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Abstract

We address the problem of stability of one-dimensional non-periodic ground-
state configurations in classical lattice-gas models with respect to finite-range
perturbations of interactions. We show that a relevant property of ground-state
configurations in this context is their homogeneity. The so-called strict boundary
condition says that the number of finite patterns of a configuration has bounded
fluctuations on any finite subset of the lattice Z. We show that if the strict
boundary condition is not satisfied and interactions between particles decay faster
than 1/rα with α > 2, then ground-state configurations are not stable. In the
Thue-Morse ground state, number of finite patterns may fluctuate as much as
the logarithm of the lenght of a lattice subset. We show that the Thue-Morse
ground state is unstable for any α > 1 with respect to arbitrarily small four-body
interactions favoring the presence of molecules consisting of two up or down spins.
We also investigate Sturmian systems defined by irrational rotations on the circle.
They satisfy the strict boundary condition but nevertheless they are unstable for
α > 3.
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1 Introduction

Since the discovery of quasicrystals [1], one of the problems in statistical mechanics is

to construct microscopic models of interacting atoms or molecules in which all configu-

rations minimizing energy, the so-called ground-state configurations, are non-periodic.

Here we will discuss models in which although all ground-state configurations are non-

periodic, they all look the same, they cannot be distinguished locally. More precisely,

they support the unique translation-invariant measure called the non-periodic ground

state of the system.

There were constructed many classical lattice-gas models without periodic ground-

state configurations [2, 3, 4, 5]. Some of these models are based on non-periodic tilings

of the plane with Wang square-like tiles [6], in particular Robinson’s tilings [7]. In

such tilings, tiles can cover the plane but only in a non-periodic way. Let us point

out that centers of tiles form a regular two-dimensional lattice Z2 but assignments of

tiles to vertices are non-periodic. Now, types of tiles can be identified with types of

particles, then interactions between particles correspond to matching rules. Namely,

the interaction energy between two particles which match as tiles is 0, if they don’t

match, the energy is positive, say 1. It is easy to see that ground-state configurations

correspond to tilings, therefore there are no periodic ones. Interactions in such models

are obviously non-frustrated - all interactions attain their minima (equal to 0) in ground-

state configurations.

A desired property of non-periodic ground-state configurations is their stability

against small perturbations of interactions between particles. For two-dimensional sys-

tems with finite-range non-frustrated interactions and with unique non-periodic ground-

state measure, the relevant property is the so-called strict boundary condition - the

requirement that the number of finite patterns can fluctuate at most proportional to

the boundary of a lattice subset (a precise definition is given in Section 2) [5]. It was

shown in [5] that the strict boundary condition is equivalent to the stability of ground-

state configurations. More precisely, non-periodic ground states are stable against small

perturbations of the range d if and only if the strict boundary condition is satisfied for

all finite patterns of sizes smaller or equal to d in all local tilings. So far we do not

have an example of a two-dimensional finite-range classical lattice-gas model without
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periodic ground-state configurations which satisfies the strict boundary condition. For

example, it was proved that the non-periodic ground state based on Robinson’s tilings

does not satisfy the strict boundary condition and therefore is unstable with respect to

arbitrarily small chemical potentials [8].

One of the goals of our paper is to show that the strict boundary condition is relevant

also for one-dimensional models. Situation is quite different here. It is known that

one-dimensional systems without periodic ground-state configurations require infinite-

range interactions [9, 10, 11]. It follows that one-dimensional non-periodic ground states

cannot be stable with respect to small perturbations in any reasonable space of infinite-

range interactions. In the space l1 of summable interactions we can cut the tail of an

arbitrary small l1-norm and obtain a finite-range Hamiltonian which have at least one

periodic ground-state configuration.

One-dimensional two-body interactions producing only non-periodic ground-state

configurations were presented in [12, 13, 14, 15, 16]. Hamiltonians in these papers

consist of two-body repelling interactions between particles and a chemical potential

favoring them. Such interactions are obviously frustrated. Ground states of these

models form Cantor sets called devil’s staircases. Non-periodicity is present only for

certain values (of measure zero) of chemical potentials - an arbitrary small change of a

chemical potential destroys a non-periodic ground state.

In [17], a non-frustrated infinite-range, exponentially decaying four-body Hamilto-

nian was constructed, with the unique ground-state measure supported by Thue-Morse

sequences [18]. Recently in [19] there were constructed non-frustrated two-body (aug-

mented by some finite-range interactions) Hamiltonians producing exactly the same

ground states as in the frustrated model of [12, 13, 14].

Here we investigate the stability of non-periodic ground-state configurations with

respect to finite-range perturbations. We show that the strict boundary condition plays

here an important role. Our general result is that if the strict boundary condition is

not satisfied and interactions between particles decay faster than 1/rα with α > 2, then

ground-state configurations are not stable, see Theorem 2.2.

In the Thue-Morse ground state, the number of finite patterns may fluctuate as

much as the logarithm of the lenght of a lattice subset. We show that such a ground
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state is unstable with respect to arbitrarily small two-body interactions favoring the

presence of molecules consisting of two up or down spins, see Theorem 4.1.

We also investigate Sturmian systems defined by irrational rotations on the circle,

which satisfy the strict boundary condition [19]. Hamiltonians having Sturm sequences

as ground-state configurations we recently constructed in [19]. We show that if α > 3,

then Sturmian systems are not stable, see Theorem 5.6.

2 Strict boundary condition and non-stability of non-

periodic ground states

A frequency of a finite pattern in an infinite configuration is defined as the limit of

the number of occurrences of this pattern in a segment of lenght L divided by L as

L→∞. All sequences in any given Sturmian system have the same frequency for each

pattern. We are interested now whether the fluctuations of the numbers of occurrences

are bounded. If that is the case, configurations are said to satisfy the strict boundary

condition [5] or rapid convergence of frequencies to their equilibrium values [20, 21].

Definition 2.1. Given a sequence X = (xn) ∈ {0, 1}Z and a finite word w, define the

frequency of w as

ξw = lim
N→∞

#{|n| ≤ N | xn . . . xn+|w|−1 = w}
2N + 1

.

Furthermore, for a segment A ⊂ Z, denote by X(A) the sub-word (xn)n∈A. We say

that a sequence X satisfies the strict boundary condition (quick convergence of

frequencies) if for any word w and a segment A ⊂ Z, the number of appearances of w

in X(A), nw(X(A)), satisfies the following inequality:

|nw(X(A))− ξw|A|| < Cw,

where Cw > 0 is a constant which depends only on the word w.

We consider classical lattice-gas models with unique ground-state measures sup-

ported by non-periodic ground-state configurations. The configuration space of a sys-

tem is denoted by Ω = {0, 1}Z, where 0 means the absence of a particle at a given lattice

site, and 1 its presence. Let f(r) = 1/rα be the energy of one-dimensional interaction

between particles at a distance r.
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Theorem 2.2. If non-periodic ground-state configurations do not satisfy the strict

boundary condition and the interaction energy decays as 1/rα with α > 2, then they

are unstable with respect to an arbitrary small chemical potential - a one-body on-site

interaction.

Proof. Let X ∈ Ω be a ground-state configuration. That is for any Y which differs

from X on a finite number of sites, the relative Hamiltonian is not smaller than 0,

H(Y |X) ≥ 0. Let us assume that the system does not satisfy the strict boundary

condition. It means that for any C > 0, there are two segments of consecutive lattice

sites, S1, S2 ⊂ Z of the lenght L, such that n(X(Λ2))−n(X(Λ1)) > C, where n(X(Λi))

is the number of 1’s in X on Λi, i = 1, 2. We construct a finite excitation Y of X,

that is a configuration Y which differs from X only on a finite number of lattice sites.

Namely, let Y = X outside S1 and Y on Λ1 is equal to X on Λ2. Let us now introduce

an on-site interaction - a chemical potential which favors the presence of particles - it

assigns to each particle a negative energy −µ for some small µ > 0. We will show that

for α > 2, H(Y |X) < 0 that is by a finite change of X one can decrease the energy

hence X is not a ground-state configuration for a perturbed Hamiltonian.

Obviously, the chemical potential decreases the energy by Cµ. Now we have to

bound appropriately the possible increase of the energy associated with a two-body

original interactions. The increase of the energy can be divided into two parts: E1

associated with interactions between particles at a distance smaller than L and E2

associated with interactions between particles at a distance equal or bigger than L.

Now we have,

E1 ≤ 2
L∑
r=1

r

rα
<

∫ L

x=1

2

x(α−1)
dx+ 2 =

2

(2− α)
L2−α + 2− 2

2− α
, (2.1)

E2 ≤ 2L
∞∑
r=L

1

rα
< 2L(

∫ ∞
L

1

xα
dx+

1

Lα
) =

2

α− 1
L2−α + 2L1−α. (2.2)

It follows that for α > 2, E1 + E2 < Cµ. Therefore for any arbitrarily small µ

there exists sufficiently large L such that H(Y |X) < 0 hence X is not a ground-state

configuration for the perturbed interaction.
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3 Toeplitz period-doubling ground state

We construct Toeplitz configurations [22] (also known as period-doubling configura-

tions) in the following way. We place −1 (a symbol corresponding to the absence of a

particle) on a sublattice L1 ⊂ Z of period 2. Then we place 1 (a symbol corresponding

to a particle) on a sublattice L2 ⊂ Z of period 4 which is disjoint from L1. We repeat

this procedure ad infinitum and get a Toeplitz configuration X ∈ Ω = {−1, 1}Z such

that X(i) = (−1)j if i ∈ Lj. X is obviously non-periodic, there are particles on every

sublattice Lj for even j′s.

Let T be the translation operator, i.e., T : Ω→ Ω, (T (X))(i) = X(i− 1), X ∈ Ω. It

is easy to see that the closure of the orbit of X by T supports the unique translation-

invariant measure, we denote it by ρTo. In this way we have constructed a uniquely

ergodic dynamical system (Ω, ρTo, T ). The density of particles (1’s) in X is equal to

1/3.

Now we will show that X does not satisfy the strict boundary condition. Let us look

at particles on sublattices Lj, j ≤ m. One can find a segment W ⊂ Z such that i ∈ L2 is

the first site of W , X(i) = 1, i+2 ∈ L4 so X(i+2) = 1, i+2+8 ∈ L6 so X(i+2+8) = 1,

... , i+ 2 + 8 + ...+ 2× 4(m/2)−1 ∈ L(m/2)−1 so X(i+ 2 + 8 + ...+ 2× 4(m/2)−1) = 1. Let

the length of W be equal to 2(2 + 8 + ...+ 2× 4(m/2)−1) = 4
3
(4m/2 − 1).

Hence the number of particles in X on sublattices Lj, j ≤ m is equal to n1+...+nm/2,

where nm/2 = 2 and nk−1 = 4nk − 2, k = m/2,m/2− 1,m/2− 2, ..., 1.

Let V = Ta(W ), where Ta is a shift operator to the right by a = 4
∑(m/2)−2

k=0 4k =

4
3
4(m/2)−1. We see that the number of particles in X(V ) is smaller by m/2 with respect

to X(W ), one particle for each Lj, j ≤ 2k, k = 1, ...,m/2.

Obviously, the strict boundary condition is not satisfied. Moreover, we can apply

the above procedure for any m ≤ |V | so the fluctuations of the number of particles on

the V ⊂ Z can be of the order log4 |V | where |V | is the length of V .

Let us assume that the Toeplitz measure ρTo is the unique ground state of some

two-body interactions decaying as 1/rα, where r is the distance between particles.

Theorem 3.1. The Toeplitz ground state ρTo is unstable against an arbitrarily small

chemical potential which favors the presence of particles.
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Proof. To prove the instability of the ground state ρTo we introduce a chemical potential

µ favoring the presence of particles and a local perturbation Y ofX such thatH(Y |X) <

0. Y is constructed as follows: we take X(W ), described above, and place it on V , a

certain shift of W , such that sublattices Lj, j ≤ n (for some even n to be chosen later)

agree in Y . In this way we introduced an extra 1 on all sublattices Lj, n < j < log4 |V |
with even j′s.

Now we will construct an upper bound for H(Y |X). Denote by H4n the energy of

interactions of the first particle on the left side of Ln+2 with the particles on the part

of the complement of V left to the particle. We get

H4n <
∞∑

k=4n

1

kα
< 2

∫ ∞
4n

1

xα
dx =

2

(α− 1)4n(α−1)
. (3.1)

It follows that

H(Y |X) < 2

|V |/4n∑
k=1

Hk4n < 2

|V |/4n∑
k=1

1

(k4n)(α−1)
<

4|V |2−α

(α− 1)(2− α)4n
(3.2)

for 1 < α < 2.

Let n be a minimal even number such that

4|V |2−α

(α− 1)(2− α)4n
< 1 (3.3)

so n < (2− α) log4 |V | − log4(α− 1)(2− α) + 3.

It follows that the two-body interaction energy is bounded (independent on |V |)
and the number of excessive 1′s is bigger than

log4 |V | − (2− α) log4 |V |+ log4(α− 1)(2− α)− 3 >
ε

2
log4 |V | (3.4)

for any α = 1 + ε and a sufficiently big ε dependent on V .

It shows that H(Y |X) < 0 so X is not a ground-state configuration for any arbi-

trarily small µ.
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4 Thue-Morse ground state

We prove here that the Thue-Morse ground state is unstable with respect to arbitrarily

small four-body interactions.

We begin by constructing a one-sided Thue-Morse sequence. We put 1 at the origin

and perform successively the substitution S: 1→ 10, 0→ 01. In this way we get a one-

sided sequence 1001011001101001..., {XTM(i)}, i ≥ 0. We define XTM ∈ Ω = {0, 1}Z

by setting XTM(i) = XTM(−i − 1) for i < 0. Let GTM be the closure (in the product

topology of the discrete topology on 0, 1) of the orbit of XTM by the translation operator

T , i.e., GTM = {T n(XTM), n ≥ 0}cl. It can be shown [18] that GTM supports exactly

one translation-invariant probability measure µTM on Ω.

Let us identify now 1 with +1 and 0 with −1, so particles are represented by spins

up and the empty spaces by spins down. It was shown in [17] that ρTM is the only

ground state of the following exponentially decaying four-spin interactions,

HTM =
∞∑
r=0

∞∑
p=0

Hr,p, (4.1)

where

Hr,p =
∑
i∈Z

J(r, p)(σi + σi+2r)
2(σi+(2p+1)2r + σi+(2p+2)2r)

2 (4.2)

and σi(X) = X(i) ∈ {+1,−1}.

Theorem 4.1. The Thue-Morse ground state ρTM is unstable against an arbitrarily

small chemical potential which favors the presence of molecules consisting of two up or

down spins.

Proof. Let X ∈ {+1,−1}Z be any Thue-Morse sequence and let Y (i) = X(i)X(i+1). It

is easy to see that Y is a Toeplitz sequence. Let us now consider 11 and 00 as A and 10

and 01 as B type molecules, respectively. A and B molecules form a Toeplitz sequence

and therefore their numbers on the segment V may fluctuate on the order of log4 |V |.
Now we introduce a chemical potential h favoring A-type molecules. It follows (in the

same way as in the Toeplitz case) that if we take into account interactions J(0, p) such
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that J(0, p) decays as 1/pα, then the Toeplitz ground state is unstable with respect to

any arbitrarily small µ for any α > 1.

Now we have to take care of J(r, p) for all r ≥ 1. We assume that J(r, p) decays

as 1/[(2p + 2)2r]α. We will use the fact that Thue-Morse sequences are self-similar.

Namely, we can group two successive symbols, 10 and 01, and replace them by 1 and

0 respectively and in this way we get again a Thue-Morse sequence. One can do

analogous groupings on every scale, for example 1001 → 1, 0110 → 0. We will also

use the structure of interactions. First we notice that for any sequence of successive

blocks of 10 and 01, no two pairs of either 11 or 00 are at an odd distance, therefore

interactions in the Hamiltonian for r = 0 and any p attains the zero value. It follows

from the self-similarity of Thue-Morse sequences that for any sequence of successive

blocks of 1001 and 0110, no two pairs of either two 1’s or two 0’s at a distance 2 are

at a distance 2(2p + 1) for any p > 0 so the Hamiltonian for r = 1 and any p attains

the zero value. In general, for any sequence of successive blocks of Sr(1) and Sr(0), the

Hamiltonian associated with any r ≥ 0 and any p attains the zero value, Hr,p(Y |X) = 0.

Now, to prove the instability of the Thue-Morse ground state we mimic the proce-

dure used in the Toeplitz case. Namely, let X be a Thue-Morse sequence. We construct

Y , a local perturbation of X, in the following way. Let V ⊂ Z be a segment of Z, then

Y = X on the complement of V and we put on V an appropriate block of X such that

Y consists of successive blocks of Sr(1) and Sr(0) for any r < r∗ (to be chosen later) so

Hr,p(Y |X) = 0 for any p and r < r∗ and the number of excessive A-molecules is bigger

than log4 |V | − r∗.
Now fix r ≥ r∗ and consider interactions J(r, p), p > 0. Similar calculations as in

the Toeplitz case show that for

Hr =
∞∑
p=0

Hr,p (4.3)

we have

Hr(Y |X) <
|V |2−α

(α− 1)(2− α)2r
(4.4)

for 1 < α < 2 and therefore
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H(Y |X) =
∑
r≥r∗

Hr(Y |X) <
|V |2−α

(α− 1)(2− α)2r∗−1
. (4.5)

We choose a minimal r∗ such that |V |2−α
(α−1)(2−α)2r∗−1 < 1.

Hence we get that H(Y |X) < 0 which shows the instability of the Thue-Morse

ground state.

5 Sturmian ground states

We will identify the circle C with R/Z and consider an irrational rotation by ϕ (which

is given by translation on R/Z by ϕ mod 1).

Definition 5.1. Given an irrational ϕ ∈ C we say that X ∈ {0, 1}Z is generated by ϕ

if it is of the following form:

X(n) =

{
0 when x+ nϕ ∈ P
1 otherwise

where x ∈ C and P = [0, ϕ).

We call such X a Sturmian sequence corresponding to ϕ and x. Let GSt be the

closure of the orbit of X by translations. It can be shown that GSt supports exactly

one translation-invariant probability measure ρSt on Ω.

From now on we will consider only rotations by badly approximable numbers.

Definition 5.2. We say that a number ϕ is badly approximable if there exists c > 0

such that ∣∣∣∣ϕ− p

q

∣∣∣∣ > c

q2

for all rationals p
q
.

Sturmian sequences can be characterized by absence of certain finite patterns.

Theorem 5.3. [19, Theorem 4.1] Let ϕ ∈ (1
2
, 1) be irrational. Then there exist a

natural number m and a set F ⊆ N of forbidden distances such that Sturmian sequences

generated by ϕ are uniquely determined by the absence of the following patterns: m

consecutive 0’s and two 1’s separated by a distance from F .
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To characterize Sturmian sequences generated by irrationals from (0, 1
2
) we have

to change the roles of 0’s and 1’s. Let us note that F from Theorem 5.3 can also be

described by rotations. Namely

k /∈ F ⇐⇒ ∃y ∈ [ϕ, 1) y + kϕ ∈ [ϕ, 1).

The following two characterizations of F are equivalent.

Proposition 5.4.

k /∈ F ⇐⇒ ∃y ∈ [ϕ, 1) y + kϕ ∈ [ϕ, 1),

k ∈ F ⇐⇒ kϕ ∈ [1− ϕ, ϕ].

Proof. Let z ∈ C, then

¬(∃y ∈ [ϕ, 1) y+z ∈ [ϕ, 1)) ⇐⇒ ∀y ∈ [ϕ, 1) y+z ∈ [0, ϕ) ⇐⇒ {y+z : y ∈ [ϕ, 1)} ⊆ [0, ϕ).

The arc {y+ z : y ∈ [ϕ, 1)} is contained in [0, ϕ) if and only if its endpoints are in [0, ϕ]

which means that z ∈ [1− ϕ, ϕ]. We set z = kϕ to finish the proof.

Given a set of forbidden distances we may easily construct non-frustrated Hamiltoni-

ans for which the unique ground-state consists exactly of Sturmian sequences generated

by ϕ. We simply need to assign positive energies to all forbidden patterns and zero

otherwise (for more details see [19, Theorem 5.2]).

Sturmian sequences have the following property.

Lemma 5.5. Let ϕ ∈ (0, 1) be irrational. Then for each m ∈ N there is k ≥ m and a

finite word w ∈ {0, 1}{0,1,...,k−1} of lenght k such that

� w is a subword of a Sturmian sequence generated by ϕ,

� doubling of w, w̃ ∈ {0, 1}{0,1,...,2k−1} given by

w̃(i) = w̃(i+ k) = w(i) for i < k

also is a subword of a Sturmian sequence generated by ϕ.
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Proof. Fix n ∈ N. Let ε > 0 be such that iϕ /∈ [1 − ε, 1) for i = −1, 0, 1, 2, . . . , n − 1.

Let k be the smallest natural number such that kϕ ∈ [1 − ε, 1) and X be a Sturmian

sequence generated by ϕ with the initial point ε. We define w̃(i) = w̃(i + k) = X(i)

(and w(i) = X(i)). We need to show that X(i+ k) = X(i) for 0 ≤ i ≤ k − 1.

By definition, if X(i) = 0 then iϕ+ ε ∈ [0, ϕ) and by assumption iϕ /∈ [1− ε, 1) so

iϕ+ ε ∈ [ε, ϕ). Hence iϕ+ kϕ+ ε ∈ [0, ϕ) which means that X(i+ k) = 0. If X(i) = 1

then iϕ+ ε ∈ [ϕ, 1), and since (i− 1)ϕ /∈ [1− ε, 1] we get that iϕ+ ε ∈ [ϕ+ ε, 1). This

gives iϕ+ kϕ+ ε ∈ [ϕ, 1) which means that X(i+ k) = 1.

Theorem 5.6. Assume that ϕ ∈ (0, 1) is badly approximable and the interaction energy

decays as 1/rα with α > 3. Then Sturmian ground-state configurations generated by ϕ

are unstable.

Proof. Let X be a Sturmian sequence generated by ϕ. Let us now introduce a small

chemical potential µ which favors the presence of particles (occurrence of 1’s). For

every m ∈ N pick km ≥ m and a word wm of length km whose doubling is a Sturmian

subword as in Lemma 5.5. Let Ym be the periodic sequence with the period km given

by wm. For each i such that Ym(i) = 1 the energy from pairs of 1’s containing Ym(i) is

not greater than

2
∞∑

i=km+1

1

iα
≤ 2

∫ ∞
km

dx

xα
=

2

α− 1
k−α+1
m

since there are no forbidden pairs of 1’s in Ym at a distance less than km. Hence the

difference of energies coming from pairs of 1’s between Ym and X involving particles in

the interval [−l, l] may be estimated as follows.

E1(Ym([−l, l]))− E1(X([−l, l])) = E1(Ym([−l, l])) ≤ (2l + 1)
2

α− 1
k−α+1
m . (5.1)

Denote by ξ(X) and ξ(Ym) the frequency of 1’s in X and Ym respectively. We have

ξ(X) = 1−ϕ and ξ(Ym) = n(wm)
km

(where n(wm) is the number of 1’s in wm). Since ϕ is

badly approximable, there exists c > 0 independent of m such that

|ξ(Ym)− ξ(X)| =
∣∣∣∣n(wm)− km

km
+ ϕ

∣∣∣∣ > c

k2m
.

This shows that

|E2(Ym([−l, l]))− E2(X([−l, l]))| ≥ (2l + 1)
|µ|c
2k2m

,
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where E2 is the energy of 1’s in the interval [−l, l] due to the chemical potential µ.

We replace µ by −µ if necessary and get

E2(Ym([−l, l]))− E2(X([−l, l])) ≤ −(2l + 1)
|µ|c
2k2m

. (5.2)

We combine (5.1) and (5.2) and get

E(Ym([−l, l]))− E(X([−l, l])) ≤ (2l + 1)
2

α− 1
k−α+1
m − (2l + 1)

|µ|c
2
k−2m .

We divide the above inequality by 2l + 1, take the limit l→∞ and get

ρ(Ym)− ρ(X) ≤ 2

α− 1
k−α+1
m − |µ|c

2
k−2m ,

where ρ(Ym)andρ(X) denote energy densities of Ym and X respectively.

Since α > 3, 2
α−1k

−α+1
m tends to 0 faster than |µ|c

2
k−2m when m→∞, for large enough

m we have

ρ(Ym) < ρ(X)

which completes the proof.

6 Discussion

We studied stability of one-dimensional non-periodic ground-state configurations with

respect to finite-range perturbations of interactions decaying as 1/rα in classical lattice-

gas models with interactions. We showed that the Thue-Morse ground state is unstable

for any α > 1 and the Sturmian ground states are unstable for α > 3.

It is an important problem to construct one-dimensional lattice-gas model with the

unique non-periodic ground state which is stable with respect to finite-range perturba-

tions of interactions. We conjecture that Sturmian ground states generated by rotations

on the circle by badly approximable irrationals are stable for some small values of α > 1.
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