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Algebraic links

Definition

An algebraic link in S3 is an intersection of a zero set of a
complex reduced polynomial f (x , y) with a small sphere.

0
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Semigroups

Theorem (Capillo, Delgado, Gussein-Zade, 2̃000)

Suppose (C, z) is a unibranched plane curve singularity with
semigroup S and link K . Then

∆K = 1 + (t − 1)
∑
g>0
g /∈S

tg .

Corollary
Multiplicity of a plane curve singularity is determined by the
Alexander polynomial.
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Semigroup semicontinuity

Theorem (Gorsky, Némethi 2014)
Suppose Ct is a deformation of a plane curve singularities with
central fiber C0. Let St be the semigroup of Ct . Then, for
|t | ≪ 1 and any x > 0

#{ℓ ∈ St : ℓ < x} ≥ #{ℓ ∈ S0 : ℓ < x}.

In particular, multiplicity cannot drop.



Topological deformations. I.

In algebraic geometry a deformation is ‘oriented’. Central
fiber is ‘more singular’.

Cobordisms of links is not oriented. No obvious notions of
‘more complex’.

Definition
A 3-genus (4-genus) of a knot K is the minimal genus
g(K ) = g3(K ), g4(K ) of a compact oriented surface Σ in S3

(resp. B4) cobounding K .

For algebraic knots g3(K ) = g4(K ) = 1
2µ.

The definition of g4 is depends on the world we live in.
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Topological deformations. II.

Definition
Suppose K0,K1 are algebraic knots. We say that there is a
topological deformation from K0 to K1, if there exists a
cobordism (a surface Σ in S3 × [0,1]) of genus g3(K0)− g3(K1)
between them.

Question
Is the multiplicity semicontinuous under such topological
deformations?
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Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)
In the smooth category semigroup semicontinuity holds.

Analogous results for links obtained by —, Gorsky.
We use Heegaard Floer homology techniques.
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Heegaard decomposition

Definition
A Heegaard splitting of a 3-manifold Y is a presentation of Y as
a boundary connected sum, Y = Y+ ∪h Y−, where Y+ and Y−

are handlebodies, h : ∂Y+
∼=−→ ∂Y− is a diffeomorphism. We

denote Σ = ∂Y+ = ∂Y−. It is a genus g surface.

Example
Two balls glue to a sphere giving a genus 0 decomposition of
S3. Two solid tori can glue to S3, S2 × S1, or a lens space.
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Combinatorics of Heegaard decomposition

Let Y = Y+ ∪h Y− be a Heegaard decomposition. Set
Σ = ∂Y+ = ∂Y−

There are g curves α1, . . . , αg on Σ that bound disks in Y−
and are pairwise non-homologous. They are called
α-curves;
There are g curves β1, . . . , βg that bound disks in Y+.
αi ∩ αj = 0, βi ∩ βj = 0, whenever i ̸= j , but α-curves can
intersect β-curves.
we require that this intersection be transverse.
we specify a basepoint on Σ disjoint from α, β curves.

Definition
The tuple (Σ, α, β, z) is called the Heegaard data.
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Symmetric products

Fix a complex structure on Σ;

The space Symg Σ is a complex manifold;
The products Tα = α1 × · · · × αg , Tβ = β1 × · · · × βg are
tori in Symg Σ;
These tori are Lagrangian, so we can use the machinery of
Langrangian Floer theory;
Intersection point of Tα ∩ Tβ corresponds to a g-tuple of
intersection points α1 ∩ βσ(1), . . . , αg ∩ βσ(g);
The set π2(x , y) for x , y ∈ Tα ∩ Tβ is the set of homotopy
classes of maps D → Σ, such that −1 7→ x , 1 7→ y , upper
semicircle goes to Tα and lower to Tβ.
Each ϕ ∈ π2(x , y) is assigned an integer M(ϕ), the Maslov
number;
Specify a divisor Rz = {z} × Σg−1.
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Chain complex

The chain complex CF−(Y ) is generated by Tα ∩ Tβ over F[U];

The differential is

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x ,y) : M(ϕ)=1

Unϕr(ϕ) · y .

r(ϕ) is the count of holomorphic disks in π2(x , y), if
M(ϕ) = 1, the count is finite;
nϕ is the intersection number of Rz with the complex disk
represented by ϕ. In particular, nϕ ≥ 0.

Theorem (Ozsváth–Szabó 2002)

The chain homotopy type of the complex CF−, ∂ does not
depend on the Heegaard data.
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Flavors

The complex CF∞ is obtained by tensoring CF− by
F[U,U−1];

There is an injection CF− ↪→ CF∞;
The complex CF+ is the quotient complex;
The complexes split over spin-c structures of Y .

Theorem (Ozsváth–Szabó, 2002)

If b1(Y ) = 0, then for any s, HF∞(Y , s) = F[U,U−1].
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Spin-c cobordism

Theorem (Ozsváth–Szabó 2002)

Suppose (W , t) is a spin-c cobordism between (Y0, s0) and
(Y1, s1). Then, there is a map F •

W : HF •(Y0, s0) → HF •(Y1, s1).

If b+
2 (W ) = 0, and b1(Y0) = b1(Y1) = 0, then F∞

W is an
isomorphism;
If b+

2 (W ) > 0, then F∞
W is a zero map;

There is a consistent choice of grading such that
degFW = 1

4(c1(t)
2 − 2σ(W )− 3χ(W )) (U drops the

grading by 2).
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2 − 2σ(W )− 3χ(W )) (U drops the

grading by 2).
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Suppose (W , t) is a spin-c cobordism between (Y0, s0) and
(Y1, s1). Then, there is a map F •

W : HF •(Y0, s0) → HF •(Y1, s1).
If b+

2 (W ) = 0, and b1(Y0) = b1(Y1) = 0, then F∞
W is an

isomorphism;
If b+

2 (W ) > 0, then F∞
W is a zero map;

There is a consistent choice of grading such that
degFW = 1

4(c1(t)
2 − 2σ(W )− 3χ(W )) (U drops the

grading by 2).



d-invariants

HF∞ being F[U,U−1], the homology HF−(Y , s) is a copy
of F[U] plus some U-torsion part;

We define d(Y , s) ∈ Q as the minimal grading of an
non-torsion element of F[U];
If (W , t) is a cobordism with b+

2 (W ) = 0, then
d(Y0, s0)− d(Y1, s1) ≥ 1

4(c1(t)
2 − 2σ(W )− 3χ(W ));

If Y bounds a Q-homology ball , then d(Y , s) = 0 for all
spin-c structures that extend over balls.
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Computations

Theorem (Ozsv’ath–Szabó 2002, – Livingston 2014)

If Y is a large surgery on an algebraic knot, then d(Y , s) is
expressible in terms of the semigroup of singularity.

Main computation done by Ozsváth–Szabó for so-called
L-space knots;
Hedden proves that an algebraic knot is an L-space knot;
–, Livingston translate their algorithm using the Alexander
polynomial to semigroups.

Corollary
Semigroup semicontinuity.
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L-space knots;
Hedden proves that an algebraic knot is an L-space knot;

–, Livingston translate their algorithm using the Alexander
polynomial to semigroups.

Corollary
Semigroup semicontinuity.



Computations
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Lattice homology

A plumbed 3-manifold yields a lattice L ∼= Zg with a pairing
⟨·, ·⟩ → Z;

For example, resolution of a surface singularity.
Fix a characteristic k ∈ L∗ such that k(x) ∼= ⟨x , x⟩ mod 2 for
all x ;
χk(x) = 1

2(k(x)− ⟨x , x⟩).
For an r -dimensional unit cube in L, we define χ(r) as the
supremum of χ over the vertices.

Definition
The lattice chain complex for L, k is defined as the complex F[U]
generated by unit cubes, with differential

∂r =
∑

ϵr ′r ′Uχk(r)−χk(r ′),

where r ′ runs over facets of r and ϵ is a sign choice.
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Lattice vs. HF

Any plumbed rational homology sphere yields a lattice.

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if b1(Y ) = 0;

There is a correspondence between k and s (easy);
The proof is extremely hard, uses homology perturbation
lemma and A∞ formulation of HF;
The statement for non-negative definite lattices must be
adjusted (completions are needed);
Generalizations to relative case due to –, Liu, Zemke
(2024, to appear).
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Open problems

Is smooth topological deformation of links equivalent to
algebraic?

Is there a definition of a cobordism map using only LH?
Can we use LH to prove µ-const conjecture?
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