Twierdzenie Riemanna o liczbach pierwszych.
Wedlug ksigzki Stein — Shakarchi

Glownym celem wyktadu jest udowodnienie nastepujacego twierdzenia.
Twierdzenie 1. Niech 7: R — Z bedzie funkcja zliczajaca liczby pierwsze. To znaczy,
7(x) = #{p: p < x p pierwsza}.

Wtedy dla dowolnego A < 1 oraz B > 1 istnieje takie xq, ze jesli x > xq, to:
A x

<7(z)<B

logx — — logx’

z
logz "

Czesto twierdzenie formutuje sie jako m(x) ~
Aby dowies¢ twierdzenia, wprowadzamy funkcje Czebyszewa:
Y(z) =) logp,
pMm<z
czyli sumujemy wielko$é log p po tych liczbach, ktore sa potegami p mniejszymi od x.
Na przyktad:
¥(10) = log2 + log 3 + log 2 + log 5 + log 7 + log 2 + log 3.

Mozna zapisa¢ 1(z) za pomoca funkcji von Mangolta

An) = {logp: n=mp

0: w przeciwnym przypadku.

Stwierdzenie 1. Funkcja 7(x) asymptotycznie zachowuje sie jak T jesli ¥(z) ~ .

Dowad. Piszemy najpierw

log x log x
1/)@):2{ & J10gp§ZloiplogPZIng21:W(x)logx.

lo
p<z &P p<x p<z

W szczegolnosci, jesli ¢(x) > Ax dla dostatecznie duzych z, to 7(z) < Az/logx.
W druga strone, wybieramy « € (0,1). Wtedy

Y(a) > logp> Y logp > (w(x) — m(2*))log .
p<z 2o <p<a
To za$ oznacza, ze
P(x) + ar(z®)logx > an(z)logx.
Wiemy, ze m(z) < x (bo 7 zlicza tylko czes¢ liczb). Mozemy wiec dobraé¢ tak a, C, zeby
7(x%) log x byto mniejsze niz Cz dla dostatecznie duzych C. Jesli ¢(z) < Bz, dostajemy
ze
m(x)logr < a (B +C)z.

To dowodzi tezy. O

Uwaga 1. Tak naprawde pokazujemy, ze jesli lim @ =1, to lim W(x)l‘)% =1.

Funkcja v nie jest idealna. Idealna funkcja bedzie funkcja pierwotna 1.

Stwierdzenie 2. Niech

() = [ vy
Jesli ¢y (z) ~ %, to Y(x) ~ . .



Dowdd. Przyjmijmy 0 < o < 1 < 3. Jako, ze 1 jest niemalejaca, zachodzi

T Bx
/ lu)du < (r) < () du

Wartosé w mianowniku to dtugos$é przedziatu.
Z tego wynika, ze

(1—a)x

1
U(z) < m(%(ﬁx) — (7).
Piszemy to inaczej @) ) () (2)
Y(x 1(Bz) o Ui(
x Sﬁ—l(ﬁ%ﬂ/@ x2)'

Przyktadamy lim sup do tej nieréwnosci. Jesli limz w;—(f) = %, to otrzymujemy:

. U(z) 1 2 1

1 < — —=]== 1).

imsup —— < 71 ﬁ (ﬁ +1)
Teraz 8 bylo dowolne wicksze od 1, stad lim sup == ( ) < 1. Dowéd w druga strone jest
analogiczny. O

Do tej pory wlasciwie nie uzywalismy funkcji analitycznych. Teraz wykorzystamy.

Definicja 1. Funkcja ((s) jest zadana wzorem > 7

n=1 nS ‘
Wzor definiujacy funkcje ¢ ma sens dla s € R, s > 1. Poczynmy obserwacje.

Lemat 1. Jesli x € Ry oraz s € C, to |2°| = zRe®

Rozwigzanie. Piszemy x = € oraz s = a + bi. Wtedy 2° = e czyli |2°] = e =
1% = ghes, U

Z Lematu wnosimy, ze szereg definiujacy funkcje ( jest zbiezny dla Res > 1 oraz
jednostajnie zbiezny na Res > 1+ ¢ dla dowolnego 0 > 0. Stad ( jest funkcja holomor-
ficzna.

Lemat 2. Dla dowolnego s takiego, ze Res > 1 zachodzi

) =TT

)
» p

gdzie iloczyn bierzemy po wszystkich liczbach pierwszych.

Rozwigzanie. Kwestie zbieznosci iloczynu zostawiamy jako éwiczenie. Mamy

=1+a+22+...
11—z
Stad:
— = 14p A p 4.
1—ps
A zatem I
11 = (14242724 )1 +3+...)...

— —S
p 1 p
Ustalmy n. Zapiszmy n jako p’fl ---pkr. W iloczynie po lewej stronie, wyrazenie n~*
pojawi sie dokladnie raz: wymnazajac skonczenie wiele wyrazen réznych od 1 1 ki-te
wyrazenie przy p; itp. Il

Teraz przyda si¢ nam jeszcze jeden lemat. Dalsze oszacowania beda podane, ale udo-
wodnione nastepnym razem.



c+ iR

c—1R

RYSUNEK 1. Kontur w dowodzie (2).

Lemat 3. Zachodzi %(s) = -3 A0 5 ile Res > 1.

n=1 ns

Rozwigzanie. Mamy % = di log ((s). Piszemy

S

1 1 .
logC(s)zlogl_[1 7S:ZIOg1 ﬂz—Zlog(l—p ).
p b p R p

Teraz ) ;
x x
—log(1l —x) = —+—+...
og(l—z)=x+ 5 + 3 +...,
czyli

(1) log(¢) == log(1—p~*) = d(n)n"",

gdzie §(n) = % jeslin = p™, i 0(n) = 0 w przeciwnym przypadku. Rézniczkujemy (1)

wyraz po wyrazie. Przypusémy, ze n = p™
d 1
—0 = —lognd P =—mlogp—n~*=—-A .
s (n)n ognd(n)n mlogp—n (n)n

Stwierdzenie 3. Dla dowolnego ¢ > 1 oraz > 0 zachodzi:

“in =5 /: sésrn (‘ 1 ) s

Dowaod. Najpierw udowodnimy nastepujacy wzor:

1 [eftee gf 0:a€(0,1]
2 — = :
2) 27T’i/c_ioo s(s+1) ° {1—%:a>1.

Aby dowiesé¢ tego wzoru wybieramy kontur I'g jak na rysunku. Sktada sie on z odcinka
[ g i polokregu I'yp. Zapiszmy x = €' dla pewnego t > 0. Zapisujemy

ets
/ s
rp S(s+1)

Na calym ' zachodzi |e*| < [e’¢|, wiec mamy ograniczenie gorne przez staly. Z tego
wynika, ze catka po potokregu I'yi zbiega przy R — oo do zera. To oznacza, ze catka




po I'r zbiega do szukanej catki. Caltke po ' liczymy jednak przez residua. Funkcja ma
bieguny w s = 0 i s = 1. Elementarny rachunek daje teze.

Przypominamy sobie, ze (z) = > __ A(n). To oznacza, ze

n<x

/Ox Y(s)ds =Y A(n)(z —n).

n<x

Dowdd tej tozsamosci pozostawiam jako ¢wiczenie (mozna zapisaé ¢ jako sume funkcji
indykatorowych). Korzystajac ze wzoru

cB=- A

uzyskujemy:

[ ()

e [ -

_ rY A(n) (1 . %) — ¢ (2)

n<x

4

Stwierdzenie 4. Wzor ((s) sie przedtuza do funkcji meromorficznej na C majacej
biegun wytacznie w s = 1.

(Z-1) Funkcja ¢ nie zeruje sie dla ¢(1 +it), gdy ¢t € R;

(Z-2) Dla dowolnego 6 > 0, istnieje Cs taka, ze jesli o > 1, |7| > 1, to przy s = o +i7
1
—' < Cs|7)°.

¢(s)

(Z-3) Dla dowolnego 6 > 0, istnieje Cs taka, ze jesli o > 1, |7| > 1, to przy s = o + it
<'(s) < Gl

W szczegélnoscei, ze Stwierdzenia 4 wyniknie sensowne oszacowanie na pochodna lo-
garytmiczna (, z ktorego skorzystamy.

Stwierdzenie 5. Zachodzi ¢ (x) ~ %2
Dowadd. Skorzystamy ze Stwierdzenia 4. Oznaczmy:
s+1 /
s(s+1) \ ¢(s)

Ustalmy kontury catkowania jak na rysunku 2. Pozostawiamy jako ¢wiczenie przekona-
nie sie, ze f% F(s) = f71+ F(s). Z drugiej strony, na mocy twierdzenia o residuach.

= F(s)ds = ress—1 F(s) + L / ) F(s)ds.

211 - 211

Residuum F' jest latwe do policzenia, gdyz s +— SQ(US—E) jest holomorficzna w 1, a

pochodna logarytmiczna ¢ ma residuum réwne rzedowi bieguna (z zasady argumentu),

czyli —1. To oznacza, ze

Q:2

ress—1 F(s) = 5



Y1¥1+ Ve

RYSUNEK 2. Trzy kontury catkowania. 7. to Re z = ¢. 71+ to kontury w
wiekszosci zawarte w Re z = 1, ale obchodzace punkt 1 (biegun () z lewej
lub prawej strony.

V5

V3

v

=] 1

Y-
RYSUNEK 3. Podzial konturu +;_ na kawalki.

Zatem, Stwierdzenie 5 bedzie udowodnione, jesli wyszacujemy, ze

/71 F(s)ds

z2

jest malte w poréwnaniu z %

Aby wyszacowal catki,
dzielimy kontur na kawatki.

Zielony kontur v;_ z rysunku 2 na fragmenty. Doktadniej, ustalamy 7" > 0 oraz ¢
(dobrane do T') tak aby w prostokacie:

{z€C: Reze[1—-4,6], |Imz| <T}

funkcja ¢ nie miata zer. Odcinki s, v3, 74 sa fragmentami tego konturu. Kluczowe jest
szacowanie catki po v i v5. W tym celu, na mocy Stwierdzenia 4 mozemy dobrac takie
A, zeby dla s € v; U~s, s = 1 + it zachodzilo

¢'(s)

¢(s)

< Alt]M2.




A wiec

[e’¢) t1/2
/ |F(s)]ds < 01332/ | ‘2 dt.
s t

T
Jako, ze caltka jest zbiezna, mozemy wziac¢ tak duze T', zeby

|F(s)|ds < ex”.
75

Analogiczne szacowanie dziata dla ;. Dla 3, szacujemy pochodng logarytmiczna (
przez stata. No i wtedy mamy

T
/|F(s)|ds§/ Cox*0dt.
3 =T

Biorac teraz x dostatecznie duze (w stosunku do T'), mozemy przyjac, ze ta catka jest
mniejsza niz ex?. Calke po 7y i 74 réwniez dosé tatwo szacujemy. Koriczac dowod. [

Pozostaje udowodni¢ Stwierdzenie 4.

Przedluzenie funkcji ¢. Zacznijmy od obserwacji, ze istnieja funkcje catkowite 4, (z2),
takie ze |0, (2)| < |z|/n*TRe* oraz

-1

(3) Z_ni—/l gzz%(z).

Oczywiste jest, ze aby (3) mogto zaj$¢, musi by¢

czyli

ntl o/ 1

Aby wyszacowaé 6, patrzymy, ze z twierdzenia o wartosci sredniej, f(n) — f(z) =
(n — ) f'(€), wiemy, 7e

[ @ - s

Stosujac do J,, otrzymujemy

< sup |[f'(y)l-
y€la,a+1]

6.(2)] < 2

— plal+le

Lemat 4. Funkcja ¢ przedtuza sie na Re z > 0 z biegunem prostym w z = 1. Funkcja
z+— ((2) — 75 jest holomorficzna w calym Rez > 0.

Rozwigzanie. Szereg > 6,(2) jest zbiezny jednostajnie dla Rez > ¢ dla dowolnego e.
Czyli zadaje funckje holomorficzng. Oznaczamy ja H. Co wiecej funkcja

> 1
Z —
1 ZF

jest réwna Z%l dla Rez > 1. Czyli wyrazenie

1
z—1

+ H(z)

zadaje funkcje holomorficzng na Re z > 0, ktora sie zgadza z ((z) dla Rez > 1. O



Pelne przedtuzenie ((s) na Re z < 0 zazwyczaj konstruuje sie w bardziej zaawansowa-
ny sposob. Iterowanie wzoru na catke prowadzi do lepszego przedtuzenia. Na przyktad.

Zadanie 1. Niech f: [x,y] — R bedzie funkcja klasy C3, oraz z, y sa calkowite. Wykaz,
7€

> s = [ 50+ 350+ 30+ 5@ = ) oo

Zadanie 2. Wykaz, ze dla dowolnego z takiego, ze Re z > —2, z # 1 istnieje doktadnie
jedna liczba ((z) taka, ze

N

1 Ni== 1 z |2(z 4+ 1)(2 + 2)|
 — _N—z _ _N—z—l
an C(z)+1—z+2 12 +0O( Rez

n=1

N—Z—2)‘

Zadanie 3. Wywnioskuj, ze ((—1) = —1—12.

Szacowania dla (. Zaczynamy szacowania od oszacowania wzrostu (. Mamy

()= + D 0e)

gdzie [6,(2)] < ey

Lemat 5. Dla dowolnego oy € [0,1) i dowolnego v > 0 istnieje stata C, taka, ze gdy
Rez > o0pit:=|Imz| > 1, zachodzi:

[C()] < ] 70t

£

Rozwigzanie. Przyjmijmy, ze z jest takie jak w tezie. Czyli |0,(z)| > [Z70FT Z drugiej

strony,
n+1
el < |

Dla dowolnego « € (0,1), mamy

s = i < (B ) () < 2
n n n — na-0+1 noo = n00+fi'

Kladziemy teraz k = 1 — 0g + v (przyjmujemy, ze v jest male), i otrzymujemy

2|Z’H l—oo+v 1
ot = 2|z| 7% e
Czyli
C(2)] < : +2|Z|1_U°+Vi 1
~ |z =1 = 1+n"
Stad wynika teza. O

Oszacowanie (’. Lemat 5 pozwala nam dowies¢ nastepujacego lematu.

Lemat 6. Przypusémy, ze s > 1. Dla dowolnego v > 0, istnieje C, takie, ze jesli [¢| > 1
oraz z = s +1it, to

TR < Clt)”.



Rozwigzanie. Ze wzoru catkowego Cauchy’ego

oy L ¢(w)
C (Z) - 271 C(z,r) (w - Z)2dw.
Czyli
L[ 0,0
C(z):% i C(z 4 re”)e™ds.

A wiec, jesli » = v, dla wszystkich z + re?? czesé rzeczywista ma cze$é rzeczywista co
najmniej 1 — v. Czyli gdy
C(z +re)| < Oyl

gdzie zwickszylismy stata C,. Ale teraz z tego wynika, ze

@] < Sz,
O
Dowéd wtlasnosci (Z-1). Zaczynamy od lematu.
Lemat 7. Dla dowolnego 6 € R zachodzi 3 4+ 4 cos # + cos 260 > 0.
Rozwigzanie. Zachodzi
0<2(1+4cosh)? =2+4cosf +2cos’f =3+ 4cosb + cos 20.
O

Z tego lematu wnioskujemy:

Lemat 8. Jedli s > 01it € R, to zachodzi.
log | (5)*C(s + ti)*¢(s + 2ti)| > 0.
Rozwigzanie. Niech z = s + ti. Wtedy
Ren™ = Ree ?198" = Ree~(5tt)loen — g=sloen ooq(¢]ogn) = n=* cos(tlogn).

Czyli

log |€(5)*C(s +ti)*¢(s + 2ti)| = 3log|((s)] + 4log|((s + ti)| + log [¢(s + 2ti)| =

3Relog((s) +4Relog (s + ti) + Relog (s + 2ti) =
Z cnn” (3 4+ 4 cos(tlogn) + cos(2tlogn)) > 0.

n

Tutaj skorzystaliSmy z tego, ze

log ((s) = Zlog ] —1p_5 = Z pm .

Jesli potozymy

L.y _—pm
Sin=p

Cn = . . . R
0: m ma co najmniej 2 czynniki,

to log ((s) = > ¢,n~® oraz ¢, > 0. O



Przypusémy, ze istnieje ty takie, ze ((1 4 itg) = 0. Wtedy, |((o + ito)| < |Ci(c — 1)]

gdy o — 1, bo ( jest holomorficzna w 1 + ity. Czyli
|C(O’ + it0)|4 S 01(0' — 1)4
Ponadto, [¢(c)] < |Cy(c — 1)|7!, gdyz ¢ ma w 1 biegun rzedu 1. Ponadto, (o + 2ito)
jest ograniczone gdy ¢ — 1. A wiec wyrazenie:
[C(o +ito)[11C(0) PI¢ (o + 2ito)]
dazy do zera gdy o — 17. Ale logarytm z tego wyrazenia jest dodatni dla ¢ > 1 z
Lematu 8. Ups.
Oszacowanie 1/(. Przypusémy, ze sy > 1 jest ustalone. Dla dowolnego v > 0 istnieje
C, takie, ze przy z = s+ it, s > s i [t| > 1 zachodzi:
1

—— < C,It)".
Gy = Gl

W tym celu korzystamy z Lematu 8 to znaczy:
[C(s)°C(s +ti)*C(s + 2ti)| > 1
Wyrazenie |((s 4 2ti)| szacujemy brutalnie przez C,|t|". Stad
(s +ti)*| > Cult] ¢ (s) ™.
Ale ((s) < -5, cayli
IC(s +ti)*| > C,lt| 7" (s — 1)°.
A wiec
(4) (s +ti)] = Cult]™"(s — 1),
Rozpatrujemy dwa przypadki.
Gdy s — 1 > A|t|™ dla pewnego A. Wtedy natychmiast (s — 1)%* > AC,t~1%/4 stad
|C(s +ti)| > AC,|t|=*, . Koniec dowodu.
Gdy s — 1 < Alt|=>. Wybieramy s’ takie, zeby s’ — 1 = A|t|~>". Piszemy.
C(s+ti) > (s +ti) — |C(s + ti) — (8" + ti)).

Teraz, |((s+ti) —((s'+ti)| < (' —s)|¢'(s" +ti)| z twierdzenia o wartosci $redniej. Jesli
dobierzemy szacowanie [('(s” + ti)| < ¢"[t|", to w polaczeniu z (4) mamy

C(s + ti)| > C, |t /4 (s" — 1) = (s = 1)t]".
Ktadziemy A = (C,/(2c"))*. Skoro s’ — 1 = A|t|~>, mamy
Cy (s — 134|774 = 2¢"(s' — 1)|t]”.
Stad
[C(s + i) > "t~ (s = 1)*4,
czyli
|C(s+ti)| > "AC, |t~



