabási-Albert (BA) networks [20, 21]. We build the ER network by putting
with probability p an edge between every pair of N = 104 vertices. It fol-
lows that the average degree of vertices (the average number of neighbors) is
equal to α = p(N − 1). The BA network is built by the preferential attach-
ment procedure. We start with mo fully connected vertices and then we add
N−mo vertices, each time connecting them with m already available vertices
with probabilities proportional to their degrees. If mo = α+ 1 and m = α/2,
then we get a graph with the average degree equal to α. It is known that
such a graph is scale-free with the probability distribution of degrees given
by p(k) ∼ k−3 [20, 21, 25].

Individuals play with their neighbors the Prisoner’s Dilemma game. For
a general Prisoner’s Dilemma game we introduce a costs γ of maintaining a
link payed by both connected players [18] and hence our payoff matrix reads:

C D

C 1− γ S − γ

D T − γ P − γ

where the entry ij is the payoff of the row player using the i-th strategy
while the column player uses the j-th one.

At discrete moments of time, all individuals interact with their neighbors
and receive payoffs which are sums with respect to individual games. Then
the imitation process takes place. A randomly chosen player compares its
payoff to payoffs of all its neighbors and with the probability 1 − ϵ chooses
the strategy which provided the highest payoff in the previous round and with
the probability ϵ adopts the other one, we fix ϵ = 10−3. We interpret ϵ as a
measure of irrationality of players or simply the noise level. This completes
one step of the discrete-time dynamics - a Markov chain with 2N states.
The presence of noise makes our chain irreducible - any state can be reached
from any other state in a finite number of steps. It is also aperiodic which
follows from the fact that the chain can remain at any state with a non-zero
probability. This means that our Markov Chain is ergodic - it has a unique
stationary probability distribution, the so-called stationary state, to which
any initial probability distribution converges.
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To find a cooperation level in the stationary state we perform stochastic
simulations. We start with a completely random initial conditions with the
fraction of cooperators = 1/2. Then we perform 105 Monte-Carlo rounds
followed by 104 rounds, in which frequencies of cooperators are computed.
One round consists of N = 104 steps, where N is the number of players, so
that in every round, on average each player has the opportunity to update its
strategy. We repeat simulations 50 times and average the results.

3. Results
It is usually assumed, see for example [12, 16], that S = P = 0, R = 1 and

T > 1, such a game is called a weak Prisoner’s Dilemma. We will follow this
practice here. Stationary fractions of cooperators for various average degrees
of vertices α of ER and BA networks as a function of the cost γ of maintaining
one link, for the temptation to defect T = 1.5, 1.7, and 1.9 are shown in Fig.
1 and as a function of T for γ = 0.46 in Fig. 2. We observe that the cost γ
plays the crucial role in the long-run behavior of our systems. The effect of
γ is much more pronounced for the BA network than for the ER one. For
small positive values of γ, the level of cooperation is much higher for the BA
network than for the ER one; for bigger γ the cooperation level is higher for
the ER network.

Figure 1: Fraction of cooperators in the stationary state as a function of a
cost of maintaining a link.

Figure 2: Fraction of cooperators in the stationary state as a function of T ,
γ = 0.46.
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Our main result is that in the case of the BA network, when the cost
increases, the population of players undergoes a sharp transition from an
efficient ordered state, where almost all players cooperate, to a disordered
state in which both cooperators and defectors coexist. For T = 1.5, this
critical value of γ is about 0.46 as is seen in Fig. 1. This is reminiscent of
the first-order discontinuous phase transition present in statistical mechanics
models of interacting particles. In such models, at the critical point, there
coexist two (or more) phases of the system. A typical example is the presence
of two phases, up and down, in the ferromagnetic Ising model at the zero
external magnetic field below the critical Curie temperature. To see if such a
situation may be present here in the model of interacting players, we looked
at the time evolution of the frequency of cooperation. In Fig. 3 we see that
for γ = 0.4 (T=1.5 and α = 12), that is below a critical value, the population
basically stays at an ordered state where almost all players cooperate, for γ =
0.48, the population settles at a state in which both cooperators and defectors
coexist. For γ = 0.46, we observe that the system oscillates between these
two states. Again, this is a typical situation in finite systems of interacting
particles with a discontinuous phase transition in the infinite-system limit.

Figure 3: Fraction of cooperators after each round in a sample simulation for
various values of γ. Barabási-Albert network, T = 1.5, α = 12.

Spatial structure favors cooperation because clusters of cooperators have
relatively high payoffs and therefore are resistant to attacks of defectors [12].
So it is natural to expect that the cooperation level is a decreasing function
of the linking cost [18]. To understand the existence of an abrupt decrease of
the cooperation level in the Barabási-Albert network, we calculate the linking
cost at which an average payoff of D−strategy is bigger than the average
payoff of a C−strategy in the neighborhood of a solitary D−player. More
precisely, let us assume that we have a single D−player in the population of
cooperators. Its average payoff is equal to the expected value of the vertex
degree, < k >= α multiplied by T − γ. Now choose one of its C−neighbors.
It is known that its degree distribution is proportional to kp(k), where p(k) is
the degree distribution of the network [32, 33]. Therefore the expected value
of its degree is given by < k2 > / < k >. We set the expected value of the
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D−player to be equal to the expected value of its neighbor - the C− player,
that is

< k > (T − γ) = (1− γ)(
< k2 >

< k >
− 1)− γ. (1)

We solve the above equation for γ and get

γ =
<k2>
<k> − < k > T − 1

<k2>
<k> − < k >

. (2)

For the expected value of the square of vertex degrees we use the following
formula [34]:

< k2 >=< k >2 lnN

4
. (3)

For < k >= α = 8 and N = 10000 we obtain critical values of the cost
equal aproximately to 0.519 for T = 1.5 and 0.21 for T = 1.9 which is in a
good agreement with values obtained in simulations as can be seen in Fig. 1.
Further more rigorous analysis is needed.

Let us now consider a standard Prisoner’s Dilemma game to examine how
changing the payoff for mutual defection, P , while holding other payoff values
constant, affects the level of cooperation. We fix payoffs as T = 1.5, R = 1,
and S = 0, we vary γ and observe its effect on cooperation for various P ′s
in the Barabási-Albert network. The results in Fig. 4 demonstrate that as
P increases, the critical γ value, where a phase transition occurs, decreases.
This is because, with a larger P , defectors obtain higher payoffs when playing
each other, reducing the incentive to cooperate for any fixed γ.

Figure 4: Fractions of cooperators depending on the cost of maintaining a link
for different values of P . Barabási-Albert network, T = 1.5, α = 12.

4. Discussion
We investigated how the cost of maintaining links between players affects

the cooperation level in the spatial Prisoner’s Dilemma games. In the case
of the Barabási-Albert network, we observed that when the cost increases,
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the population of players undergoes a sharp transition from a high to a lower
level of cooperation. Our numerical simulations of the time evolution of the
frequency of cooperation showed that at the critical cost the population os-
cillates between two states. It means that at such a cost there coexist two
population states: an ordered one where almost all players cooperate and one
in which both cooperators and defectors coexist. We provided some heuristic
analytical arguments for the existence of a phase transition and the value of
the critical cost.

Further research is needed to elucidate the nature of this phase transition
and to provide exact or at least an approximate analytical analysis of the
observed behavior.
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