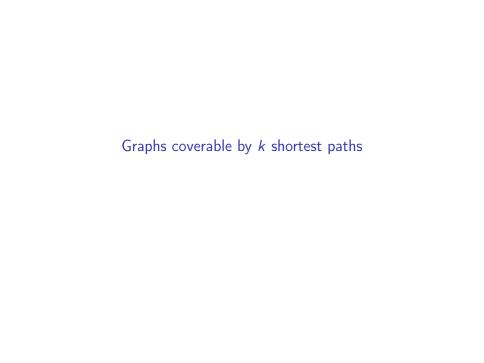
On graphs coverable with k shortest paths

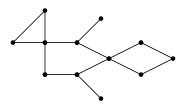
Maël Dumas

Joint work with: Florent Foucaud², Anthony Perez¹, Ioan Todinca¹

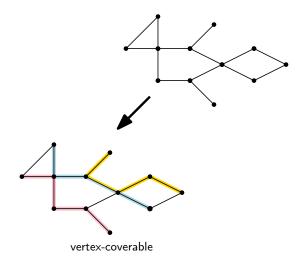
¹LIFO, Université d'Orléans, France ²LIMOS, Université Clermont Auvergne, France



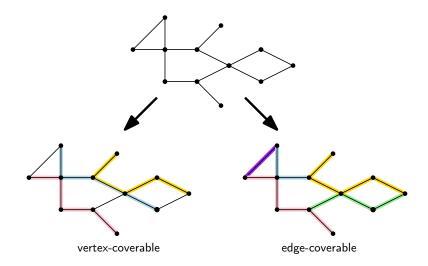
Graphs coverable by k shortest paths



Graphs coverable by k shortest paths



Graphs coverable by k shortest paths



Combinatorial results

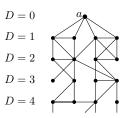
Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of pathwidth at most $2 \cdot g(k) - 1$.



Combinatorial results

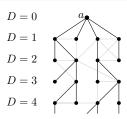
Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of pathwidth at most $2 \cdot g(k) - 1$.



Path decomposition:

 Do a a breadth-first search (BFS) from a vertex a.

Combinatorial results

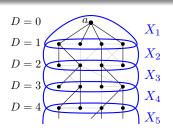
Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

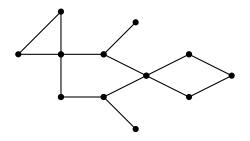
G is of pathwidth at most $2 \cdot g(k) - 1$.



Path decomposition:

- Do a a breadth-first search (BFS) from a vertex a.
- Each bag : two consecutive layers.

Problems

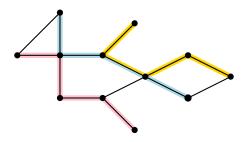


Isometric Path Cover (IPC)

Input: A graph G and an integer k.

Question: Does there exists a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

Problems

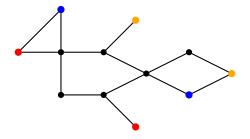


Isometric Path Cover (IPC)

Input: A graph G and an integer k.

Question: Does there exists a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

with terminals



Isometric Path Cover with Terminals (IPC-WT)

Input :A graph G, and k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$, the **terminals**. **Question** : Does there exists a set of k shortest paths of G, the ith path being an s_i - t_i shortest path, such that each vertex of G belongs to at least one of the shortest paths?

Context

Isometric number

[Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game :

cop number of $G \leq$ Isometric number of G

Context

Isometric number

[Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game:

cop number of G < Isometric number of G

Complexity

• IPC is NP-Complete even on split graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

[Ordyniak, Chakraborty, Müller, Panolan and Rychlicki, 2024]

- IPC is polynomial in : block graphs
 - chain graphs, cographs

[OCMPR'24]

[Pan and Chang, 2005]

IPC-WT is NP-Complete

Context

Isometric number

[Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game :

cop number of $G \leq$ Isometric number of G

Complexity

IPC is NP-Complete even on split graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

[Ordyniak, Chakraborty, Müller, Panolan and Rychlicki, 2024]

IPC is polynomial in :

chain graphs, cographs

[OCMPR'24]

[Pan and Chang, 2005]

block graphsIPC-WT is NP-Complete

Question

Are problems IPC and IPC-WT FPT? Or at least XP?

FPT: running time $f(k) \cdot n^{O(1)}$

XP: running time $O(n^{h(k)})$

Theorem [Courcelle. 1990]

Every problem expressible in **monadic second order logic** (MSO₂) can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO₂ problem can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Extended MSO₂ problem:

- MSO₂ formula $\varphi(X_1, ..., X_l)$ and an linear function $h(|X_1|, ..., |X_l|)$
- Find an assignation of X_1, \ldots, X_l that satisfies $\varphi(X_1, \ldots, X_l)$ and maximize/minimize $h(|X_1|, \ldots, |X_l|)$

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO₂ problem can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Extended MSO₂ problem:

- MSO₂ formula $\varphi(X_1,\ldots,X_l)$ and an linear function $h(|X_1|,\ldots,|X_l|)$
- Find an assignation of X_1, \ldots, X_l that satisfies $\varphi(X_1, \ldots, X_l)$ and maximize/minimize $h(|X_1|, \ldots, |X_l|)$

FPT Algortihm:

1. Compute a tree decomposition by BFS. If width > 2g(k) return false.

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO₂ problem can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Extended MSO₂ problem:

- MSO₂ formula $\varphi(X_1,\ldots,X_l)$ and an linear function $h(|X_1|,\ldots,|X_l|)$
- Find an assignation of X_1, \ldots, X_l that satisfies $\varphi(X_1, \ldots, X_l)$ and maximize/minimize $h(|X_1|, \ldots, |X_l|)$

FPT Algortihm:

- 1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
- 2. Find E_1, \ldots, E_k minimizing $|E_1| + \cdots + |E_k|$ and satisfying the MSO₂ formula :

$$\varphi(E_1,\ldots,E_k) = \exists \ V_1,\ldots,V_k, \mathsf{Cover}(V_1,\ldots,V_k) \bigwedge_{1 \leq i \leq k} \mathsf{Path}(V_i,E_i,s_i,t_i)$$

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO₂ problem can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Extended MSO₂ problem:

- MSO₂ formula $\varphi(X_1,\ldots,X_l)$ and an linear function $h(|X_1|,\ldots,|X_l|)$
- Find an assignation of X_1, \ldots, X_l that satisfies $\varphi(X_1, \ldots, X_l)$ and maximize/minimize $h(|X_1|, \ldots, |X_l|)$

FPT Algortihm:

- 1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
- 2. Find E_1, \ldots, E_k minimizing $|E_1| + \cdots + |E_k|$ and satisfying the MSO₂ formula :

$$\varphi(E_1,\ldots,E_k) = \exists \ V_1,\ldots,V_k, \mathsf{Cover}(V_1,\ldots,V_k) \bigwedge_{1 \leq i \leq k} \mathsf{Path}(V_i,E_i,s_i,t_i)$$

3. If $\forall i, |E_i| = dist(s_i, t_i)$ then answer true, else answer false.

Algorithmic Consequences

Theorem

Isometric Path Cover with Terminals is FPT

Algorithmic Consequences

Theorem

Isometric Path Cover with Terminals is FPT

Corollary

Isometric Path Cover is in XP

 ${\bf ldea}$: Brute-force all combination of k pairs of terminals with the FPT algorithm.

Algorithmic Consequences

Theorem

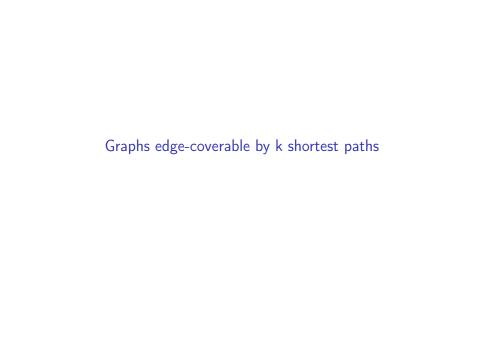
Isometric Path Cover with Terminals is FPT

Corollary

Isometric Path Cover is in XP

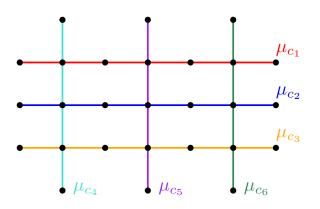
Idea: Brute-force all combination of k pairs of terminals with the FPT algorithm.

- --> These results can be generalized to :
 - Edge-covering
 - Edge/vertex partitioning



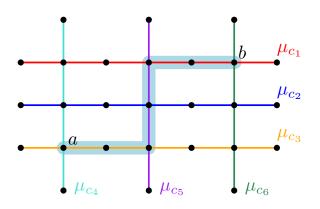
Colouring base path

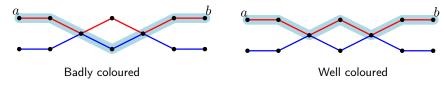
Assign a color to each shortest path covering the graph.

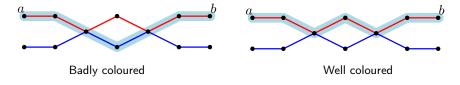


Colouring base path

Assign a color to each shortest path covering the graph.

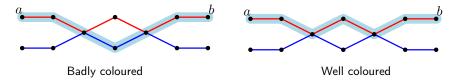






Good colouring Lemma

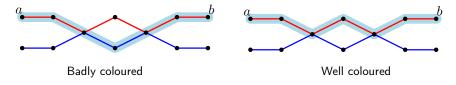
For every pair of vertices a, b, there exists a shortest path from a to b that is well coloured.



Good colouring Lemma

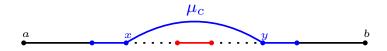
For every pair of vertices a, b, there exists a shortest path from a to b that is well coloured.

• Take a shortest path P between a and b.

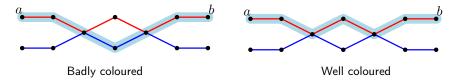


Good colouring Lemma

For every pair of vertices a, b, there exists a shortest path from a to b that is well coloured.

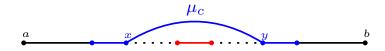


- Take a shortest path P between a and b.
- Replace P[x, y] by $\mu_c[x, y]$.



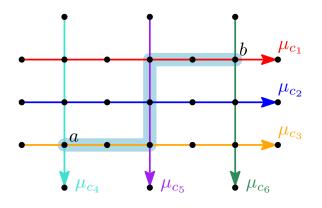
Good colouring Lemma

For every pair of vertices a, b, there exists a shortest path from a to b that is well coloured.

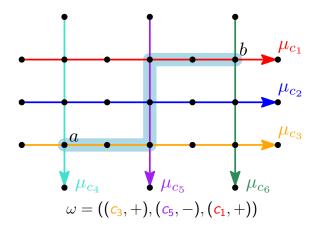


- Take a shortest path P between a and b.
- Replace P[x, y] by $\mu_c[x, y]$.
- Repeat until the path is well colored.

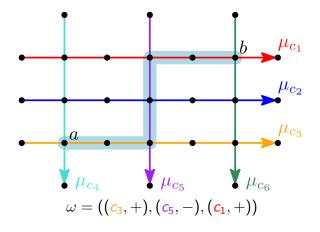
Colour-signs word



Colour-signs word



Colour-signs word



Number of colour-signs words possible for all well coloured paths :

$$\sum_{\ell=1}^k 2^\ell \cdot \ell! \cdot \binom{k}{\ell} = O(k^k)$$

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word ω all ends at the same vertex b.

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

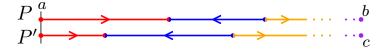
Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word ω all ends at the same vertex b.

Theorem

For any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $O(k^k)$ (number of colours-signs words).

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.



Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

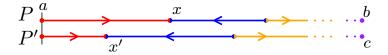
Claim: If they have the same colours-signs word, then b = c.

Proof by induction on ℓ the length of ω :

1. True for $\ell = 1$.

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

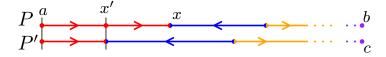
Claim: If they have the same colours-signs word, then b = c.



- 1. True for $\ell = 1$.
- 2. For $\ell>1$:

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

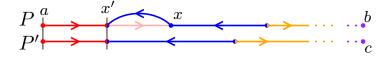
Claim: If they have the same colours-signs word, then b = c.



- 1. True for $\ell = 1$.
- 2. For $\ell>1$:
 - The vertex x' appears in P,

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

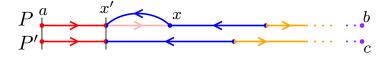
Claim: If they have the same colours-signs word, then b = c.



- 1. True for $\ell = 1$.
- 2. For $\ell > 1$:
 - The vertex x' appears in P,
 - Replace P[x', x] by $\mu_{c_2}[x', x]$,

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

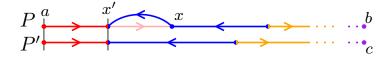
Claim: If they have the same colours-signs word, then b = c.



- 1. True for $\ell = 1$.
- 2. For $\ell > 1$:
 - The vertex x' appears in P,
 - Replace P[x', x] by $\mu_{c_2}[x', x]$,
 - P[x', b] and P'[x', c] have $\ell 1$ colors, by the induction hypothesis $\Rightarrow b = c$.

Let b and c be vertices at same distance from a vertex a of G. Let (P, col), (P', col') be a well-coloured shortest a-b and a-c paths.

Claim: If they have the same colours-signs word, then b = c.



Proof by induction on ℓ the length of ω :

- 1. True for $\ell = 1$.
- 2. For $\ell > 1$:
 - The vertex x' appears in P,
 - Replace P[x', x] by $\mu_{c_2}[x', x]$,
 - P[x', b] and P'[x', c] have $\ell 1$ colors, by the induction hypothesis $\Rightarrow b = c$.

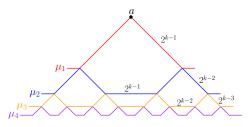
(weak) Theorem 1

For any vertex a and any fixed distance D, the number of vertices at distance exactly D from a is upper bounded by $O(k^k)$ (number of colours-signs words).

A better bound?

We have shown the upper bound : $O(k^k)$

Lower bound : $O(2^k)$

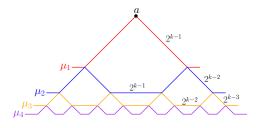


Goal: Single exponential bound.

A better bound?

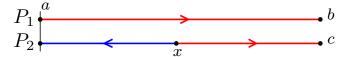
We have shown the upper bound : $O(k^k)$

Lower bound : $O(2^k)$



Goal: Single exponential bound.

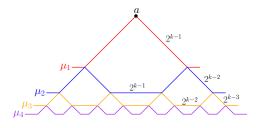
Observation: two colours-signs word may define the same vertex at same distance.



A better bound?

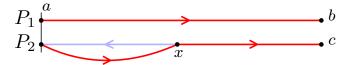
We have shown the upper bound : $O(k^k)$

Lower bound : $O(2^k)$



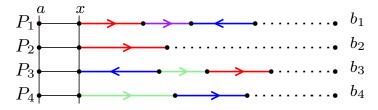
Goal: Single exponential bound.

Observation: two colours-signs word may define the same vertex at same distance.



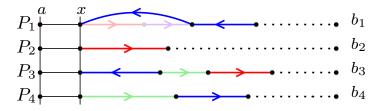
Idea: Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.



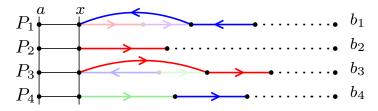
Idea: Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.



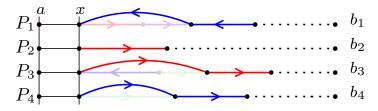
Idea: Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.



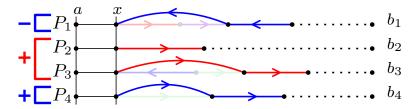
Idea: Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.



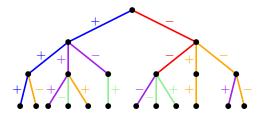
Idea: Generalize the previous observation recursively.

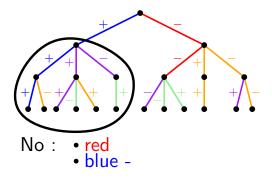
Take a set of paths from a to the vertices at distance D from a.

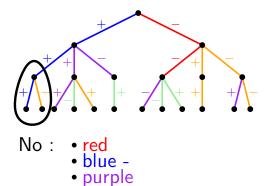


The colours red, blue and green does not appear in the dotted subpaths.

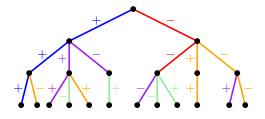
 \Rightarrow Apply recursively this process on each subset of paths independently.



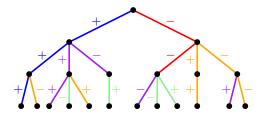




Structure of the paths at the end of the recursive process :

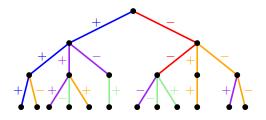


• k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)



- k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k))$ with a more precise analysis)
- ullet bijection between leaves and vertices at distance D

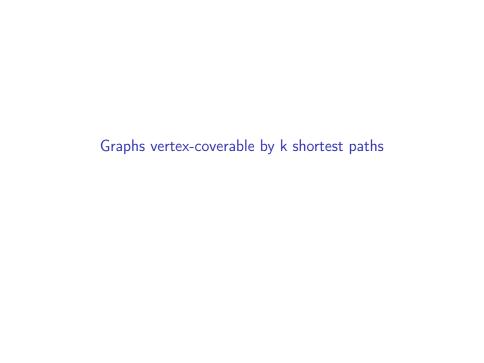
Structure of the paths at the end of the recursive process :



- k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)
- ullet bijection between leaves and vertices at distance D

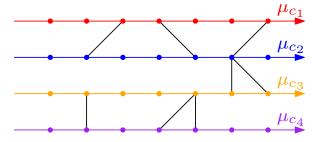
Theorem 1:

 $O(3^k)$ vertices at a given distance of an arbitrary vertex.



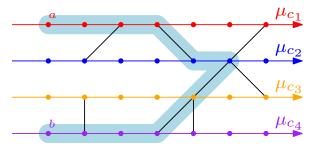
Colouring of a path

A colour and a direction given to each base path.



Colouring of a path

A colour and a direction given to each base path.



Colours-signs words are defined in a similar way as in the edge case. Here : $\omega = ((c_1, +), (c_2, +), (c_3, +), (c_4, -),)$

• Good colouring Lemma works the same way.

Good colouring Lemma works the same way.

Colours-signs word Lemma

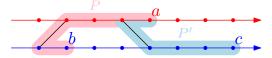
The shortest paths starting in a vertex a, of length D and colours-signs word ω all ends in the same vertex b.

Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word ω all ends in the same vertex b.

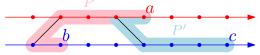
 \Rightarrow FALSE in the vertex case

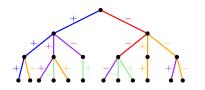


Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word ω all ends in the same vertex b.



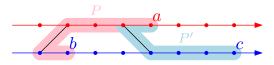


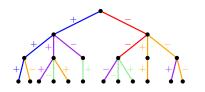
Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word ω all ends in the same vertex b.

\Rightarrow FALSE in the vertex case





- There is at most $g(k) = O(k \cdot 3^k)$ vertices at a given distance of a.

Conclusion

Results

- In graphs vertex/edge-coverable by k shortest paths, the number of vertices at same distance of a source is upper bounded by $g(k) = O^*(3^k)$.
 - \longrightarrow Implies a $O^*(3^k)$ upper bound on the pathwidth.
- Isometric Path Cover with Terminals is FPT.
- Isometric Path Cover IPC is in XP.

Questions

- Polynomial bound on the treewidth/pathwidth?
- Is Isometric Path Cover FPT? W-hard?

