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ABSTRACT

Program execution tracing is an important technique in software

development and analysis. However, noninvasively obtaining cycle-

level traces for modern low-power ARMv7-M-based SoCs is chal-

lenging, because convenient o�-the-shelf high-speed tracing probes

are expensive and cannot be applied to SoCs that lack high-speed

debug components, notably Embedded Trace Macrocell (ETM) and

parallel tracing port (PTP). To address this issue, in this work, we

present FrankenTrace, a technique for generating full, noninvasive,

cycle-level program counter traces and full, cycle-level data transfer

traces of varying invasiveness on SoCs with only low-speed debug

components, namely Debug Watchpoint and Trace unit (DWT),

Instrumentation Trace Macrocell (ITM), Single Wire Output (SWO),

and an inexpensive probe. We demonstrate the technique by tracing

software running on a node of the 1KT testbed.
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1 INTRODUCTION

Development and analysis of software for modern low-power sys-

tem-on-chip (SoC) devices, notably those based on ARM Cortex-M

processors, pose particular challenges due to the limited resources

such devices provide. An important technique in this process is

tracing: an ability to obtain a detailed record of how software is

executed by an SoC’s processor (CPU). Speci�c trace types are re-

quired for di�erent purposes. In particular, an instruction-level PC
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trace records subsequent values of the program counter (PC) regis-

ter, which holds the address of the instruction currently executed

by the CPU. Combined with the software binary, a PC trace gives

a full record of subsequently executed instructions. On the other

hand, to examine data transfers issued by the CPU to memory and

memory-mapped interfaces of the SoC’s various components, an

LSU trace is needed. It records addresses, values, and directions

(read/write) of data transfers performed by the so-called Load Store

Unit (LSU), which manages the transfers in ARM processors.

Instruction-level traces have many applications, not only in soft-

ware development and debugging, but also in research reproducibil-

ity, post-mortem experiment analysis, or emulators. However, an-

alyzing timing issues and precise benchmarking require more de-

tailed cycle-level traces, which record the executed instruction or

data transfer for each clock cycle of the processor. Cycle-level traces

unveil, for instance, which processor instructions require more than

one cycle to be executed, and how long it takes to complete each

data transfer. Moreover, to ensure a proper interpretation of the

results, many applications necessitate noninvasive tracing, that is,

one that does not alter the execution process itself.

Arguably, the most convenient way to obtain execution traces

for a piece of software for a given device is to use an emulator

of the device. During emulation, executed instructions and data

transfers can be traced in a noninvasive way by monitoring the

operation of the emulator. However, functional emulation tools

capable of simulating the ARMv7-M architecture (i.e., ARM Cortex-

M3, Cortex-M4, and Cortex-M7 processors), such as QEMU, Renode,

or ARM Fast Models can be used to generate only instruction-

level traces, as they do not simulate the hardware in su�cient

detail to obtain cycle-level traces. Cycle-level tracing would require

precise simulation of the entire SoC, including the CPU, memory

modules, and the SoC’s other components. Even a minor di�erence

between simulation and execution on actual hardware may result

in a signi�cantly distinct program �ow, making it likely that some

issues might be observed only with real hardware. While in the case

of the CPU there exist cycle-exact models compiled from hardware’s

sources (i.e., RTL), such as Arm Cycle Models, high-�delity models

for complete SoCs are hardly available. Consequently, today, cycle-

level tracing in principle must be performed on real hardware.

Designers ofmodern processors recognize this need for hardware-

assisted tracing. In particular, the ARMv7-M architecture [4] speci-

�es multiple optional debug components, which provide various

levels of insight into processor operation. Typical high-�delity non-

invasive tracing solutions utilize o�-the-shelf high-speed commer-

cial tracing probes, such as Segger J-Trace, Keil ULINKpro, IAR

I-jet Trace, and accompanying software. However, such probes can
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Table 1: Low- and high-speed debug components featured in

representative (as of Feb. 2023) Cortex-M3-based SoCs.

SoC series low- high-speed SoC series low- high-speed

CC26x0 6 : ADUCM360/3029 : :

SAM3 6 : PSoC 5LP/FM3 6 some

STM32F100 6 : STM32F103 6 some

EFM32G/TG 6 : EFM32LG/GG 6 6

LPC1300 6 : LPC1800 6 6

be even a few orders of magnitude more expensive than a traced

SoC. Therefore, their availability to software engineers is limited,

and it is virtually impossible to deploy them within large-scale IoT

testbeds such as 1KT [6] or IoT-LAB [2]. Furthermore, many com-

mercial SoCs do not support high-speed probes, as they do not have

the necessary high-speed debugging components: Embedded Trace

Macrocell (ETM) and parallel trace port (abbr. PTP in this paper). On

the other hand, low-speed debug components—Debug Watchpoint

and Trace unit (DWT), Instrumentation Trace Macrocell (ITM),

and Single Wire Output (SWO)—are featured in most modern SoCs

with ARMv7-M CPU (see Table 1). For instance, Cortex-M3 SoCs

deployed in the 1KT, IoT-LAB, and Indriya2 [3] testbeds feature all

low-speed debug components but no high-speed ones.1 As a result,

more widespread and cost-e�ective tracing solutions are desirable.

In this paper, we present FrankenTrace, a technique for generat-

ing full and accurate traces by means of only low-speed debug com-

ponents (DWT, ITM, and SWO) and without any expensive tracing

probes but just signi�cantly cheaper logic analyzers or UART-USB

chips (e.g., FT232RL). FrankenTrace supports generating two types

of traces: a noninvasive cycle-level PC trace and a cycle-level LSU

trace of varying invasiveness (with a trade-o� between invasive-

ness, trace completeness, and tracing time). When combined, the

traces show which instruction is executed in each processor cycle,

and what value is read from or written to which address in that

cycle. We demonstrate FrankenTrace in action by tracing software

running on a CherryMote, a node of the 1KT testbed, and argue

that the method can be deployed at a low cost at a large scale.

The rest of this paper is organized as follows. First, we discuss

related solutions and ARMv7-M debug components (Section 2).

Then, we present the idea behind FrankenTrace (Section 3), details

of PC tracing (Section 4), LSU tracing (Section 5), and the hardware

required to capture traces (Section 6). Finally, we present a case

study (Section 7) and conclude outlining future work (Section 8).

2 BACKGROUND

A naïve low-cost approach to generating a trace for a piece of

software executed on an SoC is to use a JTAG-based debugger and

step through subsequent instructions. This approach is not viable

for tracing long executions, though, as, for example, 100 ms of

execution on a 48-MHz CPU requires nearly 5 million debugger

steps. Moreover, halting the CPU after each instruction is highly

invasive. A noninvasive trace could be obtained by modifying the

previous approach: stop the execution after the �rst instruction,

restart the execution and stop after the second instruction, and so

1Texas Instruments CC2650 SoC featured in 1KT and Indriya2 has no ETM and PTP.
STM32F103REY SoC featured in IoT-LAB’s M3 and A8-M3 boards has no PTP pins.

on, executing one more instruction each time before halting the

CPU. However, this method is too ine�cient for long executions.

As an alternative to o�-the-shelf tracing probes, a community-

driven project Orbcode [1] develops an open-source FPGA-based

probe and software tools for debugging and tracing Cortex-M-based

SoCs. However, the probe does not support communication speeds

high enough to noninvasively trace an execution.

HATBED [11] demonstrates how low-cost hardware can enable

pro�ling in IoT testbeds. However, to capture every executed in-

struction that technique requires ETM, which invasively halts the

CPU when its output bu�er over�ows. We build upon the idea and

show how this type of hardware can be exploited to obtain a full

noninvasive cycle-level PC trace and a full cycle-level LSU trace

even from an SoC that does not feature ETM.

2.1 ARMv7-M Debug Components

To facilitate tracing software executed by a CPU, the ARMv7-M

architecture speci�es multiple debug components. Although they

are optional, virtually all modern SoCs based on Cortex-M3 or M4

contain a subset at minimum.

DWT: The Debug Watchpoint and Trace unit provides multiple

performance counters, for instance, a counter that is incremented

on each cycle of the processor clock. Moreover, DWT features com-

parators that can be set up to compare a con�gured value with

addresses or values of data requests issued by the processor, ad-

dresses of instructions, or values of the cycle counter. Upon a match,

DWT can generate a packet (subsequently passed to ITM) detailing

the matched data or instruction, generate a debug exception, cause

the processor to halt and enter a debug state, or signal the match

to another component. DWT can be also con�gured to periodically

sample PC and pass its current value to ITM.

ITM: The Instrumentation Trace Macrocell captures tracing

packets generated by DWT. It also allows for emitting events in

software by writing to its registers, thereby supporting printf-

style debugging. ITMmay optionally timestamp each received event

by appending a special packet to the output. If the received packets

over�ow its output bu�er, ITM arbitrates which are discarded and

noti�es about the over�ow. The packets are then delegated to TPIU.

ETM: One of the features of the Embedded Trace Macrocell is

the ability to generate a real-time PC trace. Although ETM employs

bu�ering and heavy compression of the produced information, a

signi�cant amount of bandwidth is required to output all tracing

packets. Nevertheless, ETM can be con�gured to halt the processor

when the output bu�er over�ows. Commercial o�-the-shelf tracing

probes use ETM for execution tracing. However, in contrast to DWT

and ITM, which are present in virtually all popular ARMv7-M SoCs,

the high-speed ETM is not available in many of them (see Table 1).

TPIU: The Trace Port Interface Unit processes tracing packets

generated by ITM and ETM, and handles outputting them to an

external analyzer for further processing. TPIU can output data via

two interfaces:

• asynchronous Single Wire Output (SWO)—using NRZ en-

coding (i.e., standard 8N1 UART) or Manchester encoding

(improved signal stability at higher communication speeds),

• parallel port (PTP)—consisting of a clock line and multiple

data lines (Cortex-M-based SoCs feature up to 4 data lines).
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Assuming the processor is clocked at Ĥ MHz, a 4-line PTP may

output up to 8Ĥ Mbps [5]. SWO outputs up to ∼0.72Ĥ Mbps using

NRZ encoding [5], but at higher baud rates the Manchester en-

coding is required to reliably decode the signal, resulting in up to

∼0.48Ĥ Mbps [5]. However, in practice, cheap o�-the-shelf compo-

nents can reliably receive UART transmission with a symbol rate

of only up to 8–12 Mbaud (∼6.4 Mbps) [7, 9]. Using SWO with a

USB logic analyzer and software decoding, we are able to achieve

communication clocked at 8 MHz—the same as the tracing output

supported by the hardware in HATBED [11]. While popular SoCs

widely support SWO, not all of them feature PTP that is required for

real-time tracing with commercial o�-the-shelf probes (see Table 1).

3 PRINCIPAL IDEA BEHIND FRANKENTRACE

As a point of reference, let us consider the Texas Instruments

CC2650 SoC [10], deployed as an experimental node in the 1KT

testbed. This SoC is clocked at 48 MHz and features two single-

cycle memories. A tracing packet with a value of PC, as sampled

by DWT, has a size of 5 B. A timestamp packet of ITM, in turn, has

a size of 1–5 B. With the 6.4 Mbps of SWO throughput, tracing is

inherently limited to about 100K samples per second. In e�ect, PC

can be sampled approximately only once every 512 CPU cycles.

In contrast, if TI CC2650 had ETM and a 4-data-lane PTP, it

could output traces at up to 384 Mbps. Such a bandwidth would be

su�cient in almost all cases. However, imagine an extreme case:

a loop composed of indirect jumps between the SoC’s two single-

cycle memories. Each such jump lasts 3 CPU cycles and generates

an ETM tracing packet of 4 B. Therefore, a bandwidth of 512 Mbps

would be required to output complete traces generated by this loop

without ETM stalling the CPU.

These estimates highlight the core idea behind FrankenTrace:

even with high-speed hardware, in extreme cases, outputting a

full trace can exceed the available bandwidth. When lower-speed,

but more widely available hardware is utilized, this bandwidth

issue becomes the key problem to overcome. FrankenTrace copes

with it by executing the same piece of software multiple times

and, if necessary, inserting delays. Tracing results are then stitched

together to recreate a full cycle-level PC and LSU trace. See Figure 1

for an overview of FrankenTrace’s operation.

4 PC TRACE

One feature of FrankenTrace is the ability to generate accurate cycle-

level PC traces using low-speed debugging hardware. In particular,

FrankenTrace guarantees a lack of gaps in the trace and the absence

of alterations due to arti�cial CPU stalls during tracing. This is an

advantage over the stall-based ETM tracing, which is not a reliable

source of instruction timings. For example, when trying to capture

a tight loop involving data transfers to an SoC’s component, stalling

would obscure the in�uence of the response time of that component.

To some extent, this has the same shortcomings as clocking the CPU

at a lower frequency when tracing. In contrast, FrankenTrace’s goal

is to generate a faithful trace as if the execution proceeded without

any tracing. As a consequence, the developed method should be

noninvasive, or at least be able to reliably reconstruct true events

after an introduction of invasiveness.

Table 2: DWT and ITM con�gurations for various output

baudrates from a 48 MHz-clocked TI CC2650 that optimally

use the available bandwidth. TPIU is con�gured to use SWO

withUART 8N1 encoding and bypasses the packets formatter.

baud rate Ċ TPIU prescaler DWT_CTRL[12:0]

1 Mbaud 5120 47 0x1209

2 Mbaud 3072 11 0x1205

8 Mbaud 512 5 0x100f

24 Mbaud 192 1 0x1005

48 Mbaud 128 0 0x1003

4.1 Overcoming the Throughput Limit

Since we cannot directly collect a full PC trace in a noninvasive way,

we con�gure DWT to sample PC at exactlyĊ -cycle intervals, where

the value of Ċ is con�gurable (see Table 2). For Ċ su�ciently large,

the packet generation rate does not exceed the available bandwidth,

allowing us to faithfully capture a partial trace. We execute the

traced software Ċ times, capturing partial traces at all possible

cycle o�sets. More precisely, the ğ-th repeated execution yields PC

values with cycle counts Ī = ġ · Ċ + ğ , for ġ ∈ N. The partial traces

are then combined into a full PC trace.

4.2 Ensuring Repeatability

FrankenTrace relies heavily on repeated execution, requiring each

run of traced software to be identical, except for purposeful al-

terations from the tracing mechanism. This requirement necessi-

tates some consideration. For instance, inherently nondeterministic

SoC’s components are a possible source of inconsistency. In gen-

eral, analog components, especially asynchronous clocks, are major

sources of nondeterminism. However, in Cortex-M-based SoCs, it is

often possible to mitigate the problem with clocks by using dividers

to derive all clock signals from a single source. In other cases, where

the execution is dependent on timing that cannot be controlled (e.g.,

on an input from an SoC’s environment sensor), it is necessary to

add a resynchronization routine to the traced code. The routine

restores the PC sampling cycle o�set (denoted by ğ above) and

designates a point of reference for combining partial traces.

A naïve approach to repeated execution is to invoke a block

of the program within a for-loop. This idea, however, has a lot of

inherent di�culties, as the state of various caches and other SoC’s

components may di�er between the iterations, and preventing this

is a tedious task. The solution to this problem, which ensures a con-

sistent state before all executions, is to reset the device before each

repetition. ARMv7-M de�nes two reset levels: local and power-on,

and provides two standard reset mechanisms through the Applica-

tion Interrupt and Reset Control Register (AIRCR):

• The VECTRESET control bit causes a local reset as a debug

feature, often referred to as a soft reset or CPU reset. This

typically resets only CPU, although the architecture allows

it to reset other SoC’s components as well.

• The SYSRESETREQ control bit requests a reset by a system

external to CPU. This is also known as a system reset, which

typically resets the entire SoC.

If SYSRESETREQ does not trigger a full chip reset, the vendor usually

provides another mechanism for such a reset (e.g., a special register).
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Figure 1: Overview of FrankenTrace’s operation.

A Cortex-M-based SoC typically provides a dedicated hardware

register to distinguish between a power-on reset (power-cycle reset),

a reset-pin reset, a CPU reset, and a system reset. In our experi-

ments with the TI CC2650, a system reset appears to act like a pin

reset, that is, most of the components transition into their reset

states. Therefore, to end a tracing iteration, the traced software

calls FrankenTrace’s hook function that triggers a system reset. On

TI CC2650 it takes ∼1 ms to reset and proceed to the next iteration.

We have experimentally veri�ed that DWT and ITM can be

con�gured to enable repeatable tracing at any point of software.

For instance, we con�rmed that traces that started at the beginning

of a reset handling routine yielded consistent results. Consequently,

the code that enables tracing can be used as a resynchronization

point after the loss of deterministic execution. Moreover, we veri�ed

that the trace is properly generated even when the traced software

puts the SoC into sleep (idle power mode) and then wakes it up.

4.3 Varying the Trigger Point

Since the system is fully reset between each repetition of an execu-

tion, a procedure is necessary to determine what sampling o�set,

ğ , is required during the current iteration. In other words, a value

needs to be reliably retained between system resets. A standard

approach, storing the value in the �ash memory, could strain this

component’s lifetime, because typical �ash memories in Cortex-M-

based SoCs are rated for up to 105 erase/write cycle [10].2

Instead, on the platform we use for evaluation, one can rely

on SRAM retention during a reset. In fact, a typical SRAM cell

has no reset line and loses its state only upon a loss of power.

With TI CC2650, as long as the traced code is not powering o�

SRAM, the tracing metadata would be preserved throughout the

entire procedure. However, it is important to ensure that the values

are not overwritten by any boot code (e.g., by placing them in an

uninitialized program memory section).

Finally, we ensure that the sampling o�set does not a�ect the

behavior of the ITM/DWT con�guration code, except for the val-

ues written to the registers of the debug components. This way

changing the sampling o�set does not change the execution of the

traced code. Since PC is sampled upon a transition of a con�gured

tap bit of the cycle counter, we can in�uence the point at which the

sample is taken by carefully manipulating the DWT con�guration

and by modifying the initial value of the counter.

2Flash memory is mainly worn out by the erase operation, so a scheme using only
one-way bit-by-bit writing could possibly be devised to partly mitigate that problem.

4.4 Reconstructing a Trace

Traces collected from all execution repetitions are combined to

form a full PC trace. Several features of FrankenTrace facilitate this

procedure and help verify the correctness of the resulting trace.

At the beginning and end of each repetition, the tracing code

emits packets with the iteration metadata via ITM registers. This

simpli�es splitting the packet stream output by the whole tracing

procedure into separate traces for each iteration. Moreover, before

the device is reset at the end of a repetition, the tracing code disables

ITM event sources and waits for ITM to �ush all its output bu�ers.

In particular, this approach makes it easier to properly capture

debug packets with a logic analyzer or a UART-USB dongle.

While a full system reset resolves most of the repeatability issues,

even the tracing code responsible for con�guring DWT and ITM

and emitting metadata at the beginning of each iteration can intro-

duce nondeterminism. FrankenTrace takes multiple measures to

ensure the same state of the processor and memory subsystem after

each execution of this routine. These include executing instruction

and memory barriers, �ushing memory bus bu�ers, and synchro-

nizing clock frequency domains (which is possible, for example, by

exploiting side e�ects of sync-down bridges during data transfers).

To validate the correctness of constructed traces, FrankenTrace

always executes a special piece of code with a known trace before

the analyzed code, so that later the trace can be validated by verify-

ing the fragment corresponding to the special code. Moreover, some

execution iterations are done redundantly to assess the consistency

of the output. Likewise, substantially redundant timestamp packets

generated by ITM after each PC sample enable identifying any

corruption and facilitate reconstructing the full trace.

Finally, the tracing setup code generates an initial ITM packet.

Since ITM timestamps are relative to previous ones, this gives a

point of reference for timestamps of packets in the actual trace.

5 LSU TRACE

The goal of an LSU trace is to record for each data transfer issued by

CPU the transferred data, its address, its direction (read/write), and

the current PC value. To this end, we employ DWT comparators,

which can be con�gured to emit this informationwhen an address of

an ongoing transfer matches a comparator’s observed address range.

However, only four comparators can be used for this, and a single

address range is expressed by specifying 16–32 most signi�cant bits

of an address. As a consequence, transfers within only four 64 KiB

long ranges can be traced at once. Moreover, sizes of the involved

tracing packets range from 2 B to 5 B, so information emitted by
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frequent transfers (e.g., in a busy-waiting loop) might exceed the

available output bandwidth.

5.1 Overcoming the Range Limit

FrankenTrace’s LSU tracing employs an approach similar to its PC

tracing: the traced software is executed multiple times, and each

time transfers within another address range are traced. In prac-

tice, only a fraction of the entire 32-bit address space is actually

used, as SoCs usually feature only a limited amount of memory,

a dozen components with memory-mapped registers, and a hand-

ful of special-purpose regions (e.g., bit-banding or nonbu�erable

aliases). This greatly limits the number of 64 KiB ranges that need

to be traced. Furthermore, the total tracing time can be reduced by

recording only interesting ranges. For example, to examine interac-

tions between CPU and a low-power wireless radio, it is enough to

trace only transfers within an address range of the radio registers.

5.2 Overcoming the Throughput Limit

There is no con�guration option to trigger DWT only exactly ev-

ery Ċ -th address match. Therefore, we cannot employ a solution

similar to PC tracing such as capturing every Ċ -th data transfer

and repeating the procedure multiple times with increasing o�sets.

There are two ways to decrease the packet generation rate nonin-

vasively. The �rst one is to execute the traced software three times

and record the di�erent packet types (address, data and direction,

PC value) separately in each run. The second is to decrease the size

of traced address ranges in frequently accessed regions (thus an

increased number of ranges and tracing iterations is required). Nev-

ertheless, these measures do not prevent consecutive data transfers

from over�owing the ITM bu�er. If an over�ow does happen, ITM

noti�es about it, and the invasive approaches discussed below can

be utilized to generate a trace without gaps due to over�ows.

When exploring various invasive approaches, we observed that

in some SoCs (e.g., TI CC2650) it is not feasible to clock CPU at a

frequency low enough that the bandwidth of SWO is never exceeded.

Therefore, we decided to simulate the behavior of ETM, which stalls

the CPU when the output bu�er over�ows. We do it by con�guring

DWT to trigger a DebugMonitor exception when it emits a trace

packet. This exception is handled by a FrankenTrace routine that

busy-waits for a while to delay the next data transfer. For instance,

tracing on TI CC2650 requires a delay of ∼1000 cycles not to exceed

the SWO bandwidth, as some transfers might generate up to two

DWT tracing packets at once.

This approach makes the trace invasive, as the delays might

change the �ow of execution in timing-dependent software. For in-

stance, a loop busy-waiting until a component’s register changes its

value could be executed fewer times in this scheme, as the compo-

nent can make progress while the debug exception is being handled.

Additionally, the recorded timestamps are no longer straightfor-

wardly comparable across tracing iterations. However, the correct

timing of such a loop can be learned from the noninvasive PC trace.

Our usage of the DebugMonitor exception has a few limitations.

First, ARMv7-M de�nes multiple levels of execution priority, and

speci�es that an execution with a given priority can be preempted

only when an exception with a higher priority arrives. By default,

all con�gurable-priority exceptions and external interrupts share

the same priority level. This is a problem, because if a matching

data transfer is issued by the handler of an exception with the

same priority as DebugMonitor, the FrankenTrace debug exception

does not preempt the handler and thus does not delay the next

transfer. However, the problem can be solved by modifying the

traced software to lower the priorities of all exceptions below the

priority of the debug exception.

Another problem is critical sections (atomic code): the debug

exception does not interrupt their execution. In ARMv7-M, criti-

cal sections are implemented by temporarily raising the current

execution priority to the highest one (commonly referred to as

disabling exceptions) by changing the value of a CPU’s special reg-

ister (PRIMASK). However, ARMv7-M de�nes a method to e�ectively

raise the execution priority to any level by writing to the BASEPRI

special register. By modifying critical sections of the traced soft-

ware so that they raise their priority by changing BASEPRI instead

of PRIMASK, one can lower priorities of critical sections below the

priority of the debug exception.3 This way, critical sections remain

mutually exclusive, but the debug exception can interrupt them.

However, one needs to be careful when modifying the execution

priority of critical sections. The FrankenTrace exception routine

adds only a delay, so in most circumstances it is safe to execute.

However, in some cases the routine might cause a fault because of

hardware restrictions (e.g., TI CC2650 cannot execute code from

the main �ash memory while switching the frequency source to

another oscillator). For this reason, we do not modify the critical

sections of low-level hardware drivers.

5.3 Reconstructing a Trace

To trace a single range of addresses, two DWT comparators are

required: one emits a tracing packet, the other triggers the debug

exception. TI CC2650 features four comparators, so only two ad-

dress ranges may be traced during a single iteration, and because

of the invasively introduced delays, the generated traces cannot be

straightforwardly merged with each other by comparing transfers’

timestamps. However, a single trace conveys an order between

transfers within two address ranges. The order of all transfers can

be reconstructed by tracing multiple pairs of ranges and combining

the obtained partial orders. For instance, when tracing transfers

within three address ranges (A, B, C), to infer their total order one

needs to trace three pairs (for address ranges: A+B, A+C, B+C).

The resulting LSU trace can be combined with a PC trace by

matching PC values of transfers in the former with PC values at

consecutive cycles in the latter. Moreover, DWT can be con�gured

to emit tracing packets when an execution of the FrankenTrace’s

exception routine starts and ends. This information can be exploited

to assess timestamp di�erences between the LSU trace and the PC

trace, and thus facilitate combining them into a full trace. Optionally,

noninvasive LSU tracing may be performed (i.e., without triggering

the debug exception). It would result in gaps in the trace each time

the ITM bu�er over�ows, but it would yield correct timestamps

and thus could further help align the LSU trace with the PC trace.

3Critical sections implemented with mov rn, 1; msr PRIMASK, rn, can be easily
patched by just by replacing PRIMASK with BASEPRI to execute the sections with
priority 1, since the debug exception is executed with priority 0.
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6 INTERFACING WITH THE TPIU

We applied FrankenTrace to trace software run on TI CC2650 of a

1KT’s CherryMote device. In doing so, we evaluated several hard-

ware options of capturing tracing packets output on SWO.

Tracing a single SoC: In our main experiments, we employed

a USB logic analyzer based on a popular Cypress CY7C68013A

chip [9] (the same chip as used in HATBED), which allows for

reliable sampling at up to 24 MHz. For robust symbol recovery we

sample 3 times per symbol, achieving a maximum e�ective UART

symbol rate of 8 Mbaud. The captured data is then processed in

software by two decoders from the open-source sigrok project:4

�rst by a UART decoder and then by an ARM ITM decoder. We

modi�ed the latter to save the decoded tracing packets to a CSV

that we subsequently process to generate the �nal trace.

Scaling to a testbed: To assess whether FrankenTrace could

be a�ordably deployed on a large scale, we �rst tested whether

CherryMotes’ low-cost supervising nodes, which accompany each

TI CC2650, could be directly used to capture the tracing packets.

Unfortunately, their built-in UART is not capable of reliable com-

munication at the required speeds. However, CherryMote features

an external USB port, which can host an FTDI FT232RL [8] UART-

USB dongle. Preliminary experiments indicate that this allows for

reliably receiving data over UART at 2 Mbaud, and that the e�ective

tracing speed is limited only by the performance of the supervising

node. This leads us to believe that FrankenTrace could be applied to

many existing devices which feature low-speed debug components

for as low as $10 (a cost of the UART-USB dongle), or incorporated

into new designs for $5 (a cost of the FT232RL chip). Moreover, the

M3 nodes of IoT-LAB already feature even faster UART modules

(advertised at 12 Mbaud) and more performant supervising nodes,

which leads us to believe that FrankenTrace can be easily deployed

on IoT-LAB without any hardware modi�cation.

7 CASE STUDY

To demonstrate the potential of FrankenTrace’s PC and LSU tracing,

we ran on 1KT’s CherryMote an application that communicates

over a low-power radio and blinks an LED when a packet is re-

ceived, and traced its execution to analyze how it interacts with the

SoC’s peripherals. The tracing took 35 s (incl. the sleep intervals

of the application) and recorded ∼140,000 CPU cycles and ∼2,500

data transfers. For comparison, invasive tracing done by stepping

through subsequent instructions with a JTAG debugger running on

1KT’s supervising node would require approximately 10 hours.

An LSU trace can be used to analyze accesses to memory-mapped

registers of an SoC’s components, for instance, to determine the val-

ues stored in those registers that a�ect the device con�guration. An

LSU trace can be simply searched for the addresses of the registers

of interest. In contrast, deriving them from a source code analysis

may not be easy, as the addresses for some memory accesses and

the written values may not be known statically, and a given register

can be accessed multiple times. In the sample program, we looked

for register DOE31_0, whose bits correspond to enabling output

on GPIO pins. We saw several accesses to the register in the LSU

trace. The value of the last write was 0x00106000, which meant

that output was enabled on pins 13, 14, and 20.

4https://sigrok.org – an open-source signal analysis software suite

As an interesting application of PC tracing, in turn, we selected

timing analysis of busy-waiting loops. Such loops are used, for ex-

ample, to wait for a memory-mapped register to change its value. In

the considered program, we were able to identify such a loop using

the LSU trace: in the trace, there was a write to the CMDR register,

followed by two consecutive reads of the RFACKIFG register for the

same PC value. The CMDR register is used to issue commands to the

low-power radio (RF core) present in TI CC2650, and the RFACKIFG

register indicates whether the RF core has acknowledged a com-

mand. Our �nding indicated that the RFACKIFG register was read

in a busy-waiting loop. Looking up the PC value of the RFACKIFG

read in the PC trace and the program binary, we learned that in-

deed there was a busy-waiting loop that waited for RFACKIFG to be

non-zero, and that the loop executed for around 3,168 cycles (66 µs).

8 CONCLUSIONS

We believe that FrankenTrace unlocks the potential of widely avail-

able low-speed ARMv7-M debug components. Its source code, along

with a complete usage example, is available in our repository.5

For future work we envision testing FrankenTrace in more hard-

ware setups (such as IoT-LAB’s nodes), and revisiting the trade-

o� between invasiveness, trace completeness, and tracing time.

For example, an online adaptive selection of tracing parameters

(such as size of frequently accessed address ranges and the delay

duration) could reduce overall tracing time and invasiveness of

LSU tracing. Moreover, FrankenTrace could be extended to obtain

more information-rich traces by exploiting other features of the

low-speed debug components. For instance, DWT counters and

comparators can be employed to trace the duration of multicycle

instructions and instruction fetch stalls, providing an insight into

the internal operation of Cortex-M’s pipeline.
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