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One-Dimensional Ising Model and the Complete Devil's Staircase
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It is shown rigorously that the one-dimensional Ising model with long-range antiferro-
magnetic interactions exhibits a complete devil's staircase.
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Periodic modulated systems are quite common
in solid-state physics. In general there is a ten-
dency for the periodicity to lock into values which
are commensurable with the lattice constant. ' As
a parameter is changed, the system may pass
through several commensurate phases which may
or may not have incommensurate phases between
them. In particular, Bak and von Boehm argued
that the three-dimensional anisotropic Ising mod-
el with next-nearest-neighbor interactions has an
infinity of commensurate phases. ' At high tem-
peratures there are probably also incommensurate
phases, ' but at low temperatures the commensu-
rate phases are generally separated by first-
order transitions in this model.

In principle the periodicity may assume every
single commensurable value in an interval. Since
the rational. numbers are everywhere dense, two
steps in the function showing the periodicity ver-
sus the parameter are then always separated by
an infinity of more steps. This structure is
called the devil's staircase. ' If the commensurate
phases "fill up" the whole phase diagram the
staircase is called complete. It has been specu-
lated that the Frenkel-Kontorowa model (an array
of classical particles, connected by springs, in
a periodic potential) exhibits the complete devil' s
staircase, but until now onl, y numerical arguments
have been available. ' In this paper it is shown
rigorously that the ground state of the one-dimen-
sional Ising model with convex long-range anti-
ferromagnetic interactions has a complete devil' s-
staircase structure. To our knowledge, this con-
stitutes the first proof of the existence of the
complete devil's staircase in any model. .

For simplicity we write the Hamiltonian in the
following asymmetric form (which, of course, is
completely general):

H= Q, HS, +s+, ,J(i-. j)(S.,. +1)(S, +1),

where the summation is over the A spins in the
chain, and S,. = + 1. Only "up" spins (S =+ 1) in-
teract.

The model. has some rather direct physical ap-
plications. Safran' has applied the model to the
phenomenon of "staging" in graphite intercalation
compounds. 8, =1 indicates the existence of a
layer of intercalated atoms at the ith graphite
layer and S,. = —1 indicates the absence of inter-
calated ions. J(i —j) is thus essentially the inter-
action between intercalated layers, and B is a
chemical potential for the layers. Hubbard and
Torrance' suggested that the model may explain
certain features of the "neutral-ionic" transitions
observed in some mixed-stack organic charge
transfer salts by Torrance et al. ' J(i-j) is then
the Coulomb repulsion between ionic planes and
0 is the difference I-A between the donor ioniza-
tion potential I and the acceptor electron-affinity
A. Both argue that an infinity of phases may oc-
cur, but the precise nature of the phases has not
been specified.

For a given magnetization (number of "up" spins
minus number of "down" spins) the problem of
minimizing (1) is equivalent to the problem of ar-
ranging a number of charged particles on N sites
so as to minimize the Coulomb energy. This
problem has been solved by Hubbard" and by
Pokrovsky and Uimin. " Some simple properties
of the stable configurations are important for our
purpose. Let X,.' denote the position of the ith up
spin, and let X,' be the distance to the next up
spin. Similarly, X,~ is the distance to thePth-
nearest up spin, X,. =X p X' ~ If the fraction
of up spin is q =m/n it can be shown that the en-
ergy is minimized if for all sites, then

X, =rp or rp +1,

where r~ &np/m &r~ + 1. For P/q =Pn/m integer,
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FIG. 1. Typical stable spin configurations with q
the ratio of up spins over down spins.
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X, =r~ =np/m. The sum of all pth-nearest-
neighbor distances must fulfill the obvious re-
lation

Q, X, =PN. (3)

Figure 1 shows some typical configurations. The
relations (2) and (3) are all we need to calculate
exactly the stability intervals for all. possible
rational fractions of up spins.

Consider the situation where the chain is de-
formed into a loop of length N. The phase char-
acterized by q =m/n is stable as long as it costs

FIG. 2. The devil's staircase. The ratio of up spins
over down spins q is plotted vs the applied field H for
an interaction J(i) = i . Inset: The area in the
square magnified 10 times.

energy to flip one up spin down, or flip one down
spin up, and rearrange the new configuration to
minimize the energy.

We calculate first the cost of fl.ipping one down
spin. There is now one more pth-nearest-neigh-
bor interaction. Since (2) and (3) must still hold,
r~ pth-nearest-neighbor distances r~+ 1 must be
replaced by r~ + 1 pth-nearest-neighbor distances
X,.~ =r~, and the total change in energy is

b. U(& —& ) = 2H + 4(r, + 1)J(r,) —4r,J(r, + 1) + 4(r, + 1)J(r,) —4r,J(r, + 1)+. . .

+4nJ(n —1) —4(n —1)J(n)+. . . + 8nJ(2n —1)—4(2n —1)J(2n)+. . .

where x =n, r, =2n, . . . , have been inserted. Simil. arly the energy cost of flipping one up spin is

U (& —&) = —2H —4(r, + 1)J(r,) + 4 r,J(x, + 1) —4(r, + 1)J(r,) + 4rP(r, + 1)—.. .

—4(n+1)J(n)+4nJ(n+1) —.. . —4(2n 1+)J(2n) 8+nJ(2n+1) —.. . .

(4a)

(4b)

The interval in H, &H(m/n), where the phase is stable is determined simply by setting (4a) and (4b)
equal to zero, respectively:

~EH(q =m/n) =nJ(n+ 1)+nJ(n —1) —2nJ(n)+ 2nJ(2n+ 1)+2nJ(2n —1) —4nJ(2n)+. . .

+pnJ(pn+ 1)+pnJ(pn - 1)—2pnJ(pn)+. . . .

Note that hH is independent of the numerator rn.
If we make the assumption that the interaction 4
is of infinite range and convex, J(i+1)+J(i —1)
—2J'(i) & 0, then AH(m/n) is positive and finite for
all values of re~ and n. Also, it is easy to show
that if ~H is summed over all rational values the
whole interval of 8 is "filled up. " We have thus
proven the existence of the complete devil's stair-
case for a vt. ry general class of interactions, in-
cluding the power-law interactions expected for
the intercalation compounds, and the exponentially
decaying Coulomb interactions expected for the
neutral-ionic transition.
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! Figure 2 shows q vs H. An interaction J(i)
= i ' was chosen. Only phases which are stable
in an interval AH/J(l) &10 ' are shown. The
curve has no finite jumps. To illustrate the self-
similarity of the function a part of it has been
magnified by a factor 10 in the ins, et.

The states formed by flipping one spin starting
from a simple commensurate phase with q = 1/m
have a simple structure. Figures 3(a) and 3(b)
show the q = —,

' phase and the configuration which
has one more up spin. Th~ee defects are formed
(infinitely far apart for an infinite system) al-
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FIG. 3. (a) The commensurate structure with q = 3,
and (b) the configuration with one more "up" spin (the
lowest excited states for values of Q where the q =3
phase is stable). Note the formation of defects or
"solitons" with fractional spin S*= 3, indicated by an
arrow below the array. (c) The lowest excited state
of the q 2 phase, with S*=2 solitons.

order commensurate phases vanish at some tem-
perature T„-16T,/n'. At a given nonzero tem-
perature there are thus only a finite number of
phases. The high-order C phases give way to a
floating incommensurate phase. The phase with
q = 2 plays a special rol.e: We expect a transition
directly to a paramagnetic phase all the way down
to 7 =0.
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though only one spin has been flipped. Hence, the
spin of each defect is 8*=-', . The nature of this
fractional spin is very similar to the fractional
charges discussed by Su, Schrieffer, and Heeg-
er." The situation for q = 2 is topol. ogically
equivalent with the situation for the antiferromag-
netic Heisenberg model as worked out by Fa-
deev. " Topological solitons with spin S*=

& are
expected in this case [Fig. 3(c)].

Until now, we have addressed only the problem
of finding the ground state. What happens at non-
zero temperature~ A d-dimensional model can
be constructed by adding ferromagnetic interac-
tions in the d-1 perpendicular directions.

Drawing on the general insight achieved in Refs.
1-4 we expect that in three dimensions all com-
mensurate phases extend to finite temperature,
probably all the way to the transition temperature
7.', where the system becomes paramagnetic. At

nonzero temperature, in particular near T, ,
there may be incommensurate phases, of finite
measure, between the C phases.

Generalizing the results derived by Vill. ain and
Bak, ' we expect that in two dimensions the high-
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