Heegaard Floer Theory and algebraic geometry

Maciej Borodzik www.mimuw.edu.pl/~mcboro

IMPAN / University of Warsaw

24 Oct 2024

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

algebraic geometry	topology

algebraic geometry	topology
normal surface singularity	

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
	•

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link

topology
a plumbed three-manifold (link)
algebraic knot/link

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	Alexander polynomial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	Alexander polynomial
	Heegaard Floer homology

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	Alexander polynomial
lattice homology	Heegaard Floer homology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	Alexander polynomial
lattice homology	Heegaard Floer homology
positivity	

algebraic geometry	topology
normal surface singularity	a plumbed three-manifold (link)
plane curve singularity	algebraic knot/link
deformation of singularities	link cobordism
semigroup	Alexander polynomial
lattice homology	Heegaard Floer homology
positivity	??

Definition

An algebraic link in S^3 is an intersection of a zero set of a complex reduced polynomial f(x, y) with a small sphere.

Definition

An algebraic link in S^3 is an intersection of a zero set of a complex reduced polynomial f(x, y) with a small sphere.

Definition

An algebraic link in S^3 is an intersection of a zero set of a complex reduced polynomial f(x, y) with a small sphere.

Theorem (Capillo, Delgado, Gussein-Zade, 2000)

Suppose (C, z) is a unibranched plane curve singularity with semigroup S and link K. Then

$$\Delta_{\mathcal{K}} = 1 + (t-1) \sum_{\substack{g>0\\g\notin S}} t^g.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Capillo, Delgado, Gussein-Zade, 2000)

Suppose (C, z) is a unibranched plane curve singularity with semigroup S and link K. Then

$$\Delta_{\mathcal{K}} = 1 + (t-1) \sum_{\substack{g>0\\g\notin S}} t^g.$$

Corollary

Multiplicity of a plane curve singularity is determined by the Alexander polynomial.

Semigroup semicontinuity

Theorem (Gorsky, Némethi 2014)

Suppose C_t is a deformation of a plane curve singularities with central fiber C_0 . Let S_t be the semigroup of C_t . Then, for $|t| \ll 1$ and any x > 0

 $\#\{\ell \in S_t \colon \ell < x\} \ge \#\{\ell \in S_0 \colon \ell < x\}.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In particular, multiplicity cannot drop.

 In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding *K*.

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding *K*.

For algebraic knots $g_3(K) = g_4(K) = \frac{1}{2}\mu$.

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding *K*.

For algebraic knots $g_3(K) = g_4(K) = \frac{1}{2}\mu$. The definition of g_4 is depends on the world we live in.

Definition

Suppose K_0 , K_1 are algebraic knots. We say that there is a topological deformation from K_0 to K_1 , if there exists a cobordism (a surface Σ in $S^3 \times [0, 1]$) of genus $g_3(K_0) - g_3(K_1)$ between them.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

Suppose K_0 , K_1 are algebraic knots. We say that there is a topological deformation from K_0 to K_1 , if there exists a cobordism (a surface Σ in $S^3 \times [0, 1]$) of genus $g_3(K_0) - g_3(K_1)$ between them.

Question

Is the multiplicity semicontinuous under such topological deformations?

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

In the smooth category semigroup semicontinuity holds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

In the smooth category semigroup semicontinuity holds.

Analogous results for links obtained by ---, Gorsky.

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In the smooth category semigroup semicontinuity holds.

Analogous results for links obtained by —, Gorsky.

We use Heegaard Floer homology techniques.

Heegaard decomposition

Definition

A *Heegaard splitting* of a 3-manifold *Y* is a presentation of *Y* as a boundary connected sum, $Y = Y_+ \cup_h Y_-$, where Y_+ and Y_- are handlebodies, $h: \partial Y_+ \xrightarrow{\cong} \partial Y_-$ is a diffeomorphism. We denote $\Sigma = \partial Y_+ = \partial Y_-$. It is a genus *g* surface.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Heegaard decomposition

Definition

A *Heegaard splitting* of a 3-manifold *Y* is a presentation of *Y* as a boundary connected sum, $Y = Y_+ \cup_h Y_-$, where Y_+ and Y_- are handlebodies, $h: \partial Y_+ \xrightarrow{\cong} \partial Y_-$ is a diffeomorphism. We denote $\Sigma = \partial Y_+ = \partial Y_-$. It is a genus *g* surface.

Example

Two balls glue to a sphere giving a genus 0 decomposition of S^3 . Two solid tori can glue to S^3 , $S^2 \times S^1$, or a lens space.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

 There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• There are *g* curves β_1, \ldots, β_g that bound disks in Y_+ .

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;
- There are *g* curves β_1, \ldots, β_g that bound disks in Y_+ .
- α_i ∩ α_j = 0, β_i ∩ β_j = 0, whenever i ≠ j, but α-curves can intersect β-curves.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Combinatorics of Heegaard decomposition

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;
- There are *g* curves β_1, \ldots, β_g that bound disks in Y_+ .
- α_i ∩ α_j = 0, β_i ∩ β_j = 0, whenever i ≠ j, but α-curves can intersect β-curves.

• we require that this intersection be transverse.

Combinatorics of Heegaard decomposition

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;
- There are g curves β_1, \ldots, β_g that bound disks in Y_+ .
- α_i ∩ α_j = 0, β_i ∩ β_j = 0, whenever i ≠ j, but α-curves can intersect β-curves.

- we require that this intersection be transverse.
- we specify a basepoint on Σ disjoint from α , β curves.

Combinatorics of Heegaard decomposition

Let $Y = Y_+ \cup_h Y_-$ be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- There are g curves α₁,..., α_g on Σ that bound disks in Y₋ and are pairwise non-homologous. They are called α-curves;
- There are *g* curves β_1, \ldots, β_g that bound disks in Y_+ .
- α_i ∩ α_j = 0, β_i ∩ β_j = 0, whenever i ≠ j, but α-curves can intersect β-curves.
- we require that this intersection be transverse.
- we specify a basepoint on Σ disjoint from α , β curves.

Definition

The tuple $(\Sigma, \alpha, \beta, z)$ is called the *Heegaard data*.

Fix a complex structure on Σ;

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;

(ロ) (同) (三) (三) (三) (○) (○)

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;

(日) (日) (日) (日) (日) (日) (日)

Intersection point of *T_α* ∩ *T_β* corresponds to a *g*-tuple of intersection points α₁ ∩ β_{σ(1)}, ..., α_g ∩ β_{σ(g)};

- Fix a complex structure on Σ;
- The space Sym^g Σ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of *T_α* ∩ *T_β* corresponds to a *g*-tuple of intersection points α₁ ∩ β_{σ(1)}, ..., α_g ∩ β_{σ(g)};
- The set $\pi_2(x, y)$ for $x, y \in T_{\alpha} \cap T_{\beta}$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x, 1 \mapsto y$, upper semicircle goes to T_{α} and lower to T_{β} .

(日) (日) (日) (日) (日) (日) (日)

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of *T_α* ∩ *T_β* corresponds to a *g*-tuple of intersection points α₁ ∩ β_{σ(1)}, ..., α_g ∩ β_{σ(g)};
- The set $\pi_2(x, y)$ for $x, y \in T_{\alpha} \cap T_{\beta}$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x, 1 \mapsto y$, upper semicircle goes to T_{α} and lower to T_{β} .
- Each φ ∈ π₂(x, y) is assigned an integer M(φ), the Maslov number;

- Fix a complex structure on Σ;
- The space $\operatorname{Sym}^g \Sigma$ is a complex manifold;
- The products T_α = α₁ ×···× α_g, T_β = β₁ ×···× β_g are tori in Sym^g Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of *T_α* ∩ *T_β* corresponds to a *g*-tuple of intersection points α₁ ∩ β_{σ(1)}, ..., α_g ∩ β_{σ(g)};
- The set $\pi_2(x, y)$ for $x, y \in T_{\alpha} \cap T_{\beta}$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x, 1 \mapsto y$, upper semicircle goes to T_{α} and lower to T_{β} .
- Each φ ∈ π₂(x, y) is assigned an integer M(φ), the Maslov number;

• Specify a divisor $R_z = \{z\} \times \Sigma^{g-1}$.

The chain complex $CF^-(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$;

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_2(x,y) \colon M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_{2}(x,y) \colon M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

r(φ) is the count of holomorphic disks in π₂(x, y), if M(φ) = 1, the count is finite;

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_{2}(x,y) \colon M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.$$

- r(φ) is the count of holomorphic disks in π₂(x, y), if M(φ) = 1, the count is finite;
- n_{ϕ} is the intersection number of R_z with the complex disk represented by ϕ . In particular, $n_{\phi} \ge 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_{2}(x,y) \colon M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.$$

- r(φ) is the count of holomorphic disks in π₂(x, y), if M(φ) = 1, the count is finite;
- n_{ϕ} is the intersection number of R_z with the complex disk represented by ϕ . In particular, $n_{\phi} \ge 0$.

Theorem (Ozsváth–Szabó 2002)

The chain homotopy type of the complex CF^- , ∂ does not depend on the Heegaard data.

• The complex CF^{∞} is obtained by tensoring CF^{-} by $\mathbb{F}[U, U^{-1}]$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• The complex CF^{∞} is obtained by tensoring CF^{-} by $\mathbb{F}[U, U^{-1}]$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• There is an injection $CF^- \hookrightarrow CF^\infty$;

Flavors

• The complex CF^{∞} is obtained by tensoring CF^{-} by $\mathbb{F}[U, U^{-1}]$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- There is an injection $CF^- \hookrightarrow CF^\infty$;
- The complex *CF*⁺ is the quotient complex;

Flavors

- The complex CF^{∞} is obtained by tensoring CF^{-} by $\mathbb{F}[U, U^{-1}]$;
- There is an injection $CF^- \hookrightarrow CF^\infty$;
- The complex *CF*⁺ is the quotient complex;
- The complexes split over spin-c structures of Y.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Flavors

- The complex CF^{∞} is obtained by tensoring CF^{-} by $\mathbb{F}[U, U^{-1}]$;
- There is an injection $CF^- \hookrightarrow CF^\infty$;
- The complex *CF*⁺ is the quotient complex;
- The complexes split over spin-c structures of Y.

Theorem (Ozsváth–Szabó, 2002)

If $b_1(Y) = 0$, then for any \mathfrak{s} , $HF^{\infty}(Y, \mathfrak{s}) = \mathbb{F}[U, U^{-1}]$.

(日) (日) (日) (日) (日) (日) (日)

Suppose (W, \mathfrak{t}) is a spin-c cobordism between (Y_0, \mathfrak{s}_0) and (Y_1, \mathfrak{s}_1) . Then, there is a map F^{\bullet}_W : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \rightarrow HF^{\bullet}(Y_1, \mathfrak{s}_1)$.

Suppose (W, \mathfrak{t}) is a spin-c cobordism between (Y_0, \mathfrak{s}_0) and (Y_1, \mathfrak{s}_1) . Then, there is a map F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \to HF^{\bullet}(Y_1, \mathfrak{s}_1)$.

If b₂⁺(W) = 0, and b₁(Y₀) = b₁(Y₁) = 0, then F_W[∞] is an isomorphism;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Suppose (W, \mathfrak{t}) is a spin-c cobordism between (Y_0, \mathfrak{s}_0) and (Y_1, \mathfrak{s}_1) . Then, there is a map F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \to HF^{\bullet}(Y_1, \mathfrak{s}_1)$.

If b₂⁺(W) = 0, and b₁(Y₀) = b₁(Y₁) = 0, then F_W[∞] is an isomorphism;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• If $b_2^+(W) > 0$, then F_W^∞ is a zero map;

Suppose (W, \mathfrak{t}) is a spin-c cobordism between (Y_0, \mathfrak{s}_0) and (Y_1, \mathfrak{s}_1) . Then, there is a map F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \to HF^{\bullet}(Y_1, \mathfrak{s}_1)$.

- If b₂⁺(W) = 0, and b₁(Y₀) = b₁(Y₁) = 0, then F_W[∞] is an isomorphism;
- If $b_2^+(W) > 0$, then F_W^∞ is a zero map;
- There is a consistent choice of grading such that $\deg F_W = \frac{1}{4}(c_1(t)^2 2\sigma(W) 3\chi(W))$ (U drops the grading by 2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HF[∞] being 𝔽[*U*, *U*⁻¹], the homology *HF*⁻(*Y*, 𝔅) is a copy of 𝔽[*U*] plus some *U*-torsion part;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

HF[∞] being 𝔽[*U*, *U*⁻¹], the homology *HF*⁻(*Y*, 𝔅) is a copy of 𝔽[*U*] plus some *U*-torsion part;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We define d(Y, s) ∈ Q as the minimal grading of an non-torsion element of 𝔽[U];

- *HF*[∞] being 𝔽[*U*, *U*⁻¹], the homology *HF*⁻(*Y*, 𝔅) is a copy of 𝔽[*U*] plus some *U*-torsion part;
- We define d(Y, s) ∈ Q as the minimal grading of an non-torsion element of 𝔽[U];
- If (W, \mathfrak{t}) is a cobordism with $b_2^+(W) = 0$, then $d(Y_0, \mathfrak{s}_0) - d(Y_1, \mathfrak{s}_1) \ge \frac{1}{4}(c_1(\mathfrak{t})^2 - 2\sigma(W) - 3\chi(W));$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- *HF*[∞] being 𝔽[*U*, *U*⁻¹], the homology *HF*⁻(*Y*, 𝔅) is a copy of 𝔽[*U*] plus some *U*-torsion part;
- We define d(Y, s) ∈ Q as the minimal grading of an non-torsion element of 𝔽[U];
- If (W, \mathfrak{t}) is a cobordism with $b_2^+(W) = 0$, then $d(Y_0, \mathfrak{s}_0) - d(Y_1, \mathfrak{s}_1) \ge \frac{1}{4}(c_1(\mathfrak{t})^2 - 2\sigma(W) - 3\chi(W));$
- If Y bounds a Q-homology ball, then d(Y, s) = 0 for all spin-c structures that extend over balls.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- *HF*[∞] being 𝔽[*U*, *U*⁻¹], the homology *HF*⁻(*Y*, 𝔊) is a copy of 𝔽[*U*] plus some *U*-torsion part;
- We define d(Y, s) ∈ Q as the minimal grading of an non-torsion element of 𝔽[U];
- If (W, \mathfrak{t}) is a cobordism with $b_2^+(W) = 0$, then $d(Y_0, \mathfrak{s}_0) - d(Y_1, \mathfrak{s}_1) \ge \frac{1}{4}(c_1(\mathfrak{t})^2 - 2\sigma(W) - 3\chi(W));$
- If Y bounds a Q-homology ball Q-acyclic surface, then
 d(Y, s) = 0 for all spin-c structures that extend over balls.

If Y is a large surgery on an algebraic knot, then $d(Y, \mathfrak{s})$ is expressible in terms of the semigroup of singularity.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

If Y is a large surgery on an algebraic knot, then $d(Y, \mathfrak{s})$ is expressible in terms of the semigroup of singularity.

 Main computation done by Ozsváth–Szabó for so-called L-space knots;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If Y is a large surgery on an algebraic knot, then $d(Y, \mathfrak{s})$ is expressible in terms of the semigroup of singularity.

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

If Y is a large surgery on an algebraic knot, then $d(Y, \mathfrak{s})$ is expressible in terms of the semigroup of singularity.

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;
- –, Livingston translate their algorithm using the Alexander polynomial to semigroups.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

If Y is a large surgery on an algebraic knot, then $d(Y, \mathfrak{s})$ is expressible in terms of the semigroup of singularity.

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;
- –, Livingston translate their algorithm using the Alexander polynomial to semigroups.

Corollary

Semigroup semicontinuity.

Lattice homology

 A plumbed 3-manifold yields a *lattice L* ≅ Z^g with a pairing ⟨·, ·⟩ → Z;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
• A plumbed 3-manifold yields a *lattice* $L \cong \mathbb{Z}^g$ with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• For example, resolution of a surface singularity.

- A plumbed 3-manifold yields a *lattice* $L \cong \mathbb{Z}^g$ with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic ℓ ∈ L* such that ℓ(x) ≅ ⟨x, x⟩ mod 2 for all x;

- A plumbed 3-manifold yields a *lattice* $L \cong \mathbb{Z}^g$ with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic ℓ ∈ L* such that ℓ(x) ≅ ⟨x, x⟩ mod 2 for all x;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) - \langle x, x \rangle).$

- A plumbed 3-manifold yields a *lattice* $L \cong \mathbb{Z}^g$ with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic ℓ ∈ L* such that ℓ(x) ≅ ⟨x, x⟩ mod 2 for all x;
- $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) \langle x, x \rangle).$
- For an *r*-dimensional unit cube in *L*, we define χ(*r*) as the supremum of χ over the vertices.

- A plumbed 3-manifold yields a *lattice* $L \cong \mathbb{Z}^g$ with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic ℓ ∈ L* such that ℓ(x) ≅ ⟨x, x⟩ mod 2 for all x;
- $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) \langle x, x \rangle).$
- For an *r*-dimensional unit cube in *L*, we define χ(*r*) as the supremum of χ over the vertices.

Definition

The lattice chain complex for L, \mathfrak{k} is defined as the complex $\mathbb{F}[U]$ generated by unit cubes, with differential

$$\partial \boldsymbol{r} = \sum \epsilon_{\boldsymbol{r}'} \boldsymbol{r}' \boldsymbol{U}^{\chi_{\mathfrak{k}}(\boldsymbol{r}) - \chi_{\mathfrak{k}}(\boldsymbol{r}')},$$

where r' runs over facets of r and ϵ is a sign choice.

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

• There is a correspondence between \mathfrak{k} and \mathfrak{s} (easy);

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

- There is a correspondence between \mathfrak{k} and \mathfrak{s} (easy);
- The proof is extremely hard, uses homology perturbation lemma and A_∞ formulation of HF;

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

- There is a correspondence between \mathfrak{k} and \mathfrak{s} (easy);
- The proof is extremely hard, uses homology perturbation lemma and A_∞ formulation of HF;
- The statement for non-negative definite lattices must be adjusted (completions are needed);

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

- There is a correspondence between \mathfrak{k} and \mathfrak{s} (easy);
- The proof is extremely hard, uses homology perturbation lemma and A_∞ formulation of HF;
- The statement for non-negative definite lattices must be adjusted (completions are needed);

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 Generalizations to relative case due to –, Liu, Zemke (2024, to appear).

 Is smooth topological deformation of links equivalent to algebraic?

- Is smooth topological deformation of links equivalent to algebraic?
- Is there a definition of a cobordism map using only LH?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Is smooth topological deformation of links equivalent to algebraic?
- Is there a definition of a cobordism map using only LH?

(日) (日) (日) (日) (日) (日) (日)

• Can we use LH to prove μ -const conjecture?