Sufficient conditions for polynomial-time detection of induced minors

Clément Dallard¹, Maël Dumas², Claire Hilaire³, Anthony Perez⁴

¹Department of Informatics, University of Fribourg, Switzerland
²Institute of Informatics, University of Warsaw, Poland
³FAMNIT and IAM, University of Primorska, Slovenia
⁴LIFO, Université d'Orléans, France

SOFSEM 2025

$\mathcal{O} ext{-}Containment problem:$

Input: Two graphs G and H. **Question:** Can H be obtained from G using the operation set O?

\mathcal{O} -Containment problem:

Input: Two graphs G and H. **Question:** Can H be obtained from G using the operation set O?

 \longrightarrow NP-hard for most operation sets.

H-*O*-Containment problem:

Input: A graph *G*. **Question:** Can *H* be obtained from *G* using the operation set O?

 \longrightarrow Fix the graph *H*.

 E_c : edge contraction

H-*O*-Containment problem:

Input: A graph G. **Question:** Can H be obtained from G using the operation set O?

 \longrightarrow Fix the graph *H*.

Oper	ration	s	Name	Complexity of H-O-Containment
V_d	E_d		subgraph	Р
V_d			induced subgraph	Р
V_d	E_d	E_c	minor	P ["graph minors" Robertson, Seymour]
V_d		E_c	induced minor	NP-complete (for some <i>H</i>)
		E_c	contraction	NP-complete (even for P_4 or C_4)

 E_c : edge contraction

H-*O*-Containment problem:

Input: A graph G. **Question:** Can H be obtained from G using the operation set O?

 \longrightarrow Fix the graph *H*.

Oper	ration	s	Name	Complexity of H-O-Containment
V_d	E_d		subgraph	Р
V_d			induced subgraph	Р
V_d	E_d	E_c	minor	P ["graph minors" Robertson, Seymour]
V_d		E_c	induced minor	NP-complete (for some H)
		E_c	contraction	NP-complete (even for P_4 or C_4)

Complexity of *H*-Induced Minor Containment (*H*-IMC) \longrightarrow

NP-complete for:

• a graph *H* with 68 vertices

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

Complexity of *H*-Induced Minor Containment (*H*-IMC) \checkmark

NP-complete for:

- a graph *H* with 68 vertices
- a tree with $\ge 2^{300}$ vertices

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

[Korhonen, Lokshtanov 24]

Complexity of *H*-Induced Minor Containment (*H*-IMC) \rightarrow

NP-complete for:

- a graph H with 68 vertices
- a tree with $\ge 2^{300}$ vertices

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

[Korhonen, Lokshtanov 24]

- **Polynomial** if *H* is:
 - Disjoint union of paths (= induced subgraph containment)
 - Clique (= minor containment)

Complexity of *H*-Induced Minor Containment (*H*-IMC) \searrow

NP-complete for:

- a graph H with 68 vertices
- a tree with $\ge 2^{300}$ vertices

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

[Korhonen, Lokshtanov 24]

Polynomial if *H* is:

- Disjoint union of paths (= induced subgraph containment)
- Clique (= minor containment)
- Forest with \leqslant 7 vertices except for \checkmark subdivided stars:

[Fiala, Kamiński, Paulusma 12]

Complexity of *H*-Induced Minor Containment (*H*-IMC) \rightarrow

NP-complete for:

- a graph H with 68 vertices
- a tree with $\ge 2^{300}$ vertices

Polynomial if *H* is:

- Disjoint union of paths (= induced subgraph containment)
- Clique (= minor containment)
- Forest with \leqslant 7 vertices except for \checkmark

subdivided stars:

Disjoint union of triangles \triangle \triangle ... \triangle

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

[Korhonen, Lokshtanov 24]

[Fiala, Kamiński, Paulusma 12]

[Nguyen, Scott, Seymour 24]

Complexity of *H*-Induced Minor Containment (*H*-IMC) \rightarrow

NP-complete for:

- a graph H with 68 vertices
- a tree with $\ge 2^{300}$ vertices

Polynomial if *H* is:

- Disjoint union of paths (= induced subgraph containment)
- Clique (= minor containment)
- Forest with \leq 7 vertices except for \rightarrow

subdivided stars:

Disjoint union of triangles \triangle \triangle ... \triangle

• Some specific graphs 💢 🙀

[Fellows, Kratochvíl, Middendorf, Pfeiffer 95]

[Korhonen, Lokshtanov 24]

[Fiala, Kamiński, Paulusma 12]

[Nguyen, Scott, Seymour 24]

[DDHP + Milanic, Trotignon 24]

Contribution: New H for H-IMC in polynomial-time

• Using the structure of induced minor models:

Contribution: New H for H-IMC in polynomial-time

• Using the structure of induced minor models:

- H-IMC can be solved in polynomial time in graphs without long induced paths.
 - \longrightarrow Polynomial time algorithm for :

Gem Full House

Graphs with 5 vertices

Induced Minor Model

Definition

An induced minor model of H in G, is a collection $\mathcal{X}_H = \{X_u : u \in V(H)\}$ of pairwise disjoint non-empty subsets of V(G) such that:

- for $u \in V(H)$, $G[X_u]$ is connected, and
- for $u \neq v \in V(H)$, X_u and X_v are adjacent if and only if $uv \in E(H)$.

There is a model of H in $G \Leftrightarrow H \subseteq_{im} G$ (G admits H as an induced minor)

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Observation

If H is \emptyset -non-trivial, then: $H \subseteq_{im} G \Leftrightarrow H$ is an induced subgraph of G. $\longrightarrow H$ -IMC is polynomial-time solvable

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Observation

If H is \emptyset -non-trivial, then: $H \subseteq_{im} G \Leftrightarrow H$ is an induced subgraph of G. $\longrightarrow H$ -IMC is polynomial-time solvable

Lemma

H is \emptyset -non-trivial \Leftrightarrow *H* is a disjoint union of path

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Observation

If H is \emptyset -non-trivial, then: $H \subseteq_{im} G \Leftrightarrow H$ is an induced subgraph of G. $\longrightarrow H$ -IMC is polynomial-time solvable

Lemma

H is \emptyset -non-trivial \Leftrightarrow *H* is a disjoint union of path

Proof: \Rightarrow Claws and cycles are not \emptyset -non-trivial:

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Observation

If H is \emptyset -non-trivial, then: $H \subseteq_{im} G \Leftrightarrow H$ is an induced subgraph of G. \longrightarrow H-IMC is polynomial-time solvable

Lemma

H is \emptyset -non-trivial \Leftrightarrow *H* is a disjoint union of path

Definition

A graph *H* is *S*-non-trivial for $S \subseteq V(H)$ if for all graph *G* s.t. $H \subseteq_{im} G$, there is a model \mathcal{X}_H in *G* where only the bags of *S* are non-trivial.

Observation

If H is \emptyset -non-trivial, then: $H \subseteq_{im} G \Leftrightarrow H$ is an induced subgraph of G. \longrightarrow H-IMC is polynomial-time solvable

Lemma

H is \emptyset -non-trivial \Leftrightarrow *H* is a disjoint union of path

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Given G, for each model $\mathcal{X}_{H\setminus u}$ of $H\setminus u$ in G:

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Given G, for each model $\mathcal{X}_{H\setminus u}$ of $H\setminus u$ in G:

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Given G, for each model $\mathcal{X}_{H\setminus u}$ of $H\setminus u$ in G: 1. Remove $N(X_v)$ from G for $v \in V(H)$ s.t. $uv \notin E(H)$

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Given G, for each model $\mathcal{X}_{H\setminus u}$ of $H\setminus u$ in G:

- 1. Remove $N(X_v)$ from G for $v \in V(H)$ s.t. $uv \notin E(H)$
- 2. If there is a connected component in $G \setminus \mathcal{X}_{H \setminus u}$ adjacent to every X_w for $w \in V(H)$ s.t. $uw \in E(H) \Rightarrow$ Model of H found in G !

Lemma

If H is $\{u\}$ -non-trivial, then H-IMC can be solved in poly-time $O(|V(G)|^{|V(H)|})$

Given *G*, for each model $\mathcal{X}_{H\setminus u}$ of $H\setminus u$ in *G*:

- 1. Remove $N(X_v)$ from G for $v \in V(H)$ s.t. $uv \notin E(H)$
- If there is a connected component in G \ X_{H\u} adjacent to every X_w for w ∈ V(H) s.t. uw ∈ E(H) ⇒ Model of H found in G !

If no model of *H*, then $H \not\subseteq_{im} G$.

Flowers: *H* is a flower if $H \setminus u$ is a disjoint union of paths such that for each path *P*:

- *P* is connected to *u* by only 0, 1 or 2 of its endpoints,
- or |V(P)| = 3 and P is complete to u.

Flowers: *H* is a flower if $H \setminus u$ is a disjoint union of paths such that for each path *P*:

- *P* is connected to *u* by only 0, 1 or 2 of its endpoints,
- or |V(P)| = 3 and P is complete to u.

Lemma

Flowers are $\{u\}$ -non-trivial.

 \longrightarrow If H is a flower, then H-IMC is polynomial-time solvable.

Flowers: *H* is a flower if $H \setminus u$ is a disjoint union of paths such that for each path *P*:

- *P* is connected to *u* by only 0, 1 or 2 of its endpoints,
- or |V(P)| = 3 and P is complete to u.

Lemma

Flowers are $\{u\}$ -non-trivial.

 \longrightarrow If H is a flower, then H-IMC is polynomial-time solvable.

Flowers: *H* is a flower if $H \setminus u$ is a disjoint union of paths such that for each path *P*:

- *P* is connected to *u* by only 0, 1 or 2 of its endpoints,
- or |V(P)| = 3 and P is complete to u.

Lemma

Flowers are $\{u\}$ -non-trivial.

 \longrightarrow If H is a flower, then H-IMC is polynomial-time solvable.

Flowers: *H* is a flower if $H \setminus u$ is a disjoint union of paths such that for each path *P*:

- *P* is connected to *u* by only 0, 1 or 2 of its endpoints,
- or |V(P)| = 3 and P is complete to u.

Lemma

Flowers are $\{u\}$ -non-trivial.

 \longrightarrow If H is a flower, then H-IMC is polynomial-time solvable.

 \longrightarrow Generalized Houses are $\{u\}$ -non-trivial

 \longrightarrow Generalized Houses are $\{u\}$ -non-trivial

 \longrightarrow Generalized Bulls are $\{u, v\}$ -non-trivial

 \longrightarrow Generalized Houses are $\{u\}$ -non-trivial

 \longrightarrow Generalized Bulls are $\{u, v\}$ -non-trivial

Theorem

If H is a generalized bull, then H-IMC can be solved in polynomial time.

Split Complete

Theorem

If *H* is $S_{k,q}$, $k \leq 3$, then *H*-IMC can be solved in polynomial time.

 $\longrightarrow S_{k,q}, k \leq 3$, is K_k -non-trivial

Split Complete

Theorem

If *H* is $S_{k,q}$, $k \leq 3$, then *H*-IMC can be solved in polynomial time.

 $\longrightarrow S_{k,q}, k \leqslant 3$, is K_k -non-trivial

Algorithm sketch:

- Fix the independent set
- Put a neighbor of each vertex of the independent set into each bag of the clique
- Try to compute the rooted clique minor

Theorem [Korhonen, Pilipczuk, Stamoulis, 24] Rooted Minor Containment can be solved in time $O_{H,|X|}((|V(G)| + |E(G)|)^{1+o(1)}).$

Conclusion

Contributions

H-IMC polynomial-time solvable if H is:

 \longrightarrow Complexity of H-IMC settled for all but 3 graphs of at most 5 vertices.

Open questions

- Complexity of *H*-IMC is open for: • • •
- Show more polynomial and NP-hard cases for H-IMC towards a full dichotomy

Conclusion

Contributions

H-IMC polynomial-time solvable if H is:

 \longrightarrow Complexity of H-IMC settled for all but 3 graphs of at most 5 vertices.

Open questions

- Complexity of *H*-IMC is open for:
- Show more polynomial and NP-hard cases for H-IMC towards a full dichotomy

Thank you !