Sufficient conditions for
polynomial-time detection of induced minors

Clément Dallard*, Maél Dumas?, Claire Hilaire3, Anthony Perez*

1Department of Informatics, University of Fribourg, Switzerland
2|nstitute of Informatics, University of Warsaw, Poland
3FAMNIT and IAM, University of Primorska, Slovenia

4LIFO, Université d'Orléans, France

SOFSEM 2025



Does G contains H 7
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Input: Two graphs G and H.
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® a tree with > 23% vertices [Korhonen, Lokshtanov 24]
Polynomial if H is:
® Disjoint union of paths (= induced subgraph containment)
® Clique (= minor containment)

® Forest with < 7 vertices except for >_._<

subdivided stars: [Fiala, Kaminski, Paulusma 12]

® Disjoint union of triangles A A A [Nguyen, Scott, Seymour 24]
® Some specific graphs E @ '@' '@' [DDHP + Milanic, Trotignon 24]
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Contribution: New H for H-IMC in polynomial-time

® Using the structure of induced minor models:

o« ¢ ° o

Flowers Generalized Generalized
Houses Bulls

Split Complete
S<3q
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Contribution: New H for H-IMC in polynomial-time

® Using the structure of induced minor models:

o« ¢ ° o

Flowers Generalized Generalized  Split Complete
Houses Bulls S<q

® H-IMC can be solved in polynomial time in graphs without long induced paths.

— Polynomial time algorithm for : A.

Gem Full House
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Induced Minor Model

Definition
An induced minor model of H in G, is a collection Xy = {X,: u € V(H)} of
pairwise disjoint non-empty subsets of V(G) such that:

e for u € V(H), G[X.] is connected, and

® for u# v € V(H), X, and X, are adjacent if and only if uv € E(H).

Xb X

Xd Xe

There is a model of Hin G < H Ci, G (G admits H as an induced minor)
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Almost trivial models

Definition
A graph H is S-non-trivial for S C V/(H) if for X,
all graph G s.t. H Cim G, there is a model Xy trivial bag
in G where only the bags of S are non-trivial.

non-trivial bag @ Xe
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{u}-non-trivial graphs
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{u}-non-trivial graphs
Lemma
If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V/(G)|!V(*))

Given G, for each model Xy, of H\ v in G:
1. Remove N(X,) from G for v € V(H) s.t. uv ¢ E(H)
2. If there is a connected component in G \ X}, adjacent to every X,, for
w € V(H) s.t. uw € E(H) = Model of H found in G !

If no model of H, then H Zim G.
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Flower Power

Flowers: H is a flower if H\ u is a disjoint union of S
paths such that for each path P: o = petal

® P is connected to u by only 0, 1 or 2 of its Stamé . *-®
endpoints,
® or |[V(P)| =3 and P is complete to u. sepal #
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Generalized Houses and Bulls I/_\I
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v ¢ X, X,
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)
Generalized Houses and Bulls I I

v C Xa Xv

— Generalized Houses are {u}-non-trivial

u - Theorem

< If H is a generalized bull, then
—o—o H-IMC can be solved in polynomial
v time.

— Generalized Bulls are {u, v}-non-trivial
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Split Complete

Theorem
If His Sk,q, k < 3, then H-IMC can be solved in
K : polynomial time.

— Sk,q, k < 3, is Kk-non-trivial
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Split Complete

K

— Sk,q, k < 3, is Kk-non-trivial

S3,2

Theorem

If His Sk,q, k < 3, then H-IMC can be solved in
polynomial time.

Algorithm sketch:
® Fix the independent set

® Put a neighbor of each vertex of the
independent set into each bag of the clique

® Try to compute the rooted clique minor

Theorem [Korhonen, Pilipczuk, Stamoulis, 24]

Rooted Minor Containment can be solved in time

Oux (IV(G)] + [E(G))* ).
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Conclusion

Contributions
H-IMC polynomial—time solvable if H is:

z};?&l L AR

— Complexity of H-IMC settled for all but 3 graphs of at most 5 vertices.

Open questions

3
® Complexity of H-IMC is open for: '—$ H@ @
3

® Show more polynomial and NP-hard cases for H-IMC towards a full dichotomy
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— Complexity of H-IMC settled for all but 3 graphs of at most 5 vertices.

Open questions

® Complexity of H-IMC is open for: '—$ H@ @

® Show more polynomial and NP-hard cases for H-IMC towards a full dichotomy

Thank you !
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