Third 45 minutes test

Problem 1

Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 4 & -1 \\ 0 & 2 & 1\end{array}\right]$.
a) Find the characteristic polynomial and the eigenvalues of A.
b) Find a matrix C such that the matrix $C^{-1} A C$ is diagonal.

Problem 2

Let $V=\operatorname{lin}((1,0,1,0),(2,1,0,-1))$ be a linear subspace of \mathbb{R}^{4} and $\alpha=(3,-2,-1,4)$ a vector.
a) Find an orthogonal basis of V. Compute the orthogonal projection of α onto V and the image of α by the orthogonal symmetry relatively to V.
b) Do the same for the orthogonal space V^{\perp}.

