
Twierdzenie Riemanna o liczbach pierwszych.
Według książki Stein – Shakarchi

Głównym celem wykładu jest udowodnienie następującego twierdzenia.

Twierdzenie 1. Niech π : R → Z będzie funkcją zliczającą liczby pierwsze. To znaczy,

π(x) = #{p : p ≤ x p pierwsza}.
Wtedy dla dowolnego A < 1 oraz B > 1 istnieje takie x0, że jeśli x > x0, to:

A
x

log x
≤ π(x) ≤ B

x

log x
.

Często twierdzenie formułuje się jako π(x) ∼ x
log x

.
Aby dowieść twierdzenia, wprowadzamy funkcję Czebyszewa:

ψ(x) =
∑
pm≤x

log p,

czyli sumujemy wielkość log p po tych liczbach, które są potęgami p mniejszymi od x.
Na przykład:

ψ(10) = log 2 + log 3 + log 2 + log 5 + log 7 + log 2 + log 3.

Można zapisać ψ(x) za pomocą funkcji von Mangolta

Λ(n) =

{
log p : n = pn

0: w przeciwnym przypadku.

Stwierdzenie 1. Funkcja π(x) asymptotycznie zachowuje się jak x
log x

jeśli ψ(x) ∼ x.

Dowód. Piszemy najpierw

ψ(x) =
∑
p≤x

⌊
log x

log p

⌋
log p ≤

∑
p≤x

log x

log p
log p = log x

∑
p≤x

1 = π(x) log x.

W szczególności, jeśli ψ(x) ≥ Ax dla dostatecznie dużych x, to π(x) ≤ Ax/ log x.
W drugą stronę, wybieramy α ∈ (0, 1). Wtedy

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα≤p≤x

log p ≥ (π(x)− π(xα)) log xα.

To zaś oznacza, że
ψ(x) + απ(xα) log x ≥ απ(x) log x.

Wiemy, że π(x) ≤ x (bo π zlicza tylko część liczb). Możemy więc dobrać tak α,C, żeby
π(xα) log x było mniejsze niż Cx dla dostatecznie dużych C. Jeśli ψ(x) ≤ Bx, dostajemy
że

π(x) log x ≤ α−1(B + C)x.

To dowodzi tezy. □

Uwaga 1. Tak naprawdę pokazujemy, że jeśli lim ψ(x)
x

= 1, to lim π(x) log x
x

= 1.

Funkcja ψ nie jest idealna. Idealną funkcją będzie funkcja pierwotna ψ.

Stwierdzenie 2. Niech
ψ1(x) =

∫ x

1

ψ(y)dy.

Jeśli ψ1(x) ∼ x2

2
, to ψ(x) ∼ x.

1



Dowód. Przyjmijmy 0 < α < 1 < β. Jako, że ψ jest niemalejąca, zachodzi
1

(1− α)x

∫ x

αx

ψ(u)du ≤ ψ(x) ≤ 1

(β − 1)x

∫ βx

x

ψ(u)du.

Wartość w mianowniku to długość przedziału.
Z tego wynika, że

ψ(x) ≤ 1

(β − 1)x
(ψ1(βx)− ψ1(x)).

Piszemy to inaczej
ψ(x)

x
≤ 1

β − 1

(
ψ1(βx)

β2x2
β2 − ψ1(x)

x2

)
.

Przykładamy lim sup do tej nierówności. Jeśli lim
∑ ψ1(x)

x2
= 1

2
, to otrzymujemy:

lim sup
ψ(x)

x
≤ 1

β − 1

(
1

2
β2 − 1

2

)
=

1

2
(β + 1).

Teraz β było dowolne większe od 1, stąd lim sup ψ(x)
x

≤ 1. Dowód w drugą stronę jest
analogiczny. □

Do tej pory właściwie nie używaliśmy funkcji analitycznych. Teraz wykorzystamy.

Definicja 1. Funkcja ζ(s) jest zadana wzorem
∑∞

n=1
1
ns .

Wzór definiujący funkcję ζ ma sens dla s ∈ R, s > 1. Poczyńmy obserwację.

Lemat 1. Jeśli x ∈ R>0 oraz s ∈ C, to |xs| = xRe s.

Rozwiązanie. Piszemy x = eβ oraz s = a + bi. Wtedy xs = eaβ+bβi, czyli |xs| = eaβ =
xa = xRe s. □

Z Lematu wnosimy, że szereg definiujący funkcję ζ jest zbieżny dla Re s > 1 oraz
jednostajnie zbieżny na Re s ≥ 1 + δ dla dowolnego δ > 0. Stąd ζ jest funkcją holomor-
ficzną.

Lemat 2. Dla dowolnego s takiego, że Re s > 1 zachodzi

ζ(s) =
∏
p

1

1− p−s
,

gdzie iloczyn bierzemy po wszystkich liczbach pierwszych.

Rozwiązanie. Kwestię zbieżności iloczynu zostawiamy jako ćwiczenie. Mamy
1

1− x
= 1 + x+ x2 + . . .

Stąd:
1

1− p−s
= 1 + p−s + p−2s + . . . .

A zatem ∏
p

1

1− p−s
= (1 + 2−s + 2−2s + . . . )(1 + 3−s + . . . ) . . .

Ustalmy n. Zapiszmy n jako pk11 · · · pkrr . W iloczynie po lewej stronie, wyrażenie n−s

pojawi się dokładnie raz: wymnażając skończenie wiele wyrażeń różnych od 1 i k1-te
wyrażenie przy p1 itp. □

Teraz przyda się nam jeszcze jeden lemat. Dalsze oszacowania będą podane, ale udo-
wodnione następnym razem.



c+ iR

c− iR

0−1

Rysunek 1. Kontur w dowodzie (2).

Lemat 3. Zachodzi ζ′

ζ
(s) = −

∑∞
n=1

Λ(n)
ns , o ile Re s > 1.

Rozwiązanie. Mamy ζ′

ζ
= d

ds
log ζ(s). Piszemy

log ζ(s) = log
∏
p

1

1− p−s
=

∑
p

log
1

1− p−s
= −

∑
p

log(1− p−s).

Teraz

− log(1− x) = x+
x2

2
+
x3

3
+ . . . ,

czyli

(1) log(ζ) = −
∑
p

log(1− p−s) =
∑

δ(n)n−s,

gdzie δ(n) = 1
m

jeśli n = pm, i δ(n) = 0 w przeciwnym przypadku. Różniczkujemy (1)
wyraz po wyrazie. Przypuśćmy, że n = pm

d

ds
δ(n)n−s = − log nδ(n)n−s = −m log p

1

m
n−s = −Λ(n)n−s.

□

Stwierdzenie 3. Dla dowolnego c > 1 oraz x > 0 zachodzi:

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds.

Dowód. Najpierw udowodnimy następujący wzór:

(2)
1

2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0: a ∈ (0, 1]

1− 1
a
: a > 1.

Aby dowieść tego wzoru wybieramy kontur ΓR jak na rysunku. Składa się on z odcinka
Γ1R i półokręgu Γ2R. Zapiszmy x = et dla pewnego t > 0. Zapisujemy∫

ΓR

ets

s(s+ 1)
ds.

Na całym ΓR zachodzi |etz| ≤ |etc|, więc mamy ograniczenie górne przez stałą. Z tego
wynika, że całka po półokręgu Γ2R zbiega przy R → ∞ do zera. To oznacza, że całka



po ΓR zbiega do szukanej całki. Całkę po ΓR liczymy jednak przez residua. Funkcja ma
bieguny w s = 0 i s = 1. Elementarny rachunek daje tezę.

Przypominamy sobie, że ψ(x) =
∑

n≤x Λ(n). To oznacza, że∫ x

0

ψ(s)ds =
∑
n<x

Λ(n)(x− n).

Dowód tej tożsamości pozostawiam jako ćwiczenie (można zapisać ψ jako sumę funkcji
indykatorowych). Korzystając ze wzoru

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns

uzyskujemy:∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds =

x
∞∑
n=1

∫ c+∞

c−∞
Λ(n)

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds =

x
∑
n≤x

Λ(n)
(
1− x

n

)
= ψ1(x)

□

Stwierdzenie 4. Wzór ζ(s) się przedłuża do funkcji meromorficznej na C mającej
biegun wyłącznie w s = 1.
(Z-1) Funkcja ζ nie zeruje się dla ζ(1 + it), gdy t ∈ R;
(Z-2) Dla dowolnego δ > 0, istnieje Cδ taka, że jeśli σ ≥ 1, |τ | ≥ 1, to przy s = σ + iτ∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ Cδ|τ |δ.

(Z-3) Dla dowolnego δ > 0, istnieje Cδ taka, że jeśli σ ≥ 1, |τ | ≥ 1, to przy s = σ + iτ

|ζ ′(s)| ≤ C ′
δ|τ |δ.

W szczególności, ze Stwierdzenia 4 wyniknie sensowne oszacowanie na pochodną lo-
garytmiczną ζ, z którego skorzystamy.

Stwierdzenie 5. Zachodzi ψ1(x) ∼ x2

2
.

Dowód. Skorzystamy ze Stwierdzenia 4. Oznaczmy:

F (s) =
xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
.

Ustalmy kontury całkowania jak na rysunku 2. Pozostawiamy jako ćwiczenie przekona-
nie się, że

∫
γc
F (s) =

∫
γ1+

F (s). Z drugiej strony, na mocy twierdzenia o residuach.

1

2πi

∫
γ1+

F (s)ds = ress=1 F (s) +
1

2πi

∫
γ1−

F (s)ds.

Residuum F jest łatwe do policzenia, gdyż s 7→ xs+1

s(s+1)
jest holomorficzna w 1, a

pochodna logarytmiczna ζ ma residuum równe rzędowi bieguna (z zasady argumentu),
czyli −1. To oznacza, że

ress=1 F (s) =
x2

2
.



γcγ1+γ1−

Rysunek 2. Trzy kontury całkowania. γc to Re z = c. γ1± to kontury w
większości zawarte w Re z = 1, ale obchodzące punkt 1 (biegun ζ) z lewej
lub prawej strony.

γ1−

γ1

γ2γ4

γ3

γ5

Rysunek 3. Podział konturu γ1− na kawałki.

Zatem, Stwierdzenie 5 będzie udowodnione, jeśli wyszacujemy, że∫
γ1−

F (s)ds

jest małe w porównaniu z x2

2
.

Aby wyszacować całki,
dzielimy kontur na kawałki.

Zielony kontur γ1− z rysunku 2 na fragmenty. Dokładniej, ustalamy T > 0 oraz δ
(dobrane do T ) tak aby w prostokącie:

{z ∈ C : Re z ∈ [1− δ, δ], | Im z| ≤ T}
funkcja ζ nie miała zer. Odcinki γ2, γ3, γ4 są fragmentami tego konturu. Kluczowe jest
szacowanie całki po γ1 i γ5. W tym celu, na mocy Stwierdzenia 4 możemy dobrać takie
A, żeby dla s ∈ γ1 ∪ γ5, s = 1 + it zachodziło∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ A|t|1/2.



A więc ∫
γ5

|F (s)|ds ≤ C1x
2

∫ ∞

T

|t|1/2

t2
dt.

Jako, że całka jest zbieżna, możemy wziąć tak duże T , żeby∫
γ5

|F (s)|ds ≤ εx2.

Analogiczne szacowanie działa dla γ1. Dla γ3, szacujemy pochodną logarytmiczną ζ
przez stałą. No i wtedy mamy∫

γ3

|F (s)|ds ≤
∫ T

−T
C2x

2−δdt.

Biorąc teraz x dostatecznie duże (w stosunku do T ), możemy przyjąć, że ta całka jest
mniejsza niż εx2. Całkę po γ2 i γ4 również dość łatwo szacujemy. Kończąc dowód. □

Pozostaje udowodnić Stwierdzenie 4.

Przedłużenie funkcji ζ. Zacznijmy od obserwacji, że istnieją funkcje całkowite δn(z),
takie że |δn(z)| ≤ |z|/n1+Re z oraz

(3)
N−1∑
n=1

1

nz
−

∫ N

1

dx

xz
=

N−1∑
n=1

δn(z).

Oczywiste jest, że aby (3) mogło zajść, musi być

δn(z) =
1

nz
−
∫ n+1

n

1

xz
dx,

czyli

δn(z) =

∫ n+1

n

(
1

nz
− 1

xz

)
dx.

Aby wyszacować δn, patrzymy, że z twierdzenia o wartości średniej, f(n) − f(x) =
(n− x)f ′(ξ), wiemy, że∣∣∣∣∫ a+1

a

(f(a)− f(x))dx

∣∣∣∣ ≤ sup
y∈[a,a+1]

|f ′(y)|.

Stosując do δn otrzymujemy

|δn(z)| ≤
|z|
n|z|+1

.

Lemat 4. Funkcja ζ przedłuża się na Re z > 0 z biegunem prostym w z = 1. Funkcja
z 7→ ζ(z)− 1

z−1
jest holomorficzna w całym Re z > 0.

Rozwiązanie. Szereg
∑
δn(z) jest zbieżny jednostajnie dla Re z > ε dla dowolnego ε.

Czyli zadaje funckję holomorficzną. Oznaczamy ją H. Co więcej funkcja

z 7→
∫ ∞

1

1

xz

jest równa 1
z−1

dla Re z > 1. Czyli wyrażenie

1

z − 1
+H(z)

zadaje funkcję holomorficzną na Re z > 0, która się zgadza z ζ(z) dla Re z > 1. □



Pełne przedłużenie ζ(s) na Re z < 0 zazwyczaj konstruuje się w bardziej zaawansowa-
ny sposób. Iterowanie wzoru na całkę prowadzi do lepszego przedłużenia. Na przykład.

Zadanie 1. Niech f : [x, y] → R będzie funkcją klasy C3, oraz x, y są całkowite. Wykaż,
że

y∑
n=x

f(n) =

∫ y

x

f(t)dt+
1

2
f(x) +

1

2
f(y) +

1

12
(f ′(x)− f ′(y)) +O(

∫ y

x

f ′′′(t)dt).

Zadanie 2. Wykaż, że dla dowolnego z takiego, że Re z > −2, z ̸= 1 istnieje dokładnie
jedna liczba ζ(z) taka, że

N∑
n=1

1

nz
= ζ(z) +

N1−z

1− z
+

1

2
N−z − z

12
N−z−1 +O(

|z(z + 1)(z + 2)|
Re z

N−z−2).

Zadanie 3. Wywnioskuj, że ζ(−1) = − 1
12

.

Szacowania dla ζ. Zaczynamy szacowania od oszacowania wzrostu ζ. Mamy

ζ(z) =
1

z − 1
+

∞∑
n=1

δn(z),

gdzie |δn(z)| ≤ |z|
nRe z+1 .

Lemat 5. Dla dowolnego σ0 ∈ [0, 1) i dowolnego ν > 0 istnieje stała Cν taka, że gdy
Re z ≥ σ0 i t := | Im z| > 1, zachodzi:

|ζ(z)| ≤ Cν |z|1−σ0+ν .

Rozwiązanie. Przyjmijmy, że z jest takie jak w tezie. Czyli |δn(z)| ≥ |z|
|z|σ0+1 . Z drugiej

strony,

|δn(z)| ≤
∫ n+1

n

∣∣∣∣ 1nz − 1

xz

∣∣∣∣ dx ≤ 2

|z|σ0
.

Dla dowolnego κ ∈ (0, 1), mamy

|δn(z)| = |δn(z)|κ|δn(z)|1−κ ≤
(

|z|
nσ0+1

)κ(
2

nσ0

)1−κ

≤ 2|z|κ

nσ0+κ
.

Kładziemy teraz κ = 1− σ0 + ν (przyjmujemy, że ν jest małe), i otrzymujemy

2|z|κ

nσ0+κ
= 2|z|1−σ0+ν 1

n1+ν
.

Czyli

|ζ(z)| ≤ 1

|z − 1|
+ 2|z|1−σ0+ν

∞∑
n=1

1

1 + nν
.

Stąd wynika teza. □

Oszacowanie ζ ′. Lemat 5 pozwala nam dowieść następującego lematu.

Lemat 6. Przypuśćmy, że s ≥ 1. Dla dowolnego ν > 0, istnieje Cν takie, że jeśli |t| ≥ 1
oraz z = s+ it, to

|ζ ′(z)| ≤ Cν |t|ν .



Rozwiązanie. Ze wzoru całkowego Cauchy’ego

ζ ′(z) =
1

2πi

∫
C(z,r)

ζ(w)

(w − z)2
dw.

Czyli

ζ ′(z) =
1

2πr

∫ 2π

0

ζ(z + reiθ)eiθdθ.

A więc, jeśli r = ν, dla wszystkich z + reiθ część rzeczywista ma część rzeczywistą co
najmniej 1− ν. Czyli gdy

|ζ(z + reiθ)| ≤ Cν |z|2ν ,
gdzie zwiększyliśmy stałą Cν . Ale teraz z tego wynika, że

|ζ ′(z)| ≤ Cν
2ν

|z|2ν .

□

Dowód własności (Z-1). Zaczynamy od lematu.

Lemat 7. Dla dowolnego θ ∈ R zachodzi 3 + 4 cos θ + cos 2θ ≥ 0.

Rozwiązanie. Zachodzi

0 ≤ 2(1 + cos θ)2 = 2 + 4 cos θ + 2 cos2 θ = 3 + 4 cos θ + cos 2θ.

□

Z tego lematu wnioskujemy:

Lemat 8. Jeśli s > 0 i t ∈ R, to zachodzi.

log |ζ(s)3ζ(s+ ti)4ζ(s+ 2ti)| ≥ 0.

Rozwiązanie. Niech z = s+ ti. Wtedy

Ren−z = Re e−z logn = Re e−(s+ti) logn = e−s logn cos(t log n) = n−s cos(t log n).

Czyli

log |ζ(s)3ζ(s+ ti)4ζ(s+ 2ti)| = 3 log |ζ(s)|+ 4 log |ζ(s+ ti)|+ log |ζ(s+ 2ti)| =
3Re log ζ(s) + 4Re log ζ(s+ ti) + Re log ζ(s+ 2ti) =∑

n

cnn
−s(3 + 4 cos(t log n) + cos(2t log n)) ≥ 0.

Tutaj skorzystaliśmy z tego, że

log ζ(s) =
∑
p

log
1

1− p−s
=

∑
p,m

p−ms

m
.

Jeśli położymy

cn =

{
1
m
: n = pm

0: n ma co najmniej 2 czynniki,

to log ζ(s) =
∑
cnn

−s oraz cn ≥ 0. □



Przypuśćmy, że istnieje t0 takie, że ζ(1 + it0) = 0. Wtedy, |ζ(σ + it0)| < |C1(σ − 1)|
gdy σ → 1, bo ζ jest holomorficzna w 1 + it0. Czyli

|ζ(σ + it0)|4 ≤ C1(σ − 1)4.

Ponadto, |ζ(σ)| ≤ |C2(σ − 1)|−1, gdyż ζ ma w 1 biegun rzędu 1. Ponadto, ζ(σ + 2it0)
jest ograniczone gdy σ → 1. A więc wyrażenie:

|ζ(σ + it0)|4|ζ(σ)|3|ζ(σ + 2it0)|
dąży do zera gdy σ → 1+. Ale logarytm z tego wyrażenia jest dodatni dla σ > 1 z
Lematu 8. Ups.

Oszacowanie 1/ζ. Przypuśćmy, że s0 ≥ 1 jest ustalone. Dla dowolnego ν > 0 istnieje
Cν takie, że przy z = s+ it, s > s0 i |t| > 1 zachodzi:

1

|ζ(z)|
≤ Cν |t|ν .

W tym celu korzystamy z Lematu 8 to znaczy:
|ζ(s)3ζ(s+ ti)4ζ(s+ 2ti)| ≥ 1

Wyrażenie |ζ(s+ 2ti)| szacujemy brutalnie przez Cν |t|ν . Stąd

|ζ(s+ ti)4| ≥ Cν |t|−νζ(s)−3.

Ale ζ(s) ≤ 1
s−1

, czyli
|ζ(s+ ti)4| ≥ Cν |t|−ν(s− 1)3.

A więc

(4) |ζ(s+ ti)| ≥ Cν |t|−ν/4(s− 1)3/4.

Rozpatrujemy dwa przypadki.

Gdy s− 1 ≥ A|t|−5ν dla pewnego A. Wtedy natychmiast (s− 1)3/4 ≥ ACνt
−15ν/4, stąd

|ζ(s+ ti)| ≥ ACν |t|−4ν , . Koniec dowodu.

Gdy s− 1 ≤ A|t|−5ν. Wybieramy s′ takie, żeby s′ − 1 = A|t|−5ν . Piszemy.
ζ(s+ ti) ≥ ζ(s′ + ti)− |ζ(s+ ti)− ζ(s′ + ti)|.

Teraz, |ζ(s+ ti)− ζ(s′+ ti)| ≤ (s′− s)|ζ ′(s′′+ ti)| z twierdzenia o wartości średniej. Jeśli
dobierzemy szacowanie |ζ ′(s′′ + ti)| ≤ c′′|t|ν , to w połączeniu z (4) mamy

|ζ(s+ ti)| ≥ Cν |t|−ν/4(s′ − 1)3/4 − c′′(s′ − 1)|t|ν .
Kładziemy A = (Cν/(2c

′′))4. Skoro s′ − 1 = A|t|−5ν , mamy

Cν(s
′ − 1)3/4|t|−ν/4 = 2c′′(s′ − 1)|t|ν .

Stąd
|ζ(s+ ti)| ≥ c′′|t|−ν(s′ − 1)3/4,

czyli
|ζ(s+ ti)| ≥ c′′ACν |t|−4ν .


