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Trivially Perfect Editing

Trivially perfect graphs (quasi-threshold)

Do not contain P4 and C4 as induced subgraphs.

Every connected induced subgraph admits an
universal vertex. C4 P4

Trivially Perfect Editing

Input: an arbitrary graph G = (V ,E), a parameter integer k.

Question: ∃F ⊆ [V ]2 of size at most k such that G△F is trivially perfect?
G△F = (V , (E ∪ F )\(E ∩ F )) — F is an edition of G

Completion (Deletion) : only allowed to add (delete) edges.
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Kernelization algortihms

Kernel

(I , k) (I ′, k ′)

|I | = n |I ′| ≤ f (k)

k ′ ≤ k

POLY-TIME

(I , k) Yes-instance ⇔ (I ′, k ′) Yes-instance
f polynomial ⇒ polynomial kernel

Theorem
A problem Q is Fixed-Parameter Tractable ⇔ Q admits a kernel.
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Kernels for trivially perfect edge modification problems

Existing vertex-kernels :

Completion: O(k3) (announced, never published) [Guo - ISAAC 2007]

Editing, deletion, completion: O(k7) [Drange, Pilipczuk - ESA 2015]

Editing, deletion, completion: O(k3) [Dumas, Perez, Todinca - MFCS 2021]

Completion: O(k2) [Bathie, Bousquet, Pierron - IPEC 2021]
[Cao, Ke - IPEC 2021]

Our result :
Editing, deletion : O(k2) vertex-kernel

3 / 13



Universal Clique Decomposition (UCD)

Universal clique : the set of universal vertices.
Universal Clique Decomposition : The tree of universal cliques.

G is trivially perfect ⇔ G admits an UCD.

Bags of the UCD correspond to critical cliques (maximal clique modules).

Rooted subtrees of the UCD correspond to trivially perfect modules.
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Kernel: general approach

Type 1

Type 2

For an edition F of G , we consider T the UCD of H = G△F :

A the set of nodes that contains vertices affected by F ,

A′ lowest common ancestor closure of A,

|A| ≤ 2k and |A′| ≤ 2k.

Theorem
Trivially Perfect Editing admits a kernel with O(k · (g(k) + h(k))) vertices.

⇒ We show: g(k) = O(k) and h(k) = O(k).
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Three type of connected component in T\(A ∪ A′) :

Type 0 : not adjacent to any node of A ∪ A′,
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Theorem
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Classical rules

Rule 1
Remove the trivially perfect connected component of G .

⇒ Removes type 0 components.

Rule 2
Let K ⊆ V be a critical clique of G such that |K | > k + 1. Remove arbitrarily
|K | − (k + 1) vertices of K from G .

⇒ Bound the size of nodes of the UCD by k + 1.
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Bounding the size of trivially perfect modules

Rule 3
Let M ⊆ V be a trivially perfect module of G . If G [M] contains a (k + 1)-sized
anti-matching D, then remove the vertices contained in M \ D.

k + 1

N(M)

M
D

Question : how to bound the size of modules with small anti-matching ?
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Combs

Type 2

Vp Vf

R1

C1

R2

C2

Rl

Cl
C

R
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Combs

A Comb is a pair (C ,R) of set of vertices such that :
C is a clique composed of l critical cliques (the shaft),
R is a set of l non-adjacent trivially perfect modules (the teeth),
The induced graph by G [C ∪ R] is trivially perfect,
NG (C)\R = Vp ∪ Vf , NG (R)\C = Vp.

Vp Vf

R1

C1

R2

C2

Rl

Cl
C

R

Goal
Bound to O(k) the number of vertices in a comb.
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Bound the number of vertices in the shaft

Rule 4
Let (C ,R) be a comb of G . Keep at least 2k + 1 vertices at the beginning and
the end of the shaft, remove the others.

≥ 2k + 1 ≥ 2k + 1REMOVE

⇒ combs have O(k) vertices in their shaft.
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Bound the size of modules with small anti-matching

Trivially perfect modules can be decomposed into a comb.

Decomposition of a comb with small anti-matching:

≤ k ≤ 3k

⇒ They can be decomposed in a comb (C ,R) such that |R| = O(k).

Conclusion on trivially perfect modules

large anti-matching : Rule 3 ⇒ ≤ 2k + 2 vertices

small anti-matching : Rule 4 ⇒ O(k) vertices

Hence g(k) = O(k)

10 / 13



Bound the size of modules with small anti-matching

Trivially perfect modules can be decomposed into a comb.

Decomposition of a comb with small anti-matching:

≤ k ≤ 3k

⇒ They can be decomposed in a comb (C ,R) such that |R| = O(k).

Conclusion on trivially perfect modules

large anti-matching : Rule 3 ⇒ ≤ 2k + 2 vertices

small anti-matching : Rule 4 ⇒ O(k) vertices

Hence g(k) = O(k)

10 / 13



Bound the number of vertices in the teeth

Rule 4
Let (C ,R) be a comb of G . Keep at least 2k + 1 vertices at the beginning and
two disjoint sets of 2k + 1 vertices at the end of the teeth, remove the others.

≥ 2k + 1 REMOVE ≥ 2k + 1 ≥ 2k + 1

Size of combs

Combs have O(k) vertices in their teeth.

Conclusion : combs contains at most h(k) = O(k) vertices.
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Reduced instance size

Theorem
Trivially Perfect Editing admits a kernel with O(k · (g(k) + h(k))) vertices.

Type 1

Type 2

We showed: g(k) and h(k) are O(k)
⇒ Trivially Perfect Editing admits a kernel with O(k2) vertices

⇒ Trivially Perfect Deletion and Completion admit a kernel with O(k2) vertices
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Conclusion

Our result : a O(k2) vertex-kernel for Trivially Perfect Editing and Deletion.

Questions :
Can we get a smaller vertex-kernel?

Several kernels use similar approaches (proper interval, ptolemaic) can we
improve them?

Thank you !
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