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What is a knot?

A knot is an embedding of S1 into S3 up to isotopy.
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Definition

A knot is called slice, if it bounds a disk in B4.
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Slice knots

Definition
A knot is called topologically slice, if it bounds a locally flat disk
in B4.



Concordance

Definition
Two knots K0,K1 are called concordant if there is an annulus A
in S3 × [0,1] with ∂A = K1 × {1} ⊔ K0 × {0}.



Concordance

Definition
Two knots K0,K1 are called concordant if there is an annulus A
in S3 × [0,1] with ∂A = K1 × {1} ⊔ K0 × {0}.

S3 × {0} S3 × {1}

K1K0 concordance



Concordance

Definition
Two knots K0,K1 are called concordant if there is an annulus A
in S3 × [0,1] with ∂A = K1 × {1} ⊔ K0 × {0}.

Remark
A knot is slice if it is concordant to the unknot.
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Fox–Milnor

Theorem (Fox, Milnor 1950’)

If K is a slice knot, then ∆(K ) = f (t)f (t−1) for some
f ∈ Z[t , t−1].

The trefoil has ∆ = t − 1 + t−1, irreducible over Z, so it is
not slice.
The figure eight knot has ∆ = t − 3 + t−1, it is not slice.
Figure eight knot is amphichiral, not slice, so K#K = 0.
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Concordance group

Definition
The smooth/topological concordance group C, C′ is the group
generated by all knots modulo slice knots.

Theorem (Levine 1969)

The group C′ has summand Z∞ ⊕ Z∞
2 .

Theorem (Hom, Dai–Hom–Stoffregen–Truong,
Ozsváth–Stipsicz–Szabó)

The kernel of the map C → C′ contains a Z∞ summand.
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Ozsváth–Stipsicz–Szabó)
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Why do we care? I.

Let C be a complex curve in C2 whose intersection with a large
sphere is a knot K∞, and has finitely many singular points
K1, . . . ,Kn.

Lemma
If C is homeomorphic to a disk, then K1# . . .#Kn is concordant
to K∞.

Concordance obstructions can lead to a topological proof of the
following statement.

Theorem (Zajdenberg–Lin, 1970’s)
A complex curve as above is equivalent to a curve given by
xp − yq = 0 with gcd(p,q) = 1.
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Why do we care? II.

Definition
A knot is a C-knot if it arises as a transverse intersection of a
complex curve with a sphere.

Understanding concordance of knots leads to understanding
geometry of plane curves.

Theorem (—, Feller 2017)
Any knot is topologically concordant to a C–link.

We believe C–links generate a small subgroup in the smooth
concordance group.
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Why do we care? III.

Suppose K ,K ′ are two knots, with K ′ slice and K non-slice.

Consider M = S3
0(K ), M ′ = S3

0(K
′), the zero-framed

surgeries.
If M ∼= M ′, then SPC4 is false.

Remark
Unfortunately most obstructions fail to obstruct concordance
between K and K ′ if M ∼= M ′.
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Classical obstructions to sliceness

Theorem (Tristram–Levine, 1968-69)
Let A0,A1 be Seifert matrices for K0 and K1. If K0 and K1 are
concordant, then for all but finitely many z ∈ S1 the signatures
of Hermitian matrices (1 − z)A0 + (1 − z)AT

0 ,
(1 − z)A1 + (1 − z)AT

1 are equal.

Example (Litherland)
Torus knots are independent in the concordance group.

But
iterated torus knots are not known.
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Twisted signatures

If ϕ is an orthogonal representation of G = π1(S3 \ K ),
then we can define a signature-type invariant ηϕ (twisted
signatures).

If K0,K1 are concordant, ϕ0, ϕ1 are representations and ψ
is a suitable extension of ϕ0, ϕ1 over the complement of the
annulus, then ηϕ0 = ηϕ1 .

S3 × {0} S3 × {1}

ϕ1 : π1(S3 \ K1) → SO(n)ϕ0 : π1(S3 \ K0) → SO(n)

ψ ◦ (ι0)∗ = ϕ0
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Casson–Gordon package and beyond

Casson–Gordon package (1970s) yields a family of
representations that might extend.

These factor through G2, where G2 is the lower central
series. To go deeper, we need to use L2-signatures, as
described by Cochran–Orr–Teichner (2000).
Computability of ηϕ was improved by recent work of
Miller–Powell, and —, Conway, Politarczyk.

Example (Hedden–Kirk–Livingston, Conway–Kim–Politarczyk)

The knot T (2,3;2,13)#T (2,15) is not concordant to
T (2,13)#T (2,3;2,15).
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Homological invariants

Heegaard Floer theory assigns to any knot K a bifiltered
graded complex CFK∞(K ).

The complex is over F[U,U−1]. Multiplication by U is (−2)
graded and changes the bifiltration by (−1,−1).
Homology is F[U,U−1], not very interesting.
Truncated complex Cj of elements at bifiltration level less
than or equal to (0, j). Only F[U]-complex.
H∗(Ci) = F[U]⊕ M, where M is U-torsion.
Define Vi as the (half the) maximal grading of a non-torsion
element in H∗(Ci).

Theorem (Rasmussen 2005)
The integers Vi are invariants of smooth concordance.
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The torus knot

We consider the T (4,7) torus knot.
∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1
17 − 14 = 3
14 − 13 = 1
13 − 11 = 2
. . . and so on
Symmetry reflects
symmetry of ∆
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The staircase complex

Place F for each
vertex.
Differential is given
by lines as
depicted.
Type A vertices.
Type B vertices.
Bifiltration is given
by coordinates.
Absolute grading
of a type A vertex
is 0, of type B is 1.
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Staircases are everywhere

Remark
The word ‘staircase’ was reinvented by Ozsváth–Szabó. Its first
use in that context was probably by Gelfand and Pomonarev
(1969), Indecomposable representations of Lorenz groups.

Remark
Results on bifiltered modules bear strong resemblance to the
paper of Burban and Drozd (2004), Coherent sheaves over
rational curves. . .
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such that g∗f∗ and f∗g∗ are the identity over R[U,U−1].

Variants for more variables exist;
Brings into mind relative derived category;
Applied for Khovanov homology (—, Dai, Mallick,
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Link invariants

For algebraic knots, the complex CFK∞ is computable from
the Alexander polynomial;

For algebraic links, the homology of the complex was
known to be computable;
Multifiltered: behave as F[U1,V1, . . . ,Un,Vn]-modules (n
number of components), or inverses;
In general, homology does not determine the complex (A∞
obstructions).

Theorem (—, Liu, Zemke)
For algebraic links, the link Floer complex is determined by the
multivariable Alexander polynomial.
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