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Does G contains H ?

Vd : vertex deletion Ed : edge deletion Ec : edge contraction

O-Containment problem:
Input: Two graphs G and H.
Question: Can H be obtained from G using the operation set O ?

−→ NP-hard for most operation sets.

Operations Name Complexity of H-O-Containment
Vd Ed subgraph P
Vd induced subgraph P
Vd Ed Ec minor P ["graph minors" Robertson, Seymour]

Vd Ec induced minor NP-complete (for some H)
Ec contraction NP-complete (even for P4 or C4)

1 / 11



Does G contains H ?

Vd : vertex deletion Ed : edge deletion Ec : edge contraction

O-Containment problem:
Input: Two graphs G and H.
Question: Can H be obtained from G using the operation set O ?

−→ NP-hard for most operation sets.

Operations Name Complexity of H-O-Containment
Vd Ed subgraph P
Vd induced subgraph P
Vd Ed Ec minor P ["graph minors" Robertson, Seymour]

Vd Ec induced minor NP-complete (for some H)
Ec contraction NP-complete (even for P4 or C4)

1 / 11



Does G contains H ?

Vd : vertex deletion Ed : edge deletion Ec : edge contraction

H-O-Containment problem:
Input: A graph G .
Question: Can H be obtained from G using the operation set O ?

−→ Fix the graph H.

Operations Name Complexity of H-O-Containment
Vd Ed subgraph P
Vd induced subgraph P
Vd Ed Ec minor P ["graph minors" Robertson, Seymour]

Vd Ec induced minor NP-complete (for some H)
Ec contraction NP-complete (even for P4 or C4)

1 / 11



Does G contains H ?

Vd : vertex deletion Ed : edge deletion Ec : edge contraction

H-O-Containment problem:
Input: A graph G .
Question: Can H be obtained from G using the operation set O ?

−→ Fix the graph H.

Operations Name Complexity of H-O-Containment
Vd Ed subgraph P
Vd induced subgraph P
Vd Ed Ec minor P ["graph minors" Robertson, Seymour]

Vd Ec induced minor NP-complete (for some H)
Ec contraction NP-complete (even for P4 or C4)

1 / 11



Does G contains H ?

Vd : vertex deletion Ed : edge deletion Ec : edge contraction

H-O-Containment problem:
Input: A graph G .
Question: Can H be obtained from G using the operation set O ?

−→ Fix the graph H.

Operations Name Complexity of H-O-Containment
Vd Ed subgraph P
Vd induced subgraph P
Vd Ed Ec minor P ["graph minors" Robertson, Seymour]

Vd Ec induced minor NP-complete (for some H)
Ec contraction NP-complete (even for P4 or C4)

1 / 11



Complexity of H-Induced Minor Containment (H-IMC)

NP-complete for:
• a graph H with 68 vertices [Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

• a tree with ⩾ 2300 vertices [Korhonen, Lokshtanov 24]

Polynomial if H is:
• Disjoint union of paths (= induced subgraph containment)
• Clique (= minor containment)
• Forest with ⩽ 7 vertices except for

subdivided stars: and [Fiala, Kamiński, Paulusma 12]

• Disjoint union of triangles [Nguyen, Scott, Seymour 24]

• Some specific graphs
W4 K−

5
K2,3 K2,q

[DDHP + Milanic, Trotignon 24]
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Contribution: New H for H-IMC in polynomial-time

• Using the structure of induced minor models:

Flowers Generalized
Houses

Generalized
Bulls

Split Complete
S⩽3,q

• H-IMC can be solved in polynomial time in graphs without long induced paths.

−→ Polynomial time algorithm for :
Gem Full House
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Graphs with 5 vertices

Gem

full house W4

Generalised
houses/bulls

Flowers

Split
complete

K5

K4 + K1 K2,3

Bull

House

Crown

K−
5

OPEN
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Induced Minor Model

Definition
An induced minor model of H in G , is a collection XH = {Xu : u ∈ V (H)} of
pairwise disjoint non-empty subsets of V (G) such that:

• for u ∈ V (H), G [Xu] is connected, and
• for u ̸= v ∈ V (H), Xu and Xv are adjacent if and only if uv ∈ E(H).

a

b c

d e

Xa

Xb

Xd

Xc

Xe

There is a model of H in G ⇔ H ⊆im G (G admits H as an induced minor)

5 / 11



Almost trivial models

Definition
A graph H is S-non-trivial for S ⊆ V (H) if for
all graph G s.t. H ⊆im G , there is a model XH

in G where only the bags of S are non-trivial.

Xa

Xb

Xd

Xc

Xe

trivial bag

non-trivial bag

Observation
If H is ∅-non-trivial, then: H ⊆im G ⇔ H is an induced subgraph of G .

−→ H-IMC is polynomial-time solvable

Lemma
H is ∅-non-trivial ⇔ H is a disjoint union of path

Proof: ⇒ Claws and cycles are not ∅-non-trivial:

⇐ Given a model of a path: P4
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{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :

1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

G

H

u

7 / 11



{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :

1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

G

H

u

7 / 11



{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :

1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

G

H \ u

u

7 / 11



{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :
1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

G

H

u

7 / 11



{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :
1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

Xu

G

H

u

7 / 11



{u}-non-trivial graphs

Lemma

If H is {u}-non-trivial, then H-IMC can be solved in poly-time O(|V (G)||V (H)|)

Given G , for each model XH\u of H \ u in G :
1. Remove N(Xv ) from G for v ∈ V (H) s.t. uv /∈ E(H)

2. If there is a connected component in G \ XH\u adjacent to every Xw for
w ∈ V (H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of H, then H ⊈im G .

Xu

G

H

u

7 / 11



Flower Power

Flowers: H is a flower if H \ u is a disjoint union of
paths such that for each path P:

• P is connected to u by only 0, 1 or 2 of its
endpoints,

• or |V (P)| = 3 and P is complete to u. sepal

petal

stamen u

Lemma
Flowers are {u}-non-trivial.

−→ If H is a flower, then H-IMC is polynomial-time solvable.

Xu

Xu
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Generalized Houses and Bulls

b

c

u

Xa

Xb

Xc
v

Xu

Xv

a

−→ Generalized Houses are {u}-non-trivial

v

Xu

Xv

u

−→ Generalized Bulls are {u, v}-non-trivial

Theorem
If H is a generalized bull, then
H-IMC can be solved in polynomial
time.
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Split Complete

Kk

−→ Sk,q, k ⩽ 3, is Kk -non-trivial

Theorem
If H is Sk,q, k ⩽ 3, then H-IMC can be solved in
polynomial time.

S3,2

Algorithm sketch:
• Fix the independent set
• Put a neighbor of each vertex of the

independent set into each bag of the clique
• Try to compute the rooted clique minor

Theorem [Korhonen, Pilipczuk, Stamoulis, 24]

Rooted Minor Containment can be solved in time
OH,|X |((|V (G)|+ |E(G)|)1+o(1)).
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Conclusion

Contributions
H-IMC polynomial-time solvable if H is:

−→ Complexity of H-IMC settled for all but 3 graphs of at most 5 vertices.

Open questions

• Complexity of H-IMC is open for:

• Show more polynomial and NP-hard cases for H-IMC towards a full dichotomy

Thank you !
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