Heegaard Floer Theory and algebraic geometry

Maciej Borodzik

[www.mimuw.edu.pl/˜mcboro](www.mimuw.edu.pl/~mcboro)

IMPAN / University of Warsaw

24 Oct 2024

メロト メ御 トメ 君 トメ 君 トッ 君 し

 299

Kロトメ部トメミトメミト (ミ) のQC

KOXK@XKEXKEX E DAQ

K ロ X K @ X K 할 X K 할 X (할 X O Q Q)

Definition

An algebraic link in \mathcal{S}^3 is an intersection of a zero set of a complex reduced polynomial $f(x, y)$ with a small sphere.

Definition

An algebraic link in \mathcal{S}^3 is an intersection of a zero set of a complex reduced polynomial $f(x, y)$ with a small sphere.

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 2990

Definition

An algebraic link in \mathcal{S}^3 is an intersection of a zero set of a complex reduced polynomial $f(x, y)$ with a small sphere.

Theorem (Capillo, Delgado, Gussein-Zade, 2000)

Suppose (*C*, *z*) *is a unibranched plane curve singularity with semigroup S and link K. Then*

$$
\Delta_K = 1 + (t-1) \sum_{\substack{g>0\\g \notin S}} t^g.
$$

KEL KALEYKEN E YAN

Theorem (Capillo, Delgado, Gussein-Zade, 2000)

Suppose (*C*, *z*) *is a unibranched plane curve singularity with semigroup S and link K. Then*

$$
\Delta_K = 1 + (t-1) \sum_{\substack{g>0\\g \notin S}} t^g.
$$

Corollary

Multiplicity of a plane curve singularity is determined by the Alexander polynomial.

Semigroup semicontinuity

Theorem (Gorsky, Némethi 2014)

*Suppose C^t is a deformation of a plane curve singularities with central fiber C*0*. Let S^t be the semigroup of C^t . Then, for* $|t| \ll 1$ *and any* $x > 0$

 $\#\{\ell \in \mathcal{S}_t\colon \ell < x\} \geq \#\{\ell \in \mathcal{S}_0\colon \ell < x\}.$

KEL KALEYKEN E YAN

In particular, multiplicity cannot drop.

In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

KORK ERKER ADAM ADA

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

KOD KOD KED KED E VOOR

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), \, g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding K.

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

KOD KOD KED KED E VOOR

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), \, g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding K.

For algebraic knots $g_3(K) = g_4(K) = \frac{1}{2}\mu$.

- In algebraic geometry a deformation is 'oriented'. Central fiber is 'more singular'.
- Cobordisms of links is not oriented. No obvious notions of 'more complex'.

KORKAR KERKER E VOOR

Definition

A 3-genus (4-genus) of a knot *K* is the minimal genus $g(K) = g_3(K), \, g_4(K)$ of a compact oriented surface Σ in S^3 (resp. B^4) cobounding K.

For algebraic knots $g_3(K) = g_4(K) = \frac{1}{2}\mu$. The definition of g_4 is depends on the world we live in.

Definition

Suppose K_0, K_1 are algebraic knots. We say that there is a topological deformation from K_0 to K_1 , if there exists a $\mathsf{cobordism}\;(\textsf{a}\;\textsf{surface}\;\Sigma\;\textsf{in}\;\mathcal{S}^3\times[0,1])\;\textsf{of}\;\textsf{genus}\;g_3(\mathcal{K}_0)-g_3(\mathcal{K}_1)$ between them.

KOD KOD KED KED E VOOR

Definition

Suppose K_0, K_1 are algebraic knots. We say that there is a topological deformation from K_0 to K_1 , if there exists a $\mathsf{cobordism}\;(\textsf{a}\;\textsf{surface}\;\Sigma\;\textsf{in}\;\mathcal{S}^3\times[0,1])\;\textsf{of}\;\textsf{genus}\;g_3(\mathcal{K}_0)-g_3(\mathcal{K}_1)$ between them.

KOD KOD KED KED E VOOR

Question

Is the multiplicity semicontinuous under such topological deformations?

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

In the smooth category semigroup semicontinuity holds.

KORK ERKER ADAM ADA

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

KORK ERKER ADAM ADA

In the smooth category semigroup semicontinuity holds.

Analogous results for links obtained by —, Gorsky.

Semicontinuity of semigroup

Theorem (Bodnar, Celoria, Golla 2017, —, Livingston 2015)

KORK ERKER ADAM ADA

In the smooth category semigroup semicontinuity holds.

Analogous results for links obtained by —, Gorsky. We use Heegaard Floer homology techniques.

Heegaard decomposition

Definition

A *Heegaard splitting* of a 3-manifold *Y* is a presentation of *Y* as a boundary connected sum, $Y = Y_+ \cup_b Y_-$, where Y_+ and $Y_$ are handlebodies, *h*∶ ∂*Y*₊ $\stackrel{\cong}{\rightarrow}$ ∂*Y*_− is a diffeomorphism. We denote $\Sigma = \partial Y_+ = \partial Y_-$. It is a genus *g* surface.

KOD KOD KED KED E VOOR

Heegaard decomposition

Definition

A *Heegaard splitting* of a 3-manifold *Y* is a presentation of *Y* as a boundary connected sum, $Y = Y_+ \cup_h Y_-,$ where Y_+ and $Y_$ are handlebodies, *h*∶ ∂*Y*₊ $\stackrel{\cong}{\rightarrow}$ ∂*Y*_− is a diffeomorphism. We denote $\Sigma = \partial Y_+ = \partial Y_-$. It is a genus *g* surface.

Example

Two balls glue to a sphere giving a genus 0 decomposition of S^3 . Two solid tori can glue to S^3 , $S^2 \times S^1$, or a lens space.

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

• There are *g* curves $α_1, ..., α_g$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;

KORK ERKER ADAM ADA

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

• There are *g* curves $α_1, ..., α_g$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;

KORK ERKER ADAM ADA

• There are *g* curves β_1, \ldots, β_q that bound disks in Y_+ .

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- **•** There are *g* curves $α_1, ..., α_g$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;
- There are *g* curves β_1, \ldots, β_q that bound disks in Y_+ .
- $\alpha_i \cap \alpha_j = 0$, $\beta_i \cap \beta_j = 0$, whenever $i \neq j$, but α -curves can intersect β -curves.

KORK ERKER ADAM ADA
Combinatorics of Heegaard decomposition

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- **•** There are *g* curves $\alpha_1, \ldots, \alpha_q$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;
- There are *g* curves β_1, \ldots, β_q that bound disks in Y_+ .
- $\alpha_i \cap \alpha_j = 0$, $\beta_i \cap \beta_j = 0$, whenever $i \neq j$, but α -curves can intersect β -curves.

KORKAR KERKER E VOOR

• we require that this intersection be transverse.

Combinatorics of Heegaard decomposition

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- **•** There are *g* curves $\alpha_1, \ldots, \alpha_q$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;
- There are g curves β_1, \ldots, β_g that bound disks in Y_+ .
- $\alpha_i \cap \alpha_j = 0$, $\beta_i \cap \beta_j = 0$, whenever $i \neq j$, but α -curves can intersect β -curves.

KORKAR KERKER E VOOR

- we require that this intersection be transverse.
- we specify a basepoint on Σ disjoint from α, β curves.

Combinatorics of Heegaard decomposition

Let *Y* = *Y*⁺ ∪*^h Y*[−] be a Heegaard decomposition. Set $\Sigma = \partial Y_+ = \partial Y_-$

- **•** There are *g* curves $\alpha_1, \ldots, \alpha_q$ on Σ that bound disks in *Y*_− and are pairwise non-homologous. They are called α*-curves*;
- There are g curves β_1, \ldots, β_g that bound disks in Y_+ .
- $\alpha_i \cap \alpha_j = 0$, $\beta_i \cap \beta_j = 0$, whenever $i \neq j$, but α -curves can intersect β -curves.
- we require that this intersection be transverse.
- we specify a basepoint on Σ disjoint from α, β curves.

Definition

The tuple $(\Sigma, \alpha, \beta, z)$ is called the *Heegaard data*.

 \bullet Fix a complex structure on Σ ;

- Fix a complex structure on Σ ;
- The space $Sym^g \Sigma$ is a complex manifold;

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

- \bullet Fix a complex structure on Σ :
- The space $Sym^g \Sigma$ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;

KORK EXTERNED ARA

- Fix a complex structure on Σ :
- The space $Sym^g \Sigma$ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;

KORKARA KERKER DAGA

- **•** Fix a complex structure on Σ :
- The space Sym^g Σ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;

KORK EXTERNED ARA

• Intersection point of $T_{\alpha} \cap T_{\beta}$ corresponds to a *g*-tuple of intersection points $\alpha_1 \cap \beta_{\sigma(1)}, \ldots, \alpha_g \cap \beta_{\sigma(g)};$

- **•** Fix a complex structure on Σ :
- The space $Sym^g \Sigma$ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of $T_\alpha \cap T_\beta$ corresponds to a g-tuple of intersection points $\alpha_1 \cap \beta_{\sigma(1)}, \ldots, \alpha_g \cap \beta_{\sigma(g)};$
- **•** The set $\pi_2(x, y)$ for $x, y \in T_\alpha \cap T_\beta$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x$, $1 \mapsto y$, upper semicircle goes to T_α and lower to T_β .

KORKAR KERKER E VOOR

- \bullet Fix a complex structure on Σ :
- The space $Sym^g \Sigma$ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of $T_\alpha \cap T_\beta$ corresponds to a g-tuple of intersection points $\alpha_1 \cap \beta_{\sigma(1)}, \ldots, \alpha_g \cap \beta_{\sigma(g)};$
- **•** The set $\pi_2(x, y)$ for $x, y \in T_\alpha \cap T_\beta$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x$, $1 \mapsto y$, upper semicircle goes to T_α and lower to T_β .
- Each $\phi \in \pi_2(x, y)$ is assigned an integer $M(\phi)$, the Maslov number;

- \bullet Fix a complex structure on Σ :
- The space $Sym^g \Sigma$ is a complex manifold;
- The products $T_{\alpha} = \alpha_1 \times \cdots \times \alpha_q$, $T_{\beta} = \beta_1 \times \cdots \times \beta_q$ are tori in Sym*^g* Σ;
- These tori are Lagrangian, so we can use the machinery of Langrangian Floer theory;
- Intersection point of $T_\alpha \cap T_\beta$ corresponds to a g-tuple of intersection points $\alpha_1 \cap \beta_{\sigma(1)}, \ldots, \alpha_g \cap \beta_{\sigma(g)};$
- **•** The set $\pi_2(x, y)$ for $x, y \in T_\alpha \cap T_\beta$ is the set of homotopy classes of maps $D \to \Sigma$, such that $-1 \mapsto x$, $1 \mapsto y$, upper semicircle goes to T_α and lower to T_β .
- Each $\phi \in \pi_2(x, y)$ is assigned an integer $M(\phi)$, the Maslov number;

KID KA KERKER E VAO

Specify a divisor $R_z = \{z\} \times \Sigma^{g-1}$.

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$;

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$
\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_2(x,y) : M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$
\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_2(x,y) : M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

• $r(\phi)$ is the count of holomorphic disks in $\pi_2(x, y)$, if $M(\phi) = 1$, the count is finite;

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$
\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_2(x,y) : M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.
$$

- $r(\phi)$ is the count of holomorphic disks in $\pi_2(x, y)$, if $M(\phi) = 1$, the count is finite;
- n_{ϕ} is the intersection number of R_z with the complex disk represented by ϕ . In particular, $n_{\phi} \geq 0$.

KORKARA KERKER DAGA

The chain complex $CF^{-}(Y)$ is generated by $T_{\alpha} \cap T_{\beta}$ over $\mathbb{F}[U]$; The differential is

$$
\partial x = \sum_{y \in T_{\alpha} \cap T_{\beta}} \sum_{\phi \in \pi_2(x,y) : M(\phi) = 1} U^{n_{\phi}} r(\phi) \cdot y.
$$

- $r(\phi)$ is the count of holomorphic disks in $\pi_2(x, y)$, if $M(\phi) = 1$, the count is finite;
- **●** n_{ϕ} is the intersection number of R_{ϕ} with the complex disk represented by ϕ . In particular, $n_{\phi} \geq 0$.

Theorem (Ozsváth–Szabó 2002)

The chain homotopy type of the complex CF [−], ∂ *does not depend on the Heegaard data.*

The complex *CF*[∞] is obtained by tensoring *CF* [−] by $\mathbb{F}[\mathcal{U},\mathcal{U}^{-1}].$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

The complex *CF*[∞] is obtained by tensoring *CF* [−] by $\mathbb{F}[\mathcal{U},\mathcal{U}^{-1}].$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• There is an injection $CF^ \hookrightarrow CF^{\infty}$;

Flavors

• The complex *CF*[∞] is obtained by tensoring *CF*[−] by $\mathbb{F}[\mathcal{U},\mathcal{U}^{-1}].$

KORKARA KERKER DAGA

- There is an injection $CF^ \hookrightarrow CF^{\infty}$;
- The complex CF^+ is the quotient complex;
- **•** The complex *CF*[∞] is obtained by tensoring *CF*[−] by $\mathbb{F}[\mathcal{U},\mathcal{U}^{-1}].$
- There is an injection $CF^ \hookrightarrow CF^{\infty}$;
- \bullet The complex CF^+ is the quotient complex;
- The complexes split over spin-c structures of *Y*.

KORKARA KERKER DAGA

- **•** The complex *CF*[∞] is obtained by tensoring *CF*[−] by $\mathbb{F}[\mathcal{U},\mathcal{U}^{-1}].$
- There is an injection $CF^ \hookrightarrow CF^{\infty}$;
- \bullet The complex CF^+ is the quotient complex;
- The complexes split over spin-c structures of *Y*.

If $b_1(Y) = 0$ *, then for any* s*, HF*[∞] $(Y, s) = \mathbb{F}[U, U^{-1}]$ *.*

KORK EXTERNED ARA

Suppose (*W*, t) *is a spin-c cobordism between* (Y_0 , \mathfrak{s}_0) *and* (Y_1, \mathfrak{s}_1) *. Then, there is a map* F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \rightarrow HF^{\bullet}(Y_1, \mathfrak{s}_1)$ *.*

KEL KALEYKEN E VAG

Suppose (*W*, t) *is a spin-c cobordism between* (Y_0 , \mathfrak{s}_0) *and* (Y_1, \mathfrak{s}_1) *. Then, there is a map* F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \rightarrow HF^{\bullet}(Y_1, \mathfrak{s}_1)$ *.*

If b_2^+ $b_2^+(W) = 0$, and $b_1(Y_0) = b_1(Y_1) = 0$, then F_W^∞ is an *isomorphism;*

KOD KOD KED KED E VOOR

Suppose (*W*, t) *is a spin-c cobordism between* (Y_0 , \mathfrak{s}_0) *and* (Y_1, \mathfrak{s}_1) *. Then, there is a map* F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \rightarrow HF^{\bullet}(Y_1, \mathfrak{s}_1)$ *.*

If b_2^+ $b_2^+(W) = 0$, and $b_1(Y_0) = b_1(Y_1) = 0$, then F_W^∞ is an *isomorphism;*

KOD KOD KED KED E VOOR

If b_2^+ 2 (*W*) > 0*, then F*[∞] *^W is a zero map;*

Suppose (*W*, t) *is a spin-c cobordism between* (Y_0 , \mathfrak{s}_0) *and* (Y_1, \mathfrak{s}_1) *. Then, there is a map* F_W^{\bullet} : $HF^{\bullet}(Y_0, \mathfrak{s}_0) \rightarrow HF^{\bullet}(Y_1, \mathfrak{s}_1)$ *.*

- If b_2^+ $b_2^+(W) = 0$, and $b_1(Y_0) = b_1(Y_1) = 0$, then F_W^∞ is an *isomorphism;*
- If b_2^+ 2 (*W*) > 0*, then F*[∞] *^W is a zero map;*
- *There is a consistent choice of grading such that* $\deg \mathcal{F}_W = \frac{1}{4}$ $\frac{1}{4}(c_1({\mathfrak t})^2-2\sigma({\mathsf W})-3\chi({\mathsf W}))$ *(U drops the grading by* 2*).*

KOD KOD KED KED E VOOR

HF[∞] being $\mathbb{F}[U, U^{-1}]$, the homology *HF*[−](*Y*, \mathfrak{s}) is a copy of F[*U*] plus some *U*-torsion part;

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

HF[∞] being $\mathbb{F}[U, U^{-1}]$, the homology *HF*[−](*Y*, \mathfrak{s}) is a copy of F[*U*] plus some *U*-torsion part;

KORK EXTERNED ARA

• We define $d(Y, \mathfrak{s}) \in \mathbb{Q}$ as the minimal grading of an non-torsion element of $\mathbb{F}[U]$;

- *HF*[∞] being $\mathbb{F}[U, U^{-1}]$, the homology *HF*[−](*Y*, \mathfrak{s}) is a copy of F[*U*] plus some *U*-torsion part;
- We define $d(Y, \mathfrak{s}) \in \mathbb{O}$ as the minimal grading of an non-torsion element of $\mathbb{F}[U]$;
- If (W, t) is a cobordism with $b_2^+(W) = 0$, then $d(Y_0, s_0) - d(Y_1, s_1) \geq \frac{1}{4}(c_1(t))$ $\frac{1}{4}(c_1(t)^2-2\sigma(W)-3\chi(W));$

KOD KOD KED KED E VOOR

- *HF*[∞] being $\mathbb{F}[U, U^{-1}]$, the homology *HF*[−](*Y*, \mathfrak{s}) is a copy of F[*U*] plus some *U*-torsion part;
- We define $d(Y, \mathfrak{s}) \in \mathbb{O}$ as the minimal grading of an non-torsion element of F[*U*];
- If (W, t) is a cobordism with b_2^+ $\chi^2_{2}(\mathcal{W})=0,$ then $d(Y_0, \mathfrak{s}_0) - d(Y_1, \mathfrak{s}_1) \geq \frac{1}{4}$ $\frac{1}{4}(c_1(t)^2-2\sigma(W)-3\chi(W));$
- \bullet If *Y* bounds a Q-homology ball, then $d(Y, \mathfrak{s}) = 0$ for all spin-c structures that extend over balls.

KOD KOD KED KED E VOOR

- *HF*[∞] being $\mathbb{F}[U, U^{-1}]$, the homology *HF*⁻(*Y*, *s*) is a copy of F[*U*] plus some *U*-torsion part;
- We define $d(Y, \mathfrak{s}) \in \mathbb{Q}$ as the minimal grading of an non-torsion element of F[*U*];
- If (W, t) is a cobordism with $b_2^+(W) = 0$, then $d(Y_0, s_0) - d(Y_1, s_1) \geq \frac{1}{4}(c_1(t))$ $\frac{1}{4}(c_1(t)^2-2\sigma(W)-3\chi(W));$
- **If Y** bounds a Q-homology ball Q-acyclic surface, then $d(Y, \mathfrak{s}) = 0$ for all spin-c structures that extend over balls.

KORKAR KERKER E VOOR

If Y is a large surgery on an algebraic knot, then d(*Y*, s) *is expressible in terms of the semigroup of singularity.*

If Y is a large surgery on an algebraic knot, then d(*Y*, s) *is expressible in terms of the semigroup of singularity.*

• Main computation done by Ozsváth–Szabó for so-called L-space knots;

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

If Y is a large surgery on an algebraic knot, then d(*Y*, s) *is expressible in terms of the semigroup of singularity.*

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;

KORK EXTERNED ARA

If Y is a large surgery on an algebraic knot, then d(*Y*, s) *is expressible in terms of the semigroup of singularity.*

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;
- \bullet –, Livingston translate their algorithm using the Alexander polynomial to semigroups.

KORK EXTERNED ARA

If Y is a large surgery on an algebraic knot, then d(*Y*, s) *is expressible in terms of the semigroup of singularity.*

- Main computation done by Ozsváth–Szabó for so-called L-space knots;
- Hedden proves that an algebraic knot is an L-space knot;
- –, Livingston translate their algorithm using the Alexander polynomial to semigroups.

Corollary

Semigroup semicontinuity.

Lattice homology

A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q
A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

For example, resolution of a surface singularity.

- A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic $\mathfrak{k} \in L^*$ such that $\mathfrak{k}(x) \cong \langle x, x \rangle$ mod 2 for all *x*;

- A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic $\mathfrak{k} \in L^*$ such that $\mathfrak{k}(x) \cong \langle x, x \rangle$ mod 2 for all *x*;

KORKARA KERKER DAGA

 $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) - \langle x, x \rangle).$

- A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic $\mathfrak{k} \in L^*$ such that $\mathfrak{k}(x) \cong \langle x, x \rangle$ mod 2 for all *x*;
- $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) \langle x, x \rangle).$
- For an *r*-dimensional unit cube in *L*, we define χ(*r*) as the supremum of χ over the vertices.

KOD KOD KED KED E VOOR

- A plumbed 3-manifold yields a *lattice L* ≅ \mathbb{Z}^g with a pairing $\langle \cdot, \cdot \rangle \to \mathbb{Z}$;
- For example, resolution of a surface singularity.
- Fix a characteristic $\mathfrak{k} \in L^*$ such that $\mathfrak{k}(x) \cong \langle x, x \rangle$ mod 2 for all *x*;
- $\chi_{\mathfrak{k}}(x) = \frac{1}{2}(\mathfrak{k}(x) \langle x, x \rangle).$
- For an *r*-dimensional unit cube in *L*, we define χ(*r*) as the supremum of χ over the vertices.

Definition

The lattice chain complex for L, ℓ is defined as the complex $\mathbb{F}[U]$ generated by unit cubes, with differential

$$
\partial r = \sum \epsilon_{r'} r' U^{\chi_{\mathfrak{k}}(r) - \chi_{\mathfrak{k}}(r')},
$$

where *r'* runs over facets of *r* and ϵ is a sign choice.

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$;

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$ *;*

• There is a correspondence between $\mathfrak k$ and $\mathfrak s$ (easy);

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$ *;*

- There is a correspondence between ℓ and ϵ (easy);
- The proof is extremely hard, uses homology perturbation lemma and *A*[∞] formulation of HF;

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$ *;*

- There is a correspondence between ℓ and ϵ (easy);
- The proof is extremely hard, uses homology perturbation lemma and *A*[∞] formulation of HF;
- The statement for non-negative definite lattices must be adjusted (completions are needed);

KORK EXTERNED ARA

Theorem (Zemke 2022, to appear)

Up to an explicit grading shift, HF=LH, if $b_1(Y) = 0$ *;*

- There is a correspondence between ℓ and ϵ (easy);
- The proof is extremely hard, uses homology perturbation lemma and *A*[∞] formulation of HF;
- The statement for non-negative definite lattices must be adjusted (completions are needed);

KORK EXTERNED ARA

 \bullet Generalizations to relative case due to $-$, Liu, Zemke (2024, to appear).

• Is smooth topological deformation of links equivalent to algebraic?

- Is smooth topological deformation of links equivalent to algebraic?
- Is there a definition of a cobordism map using only LH?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- Is smooth topological deformation of links equivalent to algebraic?
- Is there a definition of a cobordism map using only LH?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Can we use LH to prove μ -const conjecture?