An improved kernelization algorithm for Trivially Perfect Editing

Maël Dumas, Anthony Perez

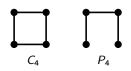
LIFO, Université d'Orléans, France

IPEC 2023

Trivially Perfect Editing

Trivially perfect graphs (quasi-threshold)

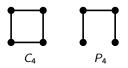
- Do not contain P_4 and C_4 as induced subgraphs.
- Every connected induced subgraph admits an universal vertex.



Trivially Perfect Editing

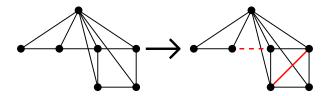
Trivially perfect graphs (quasi-threshold)

- Do not contain P_4 and C_4 as induced subgraphs.
- Every connected induced subgraph admits an universal vertex.

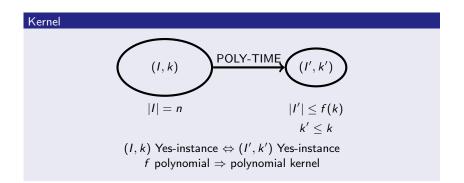


Trivially Perfect Editing

- **Input:** an arbitrary graph G = (V, E), a parameter integer **k**.
- Question: $\exists F \subseteq [V]^2$ of size at most *k* such that $G \triangle F$ is trivially perfect? $G \triangle F = (V, (E \cup F) \setminus (E \cap F)) - F$ is an edition of *G*



Completion (**Deletion**) : only allowed to add (delete) edges.



Theorem

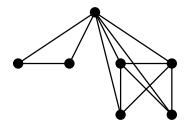
A problem Q is Fixed-Parameter Tractable $\Leftrightarrow Q$ admits a kernel.

Existing vertex-kernels :

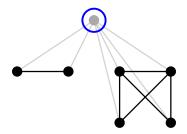
- Completion: $O(k^3)$ (announced, never published) [Guo ISAAC 2007]
- Editing, deletion, completion: $O(k^7)$ [Drange, Pilipczuk ESA 2015]
- Editing, deletion, completion: $O(k^3)$ [Dumas, Perez, Todinca MFCS 2021]
- Completion: $O(k^2)$ [Bathie, Bousquet, Pierron IPEC 2021] [Cao, Ke - IPEC 2021]

Our result :

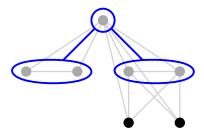
Editing, deletion : $O(k^2)$ vertex-kernel



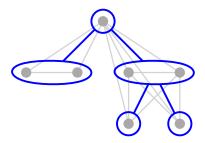
Universal Clique Decomposition (UCD)

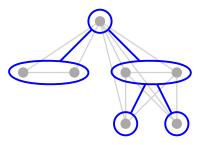


Universal Clique Decomposition (UCD)



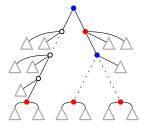
Universal Clique Decomposition (UCD)





- G is trivially perfect \Leftrightarrow G admits an UCD.
- Bags of the UCD correspond to critical cliques (maximal clique modules).
- Rooted subtrees of the UCD correspond to trivially perfect modules.

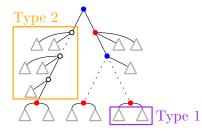
Kernel: general approach



For an edition F of G, we consider T the UCD of $H = G \triangle F$:

- A the set of nodes that contains vertices affected by F,
- A' lowest common ancestor closure of A,
- $|\mathbf{A}| \leq 2k \text{ and } |\mathbf{A}'| \leq 2k.$

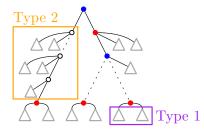
Kernel: general approach



Three type of connected component in $T \setminus (A \cup A')$:

- Type 0 : not adjacent to any node of $A \cup A'$,
- Type 1 : adjacent to one node of $A \cup A'$ (modules),
- **Type 2** : adjacent to two nodes of $A \cup A'$ (combs),

Kernel: general approach



Three type of connected component in $T \setminus (A \cup A')$:

- Type 0 : not adjacent to any node of $A \cup A'$,
- Type 1 : adjacent to one node of $A \cup A'$ (modules), size : g(k),
- **Type 2** : adjacent to two nodes of $A \cup A'$ (combs), size : h(k),

Theorem

Trivially Perfect Editing admits a kernel with $O(k \cdot (g(k) + h(k)))$ vertices.

$$\Rightarrow$$
 We show: $g(k) = O(k)$ and $h(k) = O(k)$.

Remove the trivially perfect connected component of G.

 \Rightarrow Removes type 0 components.

Remove the trivially perfect connected component of G.

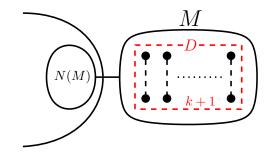
 \Rightarrow Removes type 0 components.

Rule 2

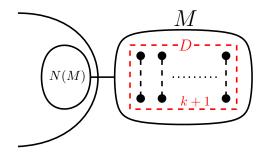
Let $K \subseteq V$ be a critical clique of G such that |K| > k + 1. Remove arbitrarily |K| - (k + 1) vertices of K from G.

 \Rightarrow Bound the size of nodes of the UCD by k + 1.

Let $M \subseteq V$ be a trivially perfect module of G. If G[M] contains a (k + 1)-sized anti-matching D, then remove the vertices contained in $M \setminus D$.

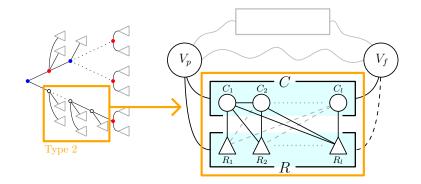


Let $M \subseteq V$ be a trivially perfect module of G. If G[M] contains a (k + 1)-sized anti-matching D, then remove the vertices contained in $M \setminus D$.



Question : how to bound the size of modules with small anti-matching ?

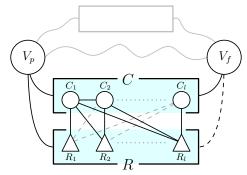
Combs



Combs

A **Comb** is a pair (C, R) of set of vertices such that :

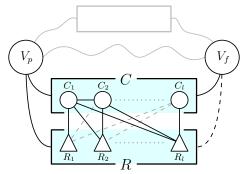
- C is a clique composed of I critical cliques (the **shaft**),
- R is a set of I non-adjacent trivially perfect modules (the teeth),
- The induced graph by $G[C \cup R]$ is trivially perfect,



Combs

A **Comb** is a pair (C, R) of set of vertices such that :

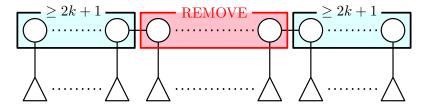
- C is a clique composed of I critical cliques (the **shaft**),
- R is a set of I non-adjacent trivially perfect modules (the teeth),
- The induced graph by $G[C \cup R]$ is trivially perfect,
- $N_G(C) \setminus R = V_p \cup V_f, \ N_G(R) \setminus C = V_p.$



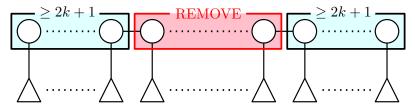
Goal

Bound to O(k) the number of vertices in a comb.

Let (C, R) be a comb of G. Keep at least 2k + 1 vertices at the beginning and the end of the **shaft**, remove the others.



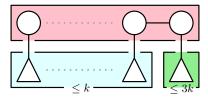
Let (C, R) be a comb of G. Keep at least 2k + 1 vertices at the beginning and the end of the **shaft**, remove the others.



 \Rightarrow combs have O(k) vertices in their shaft.

Bound the size of modules with small anti-matching

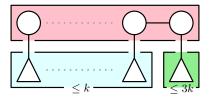
- Trivially perfect modules can be decomposed into a comb.
- Decomposition of a comb with small anti-matching:



 \Rightarrow They can be decomposed in a comb (*C*, *R*) such that |R| = O(k).

Bound the size of modules with small anti-matching

- Trivially perfect modules can be decomposed into a comb.
- Decomposition of a comb with small anti-matching:

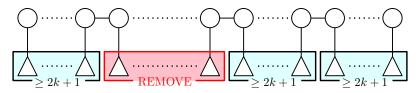


 \Rightarrow They can be decomposed in a comb (C, R) such that |R| = O(k).

Conclusion on trivially perfect modules

- large anti-matching : Rule $3 \Rightarrow \leq 2k + 2$ vertices
- small anti-matching : Rule $4 \Rightarrow O(k)$ vertices
- Hence g(k) = O(k)

Let (C, R) be a comb of G. Keep at least 2k + 1 vertices at the beginning and two disjoint sets of 2k + 1 vertices at the end of the **teeth**, remove the others.

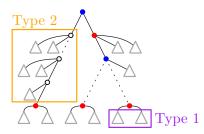


Size of combs

- Combs have O(k) vertices in their teeth.
- Conclusion : combs contains at most h(k) = O(k) vertices.

Theorem

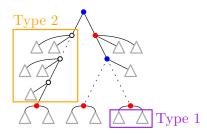
Trivially Perfect Editing admits a kernel with $O(k \cdot (g(k) + h(k)))$ vertices.



We showed: g(k) and h(k) are O(k) \Rightarrow Trivially Perfect Editing admits a kernel with $O(k^2)$ vertices

Theorem

Trivially Perfect Editing admits a kernel with $O(k \cdot (g(k) + h(k)))$ vertices.



We showed: g(k) and h(k) are O(k) \Rightarrow Trivially Perfect Editing admits a kernel with $O(k^2)$ vertices

 \Rightarrow Trivially Perfect Deletion and Completion admit a kernel with $O(k^2)$ vertices

Our result : a $O(k^2)$ vertex-kernel for Trivially Perfect Editing and Deletion.

Questions :

- Can we get a smaller vertex-kernel?
- Several kernels use similar approaches (proper interval, ptolemaic) can we improve them?

Our result : a $O(k^2)$ vertex-kernel for Trivially Perfect Editing and Deletion.

Questions :

- Can we get a smaller vertex-kernel?
- Several kernels use similar approaches (proper interval, ptolemaic) can we improve them?

Thank you !