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Effect of the degree of an initial mutant in Moran processes in structured populations
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We study effects of the mutant’s degree on the fixation probability, extinction, and fixation times in Moran
processes on Erdös-Rényi and Barabási-Albert graphs. We performed stochastic simulations and used mean-
field-type approximations to obtain analytical formulas. We showed that the initial placement of a mutant has a
significant impact on the fixation probability and extinction time, while it has no effect on the fixation time. In
both types of graphs, an increase in the degree of an initial mutant results in a decreased fixation probability and
a shorter time to extinction. Our results extend previous ones to arbitrary fitness values.
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I. INTRODUCTION

Extinction and fixation of phenotypes and behaviors in
animal and human populations are important features of evo-
lutionary processes. The classical model here is the Moran
process in populations of fixed finite sizes, consisting of in-
dividuals equipped with one of two phenotypes [1]. Namely,
an individual is chosen proportional to its fitness and it gives
birth to an offspring who inherits its phenotype and replaces a
randomly chosen individual. Such a birth-death process (also
called an invasion process) is a Markov chain with two absorb-
ing states: homogeneous populations with only one phenotype
present. One may also consider death-birth Moran process,
where an individual is chosen with a probability inversely pro-
portional to its fitness and is replaced by a randomly chosen
individual [2–5].

Here we will study fixation probability and expected fix-
ation and extinction times of mutants in birth-death Moran
processes on graphs. In such processes, offspring replace
neighbors of ancestors. The study of fixation probabilities on
graphs was initiated by Lieberman, Hauert, and Nowak [6].
Since then there appeared many papers on Moran processes
on graphs [7–35]. They have shown that the structure of the
population can have a significant impact on the evolutionary
dynamics and can affect fixation probability and fixation time.

In particular, Antal, Redner, and Sood [9] studied fixation
probability on degree-heterogeneous power-law graphs. They
considered various dynamics and derived approximate analyt-
ical formulas for the dependence of the fixation probability on
the degree of an initial mutant. In particular, for the birth-death
process (biased invasion process) in the case where fitness of
a mutant is very close to that of a resident, they showed that
the fixation probability of a mutant is inversely proportional
to its degree. In the follow-up paper [10], they studied fixation
time in the neutral case. For similar results see also Ref. [19].
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The effect of the placement of an initial mutant was
also studied by Broom, Rychtář, and Stadler [13]. The
authors derived a useful analytical approximation of fixation
probability as a function of the degree of the initial mutant
for some small graphs. Their findings revealed that initial
mutants with fewer connections had a greater advantage,
resulting in a higher probability of fixation.

Here we present results of stochastic simulations and use
a mean-field-type approximation to derive analytical formu-
las for the fixation probability on Erdös-Rényi (ER) [36]
and Barabási-Albert (BA) [37,38] graphs which agree with
stochastic simulations for any fitness values. We also derive
formulas for fixation and extinction time for arbitrary fitness
values.

We have extended results of Refs. [9,10,19] to models
with arbitrary fitness values. In particular, we compared our
approximate formula for the fixation probability to that in
[9], see Appendix B. In general, we showed that the initial
placement of a mutant has a significant impact on the fixation
probability and extinction time, while the degree of the initial
mutant has no effect on the fixation time. In both types of
graphs, an increase of the degree of the initial mutant results
in a decreased probability of the mutant taking over the entire
population and a shorter time to extinction.

In the two graphs with the same size and average vertex
degree, for an initial mutant with the same degree, the fixation
probability in the Erdös-Rényi graph is higher than in the
Barabási-Albert one. However, due to the presence of hubs,
the average fixation probability in the Barabási-Albert graph
is higher.

In Sec. II, we present our model, a Markov chain of the
Moran process on graphs. In Sec. III, we present results of
stochastic simulations and derive analytical results. Further
analysis of extinction time is contained in Sec. IV. Discussion
follows in Sec. V.

II. MODELS AND METHODS

We will study here the Moran process on two random
graphs, the ER [36] and the scale-free BA one [37,38]. We
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build the ER graph by putting with probability p an edge
between every pair of N = 500 vertices. It follows that the
average degree of vertices (the average number of neighbors)
is equal to α = p(N − 1). The BA network is built by the
preferential attachment procedure. We start with mo fully
connected vertices and then we add N − mo vertices, each
time connecting them with m already available vertices with
probabilities proportional to their degrees. If mo = α + 1 and
m = α/2, then we get a graph with the average degree equal
to α. It is known that such a graph is scale-free with the prob-
ability distribution of degrees given by p(k) ∼ k−3 [37–39].

Individuals—mutants with a constant fitness r and resi-
dents with a constant fitness 1—are located on the vertices of a
graph. At every time step of the process, an individual is cho-
sen with a probability proportional to its fitness and then gives
birth to an offspring who inherits its phenotype and replaces
a randomly chosen individual. Such a Markov chain with 2N

states has two absorbing ones: homogeneous populations with
only one type of individuals present. We start our process with
one mutant in the population of residents. We are interested in
fixation probability, expected time to fixation and extinction of
mutants, denoted respectively by ρ

f
1 , e f

i , and ee
1. To find such

quantities, we performed stochastic simulations.
We simulate the Moran process on graphs with N = 500

vertices. For every k, we randomly place an initial mutant on
one of the nodes of the degree k and perform 10 000 Monte
Carlo simulations until the population reaches one of two
absorbing states. To get fixation probability, we divide the
number of times the process ends in the all-mutant state by
10 000. Finally, we calculate an average fixation (extinction)
time for some chosen k’s.

It is impossible to get rigorous analytical expressions for
fixation and extinction probabilities and times for Moran pro-
cesses on graphs. The situation is much simpler in well-mixed
populations [40,41]. Then the Moran process becomes a
Markov chain with N + 1 states corresponding to the number
of mutants or more precisely, a random walk on {0, . . . , N}
with state-dependent probabilities of moving to the right,
pi→i+1, to the left, pi→i−1, and not moving, 1 − pi→i+1 −
pi→i−1. Such a model is well known in the context of the
gambler’s ruin problem. It is easy to see that here we have that
pi→i+1 = r pi→i−1 where r is the fitness of the mutant. For the
fixation probability starting from i mutants, one gets that

ρ
f
i = 1 − 1

ri

1 − 1
rN

. (1)

For the fixation probability on graphs, to take into account
a degree of an initial mutant, we derive some approximate
expressions for transition probabilities up to three mutants
and then use the elementary conditional probability formula
and the fixation probability ρ

f
3 from (1) to obtain an analytic

expression for the fixation probability as a function of a degree
of the initial mutant. In that way we passed from the full
Markov chain with 2N states to the one with N + 1 states
corresponding to the number of mutants.

In the following section, we derive analytic expressions
for the fixation probability and expected fixation and

extinction times and compare them with results of stochastic
simulations.

III. RESULTS

A. Fixation probability

Let ρ
f
i be the fixation probability when initially there are i

mutants in the population. We denote by Pi→ j the probability
of the transition from the state i to the state j; of course, for
our Moran process, transition probabilities are nonzero only
for |i − j| � 1. From the total probability formula we get

ρ
f
1 = P1→1ρ

f
1 + P1→2ρ

f
2 , (2)

ρ
f
2 = P2→1ρ

f
1 + P2→2ρ

f
2 + P2→3ρ

f
3 . (3)

We substitute (3) into (2) and get

ρ
f
1 = P1→2P2→3

(P1→2 + P1→0)(P2→1 + P2→3) − P1→2P2→1
ρ

f
3 . (4)

For the number of mutants to increase from 1 to 2, the
mutant should be chosen for reproduction, and hence

P1→2 = r

N + r − 1
. (5)

For the number of mutants to decrease from 1 to 0, a
resident from the mutant’s neighborhood with degree k must
be selected and its offspring placed in the mutant’s location so

P1→0 =
∑

k′

k

r + N − 1

1

k′ ρ
′(k′), (6)

where k′ is the degree of the selected resident and ρ ′(k′) is the
degree distribution of neighbors of the mutant.

The distribution ρ ′(k′) of degrees of a node which is con-
nected to a given node is given by k′ρ(k′ )

〈k〉 , where ρ(k′) is the
degree distribution in the graph [42,43]. Therefore

P1→0 = k

r + N − 1

1

〈k〉 . (7)

Now we have to calculate P2→1. For this transition, one
of the resident neighbors of two mutants must be chosen for
the reproduction and replace the mutant. One of them is the
first mutant with a degree of k, while the other is a previously
mutated node with a degree of k′. We have the following
formula:

P2→1 =
∑

k′

k − 1

2r + N − 2

1

k′
k′ρ(k′)

〈k〉

+
∑

k′

∑
k′′

k′ − 1

2r + N − 2

1

k′′
k′ρ(k′)

〈k〉
k′′ρ(k′′)

〈k〉 . (8)

In this equation, the second moment
∑

k′ k′2ρ(k′) appears.
After some simplifications we get

P2→1 = 1

2r + N − 2

1

〈k〉
(

k + 〈k2〉
〈k〉 − 2

)
. (9)

In the the same way we obtain P2→3,

P2→3 = r

2r + N − 2

k − 1

k
+

∑
k′

r

2r + N − 2

k′ − 1

k′
k′ρ(k′)

〈k〉 ,

(10)
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FIG. 1. Fixation probability as a function of a degree of an initial mutant for three fitness values: 3, 2, and 1.5 in (a) ER and (b) BA graphs
with the size of 500 and the average degree of 8.

and after some simplifications we have

P2→3 = r

2r + N − 2

(
k − 1

k
− 1

〈k〉 + 1

)
. (11)

This allows us to rewrite (4) as follows:

ρ
f
1 =

〈k〉2r2
(
2 − 1

k − 1
〈k〉

)
(r〈k〉 + k)

[
r〈k〉(2 − 1

k − 1
〈k〉

) + (
k − 2 + 〈k2〉

〈k〉
)] − r〈k〉(k − 2 + 〈k2〉

〈k〉
)ρ

f
3 . (12)

Now we assume that the effect of an initial mutant is limited to transitions from one-mutant population to two-mutant
population and also from two mutants to three mutants. Hence we take ρ

f
3 from (1) and get

ρ
f
1 =

〈k〉2r2
(
2 − 1

k − 1
〈k〉

)
(r〈k〉 + k)

[
r〈k〉(2 − 1

k − 1
〈k〉

) + (
k − 2 + 〈k2〉

〈k〉
)] − r〈k〉(k − 2 + 〈k2〉

〈k〉
) 1 − 1

r3

1 − 1
rN

. (13)

To determine the fixation probability of mutants with de-
gree k, we use (13), which requires the knowledge of the
average degree 〈k〉 and the second moment 〈k2〉 of the graph.
For the Erdös-Rényi graph with the binomial degree distri-
bution, the average degree is equal to 〈k〉 = (N − 1)p and
the second moment 〈k2〉 = 〈k〉{〈k〉[1 − 1/(N − 1)] + 1}. For
the Barabási-Albert graph, the degree distribution follows a
power law, resulting in an average degree of 〈k〉 = 2m and
〈k2〉 ≡ 〈k〉2logN/4 [44].

Figure 1 presents the results of stochastic simulations and
our analytical approximation for the fixation probability. Our
results show a decrease in fixation probability as the initial
mutant’s degree increases, which agrees with previous find-
ings by Antal, Redner, and Sood [9]. They demonstrated that
if fitness of a mutant is close to that of a resident, then the
fixation probability is inversely proportional to the degree of
the initial mutant. However, comparing our approximation to
theirs reveals that their model accurately calculates fixation
probability for mutants with fitness close to residents, while
our model maintains accuracy across all fitness levels, see
Appendix B.

As the degree of the initial mutant increases, it becomes
more probable that one of its resident neighbors replaces it.
Hence, vertices with a lower number of connections have a
higher chance of remaining and progressing toward fixation.
In the BA graph, the degree distribution follows a power law,
which means that there are a few nodes with very high degrees
and many nodes with low degrees. Consequently, in the BA

graph, there may be initial nodes with a high probability of
fixation, mainly those with low degrees, and others with very
low fixation probabilities, mainly those with high degrees, in
contrast to the ER graph where the probability of fixation is
more uniform across nodes.

In Fig. 2, we present the distribution of fixation
probabilities for a mutant with respect to all initial placements

FIG. 2. Distribution of fixation probabilities of a mutant with
respect to initial placements on ER and BA graphs with the size of
500 and the average degree of 8. The fitness is 2. Dash lines show the
average fixation probability.
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FIG. 3. The distribution of temperatures in ER and BA graphs.
The node temperature is simply defined as the inverse of the degree
of all nodes leading to that node.

in both graphs of the same size, average degree, and fitness. In
ER graphs, fixation probabilities for all vertices are distributed
approximately symmetrically around the average fixation
probability. In BA graphs, the distribution is asymmetric.
Moreover, we see that for r = 2, the average fixation
probability in the ER graph is approximately 0.5 which is
the fixation probability in a well-mixed population, while this
value is slightly higher in the BA graph.

This can be understood on the basis of a concept of tem-
perature vertex which is defined as the sum of the inverses of
degrees of all neighbors of a given vertex. It was proven in
Ref. [6] that for graphs for which all vertices have the same
temperature, the so-called isothermal graphs, the average fixa-
tion probability is equal to the one in well-mixed populations.

Figure 3 displays the temperature distribution for both
graphs with the size of 500 and an average degree of 8. The
ER graph exhibits a peak at 1, indicating that nearly all nodes
have the same temperature. In contrast to the ER graph, the
BA graph’s vertices show the large spectrum of temperatures.
While there are many vertices with small degrees, leading
to higher fixation probabilities, there are only a few vertices
with large degrees, leading to low fixation probabilities. Con-
sequently, the average fixation probability in BA graphs is
higher than in well-mixed populations and ER graphs.

In Fig. 4, we present the fixation probability for an equal
degree of initial placement for both graphs. As shown, the

FIG. 4. Fixation probability for various initial mutants with the
same degree in ER and BA graphs. The size of the graph is 500 with
the average degree of 8 and r = 2.

fixation probability of one mutant with the the same degree in
both graphs, is slightly higher for the ER graph. However, this
does not contradict the observation that the average fixation
probability is higher in the BA network. While it is true
that the fixation probability for initial mutants with the same
degree is higher in ER graphs, there are more nodes with a low
degree in BA graphs, which have a higher fixation probability
than in ER graphs. As a result, the average fixation probability
in BA graphs is greater than that in ER graphs.

B. Fixation time

To derive an analytical expression for the expected value
of the fixation time we proceed in an analogous way as for the
fixation probability—we use the conditional expected value
formula. We follow Antal and Sheuring [2] and obtain an
equation for t f

i , fixation time in populations with i mutants,

ρ
f
1 t f

1 = P1→1ρ
f
1

(
t f
1 + 1

) + P1→2ρ
f
2

(
t f
2 + 1

)
(14)

and

ρ
f
2 t f

2 = P2→1ρ
f
1

(
t f
1 + 1

) + P2→2ρ
f
2

(
t f
2 + 1

)
+ P2→3ρ

f
3

(
t f
3 + 1

)
. (15)

We have ρ
f
2 t f

2 from (15), we put it into (14) and after some
simplifications we get

t f
1 = P2→1 + P2→3

ρ
f
1 [(P1→0 + P1→2)(P2→1 + P2→3) − P2→1P1→2]

{[
(1 − P1→0 − P1→2)(P2→1 + P2→3) + (P1→2P2→1)

P2→1 + P2→3

]
ρ

f
1

+
[

P1→2

(P1→0 + P1→2)

]
ρ

f
2 + P1→2P2→3

P2→1 + P2→3
ρ

f
3

(
t f
3 + 1

)}
, (16)

where ρ
f
1 is given in (13), ρ

f
2 in (3), and ρ

f
3 in (1).

To get t f
3 we use a well-known technique described in Refs. [16,26]. The time to fixation starting from i mutant is given by

the following formula:

t f
i =

N−1∑
j=1

ρ
f
j

ρ
f
i

Fi j, (17)
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FIG. 5. Fixation time as a function of the degree of an initial mutant for three fitness values, 3, 2, and 1.5, in (a) ER and (b) BA graphs
with the size of 500 and the average degree of 8.

where Fi j , given in (A6) in the Appendix (A), is the expected
number of times, the process which started from i mutants,
passes through the state with j mutants before reaching one of
the absorbing states and ρ

f
j is the fixation probability starting

from j mutants. Values of Fi j depend on graphs [see the
Appendix (A) for more details].

Figure 5 shows that there is no difference in fixation times
for various degrees of an initial mutant. The distribution of
fixation times is shown in Fig. 6. We can see that the fixation
times are distributed symmetrically around the average fixa-
tion time in both graphs. One notable point is that the average
fixation time in the BA graph is higher than in the ER one.

C. Extinction time

To find an analytical expression for the extinction time we
use a similar approach as we did for the fixation time. Let

ρe
i = 1 − ρ

f
i be the extinction probability starting with i mu-

tants and Pi→ j the transition probability from i to j mutants.
We apply the conditional expected value formula for t e

i , the
extinction time from a state with i initial mutants, and get [2]

ρe
1t e

1 = P1→0 + P1→1ρ
e
1

(
t e
1 + 1

) + P1→2ρ
e
2

(
t e
2 + 1

)
(18)

and

ρe
2t e

2 = P2→1ρ
e
1

(
t e
1 + 1

) + P2→2ρ
e
2

(
t e
2 + 1

) + P2→3ρ
e
3

(
t e
3 + 1

)
.

(19)

These equations for the extinction time are similar to equa-
tions we derived for the fixation time. In (18) there is an extra
term P1→0 because if the number of mutants reaches zero, then
the extinction probability from this state is zero t e

0 = 0 and the
term P1→0ρ

e
0(t e

0 + 1) drops out, leaving only the P1→0 term.
As before we find ρe

2t e
2 from (19) and substitute it into (18)

and after some simplifications we get

t e
1 = P2→1 + P2→3

ρe
1[(P1→0 + P1→2)(P2→1 + P2→3) − P2→1P1→2]

{
P1→0 +

[
(1 − P1→0 − P1→2)(P2→1 + P2→3) + (P1→2P2→1)

P2→1 + P2→3

]
ρe

1

+
[

P1→2

(P1→0 + P1→2)

]
ρe

2 + P1→2P2→3

P2→1 + P2→3
ρe

3(t e
3 + 1)

}
. (20)

Here again the idea is that we consider local information
and an effect of the initial degree in states 1, 2, and 3 and
then we disregard the information about the initial degree. The
time to extinction, starting from i = 3 mutants is given by the
following expression [16,26]:

t e
3 =

N−1∑
j=1

ρe
j

ρe
3

F3 j . (21)

We present results of stochastic simulations and our analyt-
ical approach in Fig. 7. It appears that as the initial mutant’s
degree increases, extinction time decreases. Essentially, as
the initial mutant degree increases, it becomes more likely
to select one of its neighbors to replace it. As a result, mu-
tants with higher degrees are more likely to be wiped out
in a short period of time. In the BA graph, for two initial
mutants with a large difference in degrees, we have com-
pletely different extinction times due to the average degree
of the network. It is worth noting that for vertices with high

degrees, the extinction time is almost the same for all values
of r. In other words, if the process starts from a hub, then,
regardless of r, it will soon become extinct. In Fig. 8, we
can see the distribution of extinction times for both graphs.
In the ER graph, extinction times are distributed around an
average time, while in the BA one, the distribution is more ex-
tended. ER graphs exhibit lower average extinction times than
BA ones.

In Fig. 9, the extinction time for various initial mutants
with equal degrees is presented. Observe that for initial mu-
tants with the same degree, the one in the BA graph exhibits a
longer extinction time.

IV. FIXATION AND EXTINCTION TIMES: DISCUSSION

Here we examine in more detail the evolution of a popula-
tion starting with one mutant. Figures 10 and 11 show the path
to extinction and fixation of a mutant in the ER graph with a
size of 500 and an average degree of 8. We derive approximate
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FIG. 6. Distribution of fixation times of a mutant with respect to
initial placements on ER and BA graphs with the size of 500 and the
average degree of 8. The fitness is 2. Dash lines show the average
fixation time.

formulas for the expected number of times the process which
started from i mutants, passes through the state with j mutants
before reaching fixation and extinction respectively (details of
derivation are given in the Appendix A),

t f
i, j =

⎧⎪⎪⎨
⎪⎪⎩

(r j−1)2(rN−i−1)ri− j

(r−1)(rN −1)(ri−1) j
N−i+r j

(N− j)(p− 2
N )

N p

j � i

(rN− j−1)(r j−1)

(r−1)(rN −1) j
N−i+r j

(N− j)(p− 2
N )

N p

j > i
, (22)

t e
i, j =

⎧⎪⎪⎨
⎪⎪⎩

(r j−1)(rN−i−1)(rN −r j )ri− j

(r−1)(rN −1)(rN −ri ) j
N−i+r j

(N− j)(p− 2
N )

N p

j � i

(rN −r j )(rN− j−1)(ri−1)

(r−1)(rN −1)(rN −ri ) j
N−i+r j

(N− j)(p− 2
N )

N p

j > i
. (23)

Denote by T e
j and T f

j the expected time it takes a single
mutant to take over j nodes in a network before extinction
and fixation, respectively. For a single mutant to be fixed, the
Moran process must pass through the state with j mutants.
Thus, T f

j is the time needed for a single mutant to be fixed
minus the time needed for j mutants to be fixed [35]. There-
fore we have

T f
j = t f

1 − t f
j =

N−1∑
l=1

t f
1,l −

N−1∑
l=1

t f
j,l ,

T e
j = t e

1 − t e
j =

N−1∑
l=1

t e
1,l −

N−1∑
l=1

t e
j,l . (24)

We have performed stochastic simulations to see how ac-
curate these analytical formulas are. For t f

1 and t e
1 we use

our analytical approximation in (16) and (20). Figures 10(a)
and 11(a) show the expected number of times, the popula-
tion started with one mutant passes through the state with
j mutants before fixation and extinction, respectively, while
Figs. 10(b) and 11(b) show the value of T f

j and T e
j . The

results are for the ER network with a size of 500 and an
average degree of 8. We present here only results for the
ER network, and results for the BA network are the same.
We observe that the process before extinction spends most of

its time in states with few mutants. This means that during
the process of the extinction of mutants, a few vertices get
mutated and if the number of mutants increases, then there
is a higher chance of them to be fixed. Therefore, the initial
placement of mutants plays an important role in the extinc-
tion of mutants. For fixation, unlike extinction, the beginning
and the end of the process can have a significant impact
on the fixation time. At the beginning of the process when
few mutants are available, the probability of choosing them
to reproduce is low, so it takes a long time for mutants to
increase their number. Furthermore, with fewer residents in
the population, it takes longer time to replace them with one
of the mutants’ offspring at the end of the process. Hence it
does not matter where the mutant is initially placed because
the start and end of the process are equally important for the
fixation time.

We observe that our analytical expressions are less accurate
for smaller values of r and are becoming better as r increases.
We assumed that the initial mutant degree influences only
the probability of transition between one to two and two to
three mutants. However, there is a possibility that the number
of mutants increases and then decreases again to 1. Hence,
the mutant may be different from the starting mutant, leading
to an error in our approximation. For large r, there is a low
probability that the number of mutants will decrease to 1.
Therefore, when there are more mutants, they are more likely
to increase rather than decrease their number. Consequently,
our approximation is better for larger r.

V. DISCUSSION

To summarize, we examined the impact of the degree of
an initial mutant on the fixation probability and fixation and
extinction times in Moran processes in structured populations.
We performed computer simulations and developed a general
mean-field approximation approach on graphs which enabled
us to get analytical formulas. In this way we extended to
arbitrary fitness values results of Refs. [9,10,19], where the
authors provided good aproximations for cases with mutant
fitness close to that of a resident.

We showed that the fixation probability depends on the
vertex degree at which a mutant is introduced. Increasing
the degree of the initial mutant makes it more likely for the
mutant to be replaced by one of its neighbors. There was no
correlation between the degree of the initial mutant and the
time it took for the mutant to take over the entire popula-
tion. The fixation process depends on the entire population,
not on the first mutant. We found that, unlike fixation time,
extinction time significantly depends on the degree of the first
mutant—a mutant with fewer connections needs more time to
become extinct. Furthermore, we observed that the extinction
time for an initial mutant with a small degree is significantly
influenced by its fitness, but as the degree of the first mu-
tant increases, extinction times become independent on the
fitness value.

It is important to study the impact of the initial mutant’s
degree on the fixation probability and fixation and extinc-
tion times in frequency-dependent Moran processes of spatial
evolutionary games, where fitness is derived from game
competitions.
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FIG. 7. Extinction time as a function of a degree of an initial mutant for three fitness values, 3, 2, and 1.5, in (a) ER and (b) BA graphs
with the size of 500 and the average degree of 8.
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APPENDIX A

We consider here a reduced Markov chain for the Moran
process on the graph with N + 1 states representing the num-
ber i of mutants in the population. The transition matrix can
be then written as follows:

Pi j = pi→i+1δi+1, j + pi→i−1δi−1, j + qiδi, j, (A1)

where qi = 1 − pi→i+1 − pi→i−1.
Our Markov chain has two absorbing states: i = 0 and

i = N . To calculate absorbing probabilities and expected
absorbing times we use the general method described in
Ref. [45]. We rewrite the transition matrix as follows:

P =
(

Q R
0 I

)
, (A2)

FIG. 8. Distribution of extinction times of a mutant with respect
to initial placements on ER and BA graphs with the size of 500 and
the average degree of 8. The fitness is 2. The dash lines show the
average extinction times.

where Q contains transition probabilities between transient
states and R contains transition probabilities from transient
states to absorbing ones and I is the identity matrix. F =
(I − Q)−1 is called the fundamental matrix. It can be shown
that Fi j is the expected number of times, the process which
started from i mutants, passes through the state with j mutants
before reaching one of the absorbing states. Then it follows
that expected absorption times are given by summations,

ti =
N−1∑
j=1

Fi j . (A3)

Expected number of times the process which started from
i mutants, passes through the state with j mutants before
reaching fixation and extinction respectively can be written
as follows [16]:

t f
i, j = ρ

f
j

ρ
f
i

Fi j, t e
i, j = ρe

j

ρe
i

Fi j . (A4)

Hence expected fixation and extinction times are given by
the following expressions:

t f
i =

N−1∑
j=1

ρ
f
j

ρ
f
i

Fi j, t e
i =

N−1∑
j=1

ρe
j

ρe
i

Fi j . (A5)

FIG. 9. Extinction time for various initial mutants with the same
degree in both networks. The size of the networks is 500, the average
degree 8, and r = 2.
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FIG. 10. (a) The expected number of times the population started with one mutant passes through the state with j mutants before fixation,
t f
1, j , Eq. (22) and (b) the expected time until the number of mutants reaches j from 1, T f

j , Eq. (17), for various values of r in the ER graph with
N = 500 and average degree of 8.

Now we turn our attention to graphs. It can be shown that if
the Moran process on a graph satisfies the condition pi→i+1 =
r pi→i−1, then we have [26]

Fi j =
⎧⎨
⎩

(r j−1)(rN−i−1)
p j→ j−1(r−1)(rN −1) , j � i

r j−i (ri−1)(rN− j−1)
p j→ j−1(r−1)(rN −1) , i < j

. (A6)

The authors of Ref. [26] used mean-field techniques and
argue that pi→i+1 = r pi→i−1 is a good approximation for
Erdös-Rényi and Barabási-Albert graphs. We present here
their arguments and results.

(i) Erdös-Rényi graph
In the ER graph with N vertices and j mutants, the proba-

bility of a mutant being selected for the reproduction is given
by r j

r j+N− j . Although it may seem that this mutant would
have (N − j)p residents in its neighborhood, the population
of mutants tends to form clusters, making it likely for a se-
lected mutant to have at least two mutant neighbors. Thus,
the probability of a selected mutant being connected to a
resident is approximately (p − 2

N ), and the average number of
residents connected to a selected mutant is (N − j)(p − 2

N ).
Then

p j→ j+1 = r p j→ j−1 = r j

N − i + r j

(N − j)
(
p − 2

N

)
(N − 1)p

. (A7)

(ii) Barabási-Albert graph
Here again, the probability for a mutant to be chosen for

the reproduction is r j
r j+N− j . For a state with j mutants, I j

represents the average number of edges that connect different

species, also known as interface edges. On average, each
mutant (resident) has 〈k〉 connections, and I j

j [I j/(N − j)]
interface edges. As a result, the probability for a mutant
(resident) offspring to replace one of its resident (mutant)

neighbors is
I j
j

m [
I j

(N− j)

m ]. It follows that

p j→ j+1 = r p j→ j−1 = rIj

〈k〉(N − j + r j)
. (A8)

In order to find I j when there are i mutants, it is evident that
every resident node has at least m edges and an average of I j

N− j
interface edges. If one resident is changed to a mutant, then the
number of mutants increases by 1. Therefore, we can obtain
a recursive relationship for the number of interface edges as
follows:

I j+1 = I j + m − I j

N − j
. (A9)

Assuming I0 = 0 we have

I j = m
j∑

i=1

N − j

N − i
. (A10)

APPENDIX B

The effect of the degree of an initial mutant on the fixation
probability has been previously studied by Antal, Redner,
and Sood [9]. They examined how initial placement impacts
fixation probability in various dynamics. In particular, for the
birth-death Moran process (biased invasion process) with the
mutant fitness equal to 1 and the resident fitness set to 1 − s,

FIG. 11. (a) The expected number of times the population started with one mutant passes through the state with j mutants before extinction,
t e
1, j , Eq. (23) and (b) the expected time until the number of mutants reaches j from 1, T e

j , Eq. (17), for various values of r in the ER graph with
N = 500 and average degree of 8.
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FIG. 12. Fixation probability as a function of the degree of an initial mutant for various fitness values. The red line is our approximation
given by (13), the blue dashed line is an approximation given by (B1), and the green dots show the result of simulations. In Eq. (B1)
s = 1 − 1/r.

the authors derived the following approximate formula for the
fixation probability:

ρ
f
1 (ω−1) = 1 − e−sNω−1/(1−s/2)

1 − e−sN/(1−s/2)
, (B1)

where ω−1 = 1
kμ−1N and μ−1 = ∑

k
1
k ρ(k) is the average in-

verse degree [ρ(k) is the degree distribution] [9].

Figure 12 compares the results of our approximation given
in Eq. (13) with Eq. (B1) for various fitness values. We cal-
culated μ−1 numerically. To make the connection between the
fitness r = 1 + s > 1 for mutants and fitness 1 for residents
in our paper with Ref. [9], where fitness of mutants is 1 and
that of residents 1 − s, we divide the fitnesses in (B1) by
1 − s (fixation probability is invariant under such a scaling).

FIG. 13. The fitness effect on fixation probability for an initial mutant with degrees of 10 and 25. The red line is our approximation given
by (13), the blue dashed line is an approximation given by (B1), and the green dots show the result of simulations. In Eq. (B1) s = 1 − 1/r.
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Therefore in (B1), the fitness of mutants is r = 1
1−s > 1 for

0 < s < 1 and that of resident is 1. In this way the value of s
in (B1) is 1 − 1

r .
We see that our approximation performs well for all values

of s > 0, while Eq. (B1) is more accurate in cases where r is
close to 1 (s � 1).

For a more direct comparison, we fixed the degree of an
initial mutant and varied the fitness r from 1 to 3. Figure 13
shows the results for initial mutants with degrees of 10 and 25.
For r close to 1, both approximations perform well. However,
as r increases, our approximation in Eq. (13) outperforms
Eq. (B1).
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