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Combinatorial results

Theorem 1

If G is coverable by k shortest paths then, for any vertex a and fixed distance D,
the number of vertices at distance exactly D from a is upper bounded by some
function

® Edge-coverable : g(k) = O(3%).
® Vertex-coverable : g(k) = O(k - 3).

Corollary 1

G is of pathwidth at most
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Combinatorial results

Theorem 1

If G is coverable by k shortest paths then, for any vertex a and fixed distance D,
the number of vertices at distance exactly D from a is upper bounded by some
function

® Edge-coverable : g(k) = O(3%).
® Vertex-coverable : g(k) = O(k - 3%).

Corollary 1

G is of pathwidth at most

Path decomposition :

® Do a a breadth-first search (BFS)
from a vertex a.

® Each bag : two consecutive layers.

2/17



Algorithmic Consequences



Problems

Isometric Path Cover (IPC)

Input : A graph G and an integer k.
Question : Does there exists a set of k shortest paths of G, such that each vertex

of G belongs to at least one of the shortest paths?
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with terminals

Isometric Path Cover with Terminals (IPC-WT)

Input :A graph G, and k pairs of vertices (s1, t1), ..., (Sk, tk), the terminals.
Question : Does there exists a set of k shortest paths of G, the ith path being an
si-t; shortest path, such that each vertex of G belongs to at least one of the

shortest paths?
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Context

Isometric number [Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game :

cop number of G < Isometric number of G
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Context

Isometric number [Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game :

cop number of G < Isometric number of G

Complexity
® |[PC is NP-Complete even on split graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]
[Ordyniak, Chakraborty, Miiller, Panolan and Rychlicki, 2024]

® [PC is polynomial in :
® chain graphs, cographs
® block graphs

® |PC-WT is NP-Complete

[OCMPR'24]
[Pan and Chang, 2005]
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Context

Isometric number [Fisher and Fitzpatrick 2001]

Problem introduced in the context of cops and robber game :

cop number of G < Isometric number of G

Complexity
® |[PC is NP-Complete even on split graphs
[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]
[Ordyniak, Chakraborty, Miiller, Panolan and Rychlicki, 2024]
® [PC is polynomial in :
® chain graphs, cographs [OCMPR’24]
® block graphs [Pan and Chang, 2005]

® |IPC-WT is NP-Complete

Question
Are problems IPC and IPC-WT FPT ? Or at least XP ?

FPT : running time f(k) - n°®
XP : running time O(n"(®))
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[sometric Path Cover with Terminals is FPT

Theorem [Courcelle. 1990]

Every problem expressible in monadic second order logic (MSO> ) can be solved in
f(w) - n time on graphs of treewidth at most w.
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Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO> problem can be solved in f(w) - n time on
graphs of treewidth at most w.

Extended MSQO, problem :

® MSO: formula ¢(Xi,..., X)) and an linear function h(|X1|,...,|Xi|)
® Find an assignation of Xi,...,X; that satisfies ©(X1,..., X)) and
maximize/minimize h(|X1|,...,|X|)
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1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
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® MSO: formula ¢(Xi,..., X)) and an linear function h(|X1|,...,|Xi|)
® Find an assignation of Xi,...,X; that satisfies ©(X1,..., X)) and
maximize/minimize h(|Xz|, ..., |Xi|)

FPT Algortihm :
1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
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@(Er,...,E) =3 Vi,..., Vi, Cover(V4,..., Vi) J\ Path(V; E,s; t)
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[sometric Path Cover with Terminals is FPT

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO> problem can be solved in f(w) - n time on
graphs of treewidth at most w.

Extended MSQO, problem :

® MSO: formula ¢(Xi,..., X)) and an linear function h(|X1|,...,|Xi|)
® Find an assignation of Xi,...,X; that satisfies ©(X1,..., X)) and
maximize/minimize h(|Xz|, ..., |Xi|)

FPT Algortihm :

1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
2. Find Eq, ..., Ex minimizing |E1| + - - - + |Ex| and satisfying the MSO> formula :

@(Er,...,E) =3 Vi,..., Vi, Cover(V4,..., Vi) J\ Path(V; E,s; t)

1<i<k

3. If Vi, |Ej| = dist(s;j, t;) then answer true, else answer false.

5/17



Algorithmic Consequences

Theorem J

Isometric Path Cover with Terminals is FPT
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Algorithmic Consequences

Theorem
Isometric Path Cover with Terminals is FPT J
Corollary
Isometric Path Cover is in XP J

Idea : Brute-force all combination of k pairs of terminals with the FPT algortihm.
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Algorithmic Consequences

Theorem
Isometric Path Cover with Terminals is FPT J
Corollary
Isometric Path Cover is in XP J

Idea : Brute-force all combination of k pairs of terminals with the FPT algortihm.

— These results can be generalized to :
® Edge-covering

® Edge/vertex partitioning
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Graphs edge-coverable by k shortest paths



Colouring base path

Assign a color to each shortest path covering the graph.
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Colouring base path

Assign a color to each shortest path covering the graph.
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Good colouring
a b a b

Lo

Badly coloured Well coloured
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coloured.
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® Take a shortest path P between a and b.
® Replace P[x, y] by uc[x, y].

8/17



Good colouring
a b a b

Lo

Badly coloured Well coloured

Good colouring Lemma

For every pair of vertices a, b, there exists a shortest path from a to b that is well
coloured.

® Take a shortest path P between a and b.
® Replace P[x, y] by uc[x, y].
® Repeat until the path is well colored.
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Colour-signs word

b Heq
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Colour-signs word
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Colour-signs word

° ® °

® ° ° ° b )olLLCl
Hoeso

® * * * e

® .CL ° ® ° ® ®

) ! 1“65 ' /’LCG

w = (( 7+)) (C57 _)7 (C17+))

Number of colour-signs words possible for all well coloured paths :
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A first bound

Multiple shortest paths of same length may have the same colours-signs word :
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Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word w all
ends at the same vertex b.

10/17



A first bound

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word w all
ends at the same vertex b. )

Theorem

For any vertex a and any fixed distance D, the number of vertices at distance
exactly D from a is upper bounded by (number of colours-signs words).
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Proof of the Colours-signs word Lemma

Let b and c be vertices at same distance from a vertex a of G.
Let (P, col), (P, col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

P , b
Pl > . ..C

Y
N

Y
N
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Proof by induction on ¢ the length of w :
1. True for £ = 1.
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Proof of the Colours-signs word Lemma

Let b and c be vertices at same distance from a vertex a of G.
Let (P, col), (P, col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

/

a s
Py . b
Pl > < ) ...C

Proof by induction on ¢ the length of w :
1. True for £ = 1.

2. Forf>1:

® The vertex x’ appears in P,
® Replace P[x’,x] by pc,[x', x],

® P[x’,b] and P’[x’, c] have £ — 1 colors, by the induction hypothesis = b = c.

(weak) Theorem 1

For any vertex a and any fixed distance D, the number of vertices at distance
exactly D from a is upper bounded by (number of colours-signs words).
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A better bound?

We have shown the upper bound : O(k¥)
Lower bound : O(2%)

H k-2 ok=3

[T NIV NIV NIV NI NIV ANIDZ0 NIV N

Goal : Single exponential bound.
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A better bound?

We have shown the upper bound : O(k¥)
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Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex at same distance.
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A better bound?

We have shown the upper bound : O(k¥)
Lower bound : O(2%)

H2
[T NIV NIV NIV NI NIV ANIDZ0 NIV N

ok—2 k=3

Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex at same distance.
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

P

P

Ps

¢ w> > € « b1
S, o b2

< —> .- o b3
——> e o ba

Py

The colours red, blue and

does not appear in the dotted subpaths.
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Branched colouring

Idea : Generalize the previous observation recursively.
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

a €T

—EP]_ --------- ° bl
+ P et o b2

P3 ....... ° b3
+CPi— TS .« by

The colours red, blue and does not appear in the dotted subpaths.

= Apply recursively this process on each subset of paths independently.
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Branched colouring

Structure of the paths at the end of the recursive process :
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Branched colouring

Structure of the paths at the end of the recursive process :

No : e red
* blue -
e purple
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Branched colouring

Structure of the paths at the end of the recursive process :

® k colours, 2 signs = O(4¥) leaves (O(3¥) with a more precise analysis)
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Branched colouring

Structure of the paths at the end of the recursive process :

® k colours, 2 signs = O(4¥) leaves (O(3¥) with a more precise analysis)

® bijection between leaves and vertices at distance D

O(3") vertices at a given distance of an arbitrary vertex.

Theorem 1 : J
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Graphs vertex-coverable by k shortest paths



Colouring of a path

A colour and a direction given to each base path.

22

Hcy
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Colouring of a path

A colour and a direction given to each base path.

a /,Lcl
Heo
b Hcy

Colours-signs words are defined in a similar way as in the edge case.
Here : w = ((C17 +)7 (C27 +)7 ( ) +)v (C47 _)7 )
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Bound for the vertex case

® Good colouring Lemma works the same way.
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\
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Bound for the vertex case

® Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word w all
ends in the same vertex b.

—> FALSE in the vertex case

a

\

® Branched colouring can be adapted to
the vertex case, but > O(k) paths
may share the same colours-signs
word.
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Bound for the vertex case

® Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word w all
ends in the same vertex b.

—> FALSE in the vertex case

a

\

® Branched colouring can be adapted to
the vertex case, but > O(k) paths
may share the same colours-signs
word.

® There is at most
vertices at a given distance of a.
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Conclusion

Results

® |n graphs vertex/edge-coverable by k shortest paths, the number of vertices at

same distance of a source is upper bounded by g(k) = 0*(3).
— Implies a O*(3%) upper bound on the pathwidth.

® |sometric Path Cover with Terminals is FPT.
® |sometric Path Cover IPC is in XP.

Questions
® Polynomial bound on the treewidth/pathwidth ?
® |s Isometric Path Cover FPT ? W-hard ?
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