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Supplementary Text 
 
Text S1. Databases used in DeepMSA2 

Sequence databases used in DeepMSA2 are categorized into two groups: genome and metagenome databases. 
For genome sequence databases, both Uniclust30 and UniRef30 contain HHblits-style Hidden Markov Model (HMM) 
profiles, where protein sequences in UniProtKB1 are clustered at a threshold of 30% pairwise sequence identity 
employing MMseqs22. Uniclust30 is the version of the database generated before 2019, while UniRef30 was created 
after 2019. Uniref90 offers sequences sourced from UniProtKB, meticulously clustered at a threshold of 90% pairwise 
sequence identity utilizing MMseqs2. Within each cluster, the representative sequence is exclusively retained in the 
database, ensuring optimal representation. In total, those three genomics sequence databases contain 464 million 
sequences.  

For metagenome databases, Metaclust was devised through the clustering and amalgamation of approximately 
1.59 billion protein sequence fragments, which are predicted by Prodigal3, sourced from around 2,200 metagenomics 
and meta-transcriptomic datasets acquired from JGI4. The clustering was carried out with a 50% sequence identity 
threshold, while ensuring a coverage of 90%. Mgnify was collected by the EBI Metagenomics project5 and was 
clustered by MMseqs2 using coverage and sequence identity threshold at 90%. BFD is an HHblits-style HMM 
database that was created by clustering 2.5 billion protein sequences from UniProtKB30, Metaclust, soil reference 
catalog, and marine eukaryotic reference catalog assembled by Plass6 using MMseqs2 with 30% pairwise sequence 
identity. Those three third-party metagenomics sequence databases contain ~3.2 billion sequences.  

In addition, three additional metagenomics sequence databases, TaraDB, MetaSourceDB, and JGIclust were 
newly created for DeepMSA2. The three in-house databases, which were built using data collected from EBI 
Metagenomics project and the Joint Genome Institute (JGI), contain in total 35.6 billion sequences, which are 
approximately 11 times as large as the above-mentioned three third-party metagenomics databases (~3.2 billion). 
Among them, TaraDB was created from the ‘Tara Oceans’ project hosted on EBI Metagenomics with 245 
metagenomics sequencing runs (https://www.ebi.ac.uk/metagenomics/studies/ERP001736). The raw read sequences 
were assembled by MEGAHIT v1.0 to contigs and only the contigs with >500 nucleotides were selected. Next, 
Prodigal (v2.6) was used with parameters ‘-c –m p meta’ to identify ORFs from metagenome data and translate the 
gene to protein productions. Finally, CD-HIT (v4.6)7 was utilized to cluster protein sequences in each sample, and the 
sequence identity threshold was set to 95% to remove the identical sequence. Next, MetaSourceDB collected 
metagenome data from four large environmental biomes from the EBI. Those four biomes, including ‘Fermentor’, 
‘Soil’, ‘Lake’, and ‘Gut’, cover all typical biomes of the EBI database. In total, 1,705 high-quality samples were 
selected, assembled, and clustered by the similar pipeline used in Tara DB. In addition to Prodigal, FragGeneScan 
(v1.20)8 was also used to predict ORFs from assembled contigs to avoid missing the short sequences. Finally, JGIclust 
was created from Joint Genome Institute (JGI), containing ~25,000 metagenomics and meta-transcriptomic samples. 
For each project, the assembled protein sequences (‘*.assembled.faa’) were downloaded and clustered with 90% 
sequence identity at 90% coverage by MMseqs2. For each cluster of one project, only the representative sequence was 
kept in the in-house JGIclust database. To further remove the redundancy, MetaSourceDB, TaraDB, and JGIclust 
were iteratively clustered to 50% identity using MMseqs2’s linear cluster pipeline. Coverage was set at 0.8, using ‘—
cov-mode 1’. Due to the storage and memory limitation, the entire sequence database was split to difference small 
chunks (<100GB) and clustered using the iterative greedy strategy. These chunks were merged into larger chunks, 
ensuring the merged databases did not exceed 200GB and the merged chunks were then re-clustered to 50% identity. 
The final large chunks that cannot further be merged were pairwise clustered. Redundant sequences were removed 
after each clustering round before proceeding to the next pairwise clustering. The process culminated in the final 
database clustered at 50% identity.  

 
Text S2. dMSA, qMSA, and mMSA pipelines used in DeepMSA2  

dMSA (which a short name of the original DeepMSA pipeline9) is comprised of three stages. In Stage 1, HHblits10 
from the HH-suite package11 is used to search the query sequence against the Uniclust30 database12 to generate the 
first-level MSA. If there are not enough homologous sequences in the first-level MSA, i.e., the number of effective 
sequences (Neff) of the first-level MSA generated by Stage 1 is <128, Stage 2 will be performed. In Stage 2, 
Jackhmmer from the HMMER package13 is used to search the query sequence against the UniRef90 database14 to 
generate homologous sequences (hits) for the construction of a custom HHblits-formatted database. Using the first-
level MSA as input, HHblits is again applied to search against the custom database to generate the second-level MSA. 
If the Neff of the second-level MSA is still <128, Stage 3 will be performed. In Stage 3, similar to Stage 2, the second-
level MSA is used to jump-start an HHblits search against a new custom HHblits-formatted database to get the third-

https://www.ebi.ac.uk/metagenomics/studies/ERP001736
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level MSA. The new custom database in Stage 3 is built by HMMsearch from HMMER to search a profile Hidden 
Markov Model (HMM) built by HMMbuild from the HMMER package against the Metaclust15 metagenome sequence 
database.  

qMSA (which stands for “quadruple MSA”) contains four stages to perform Hhblits2, Jackhmmer, Hhblits3, and 
HMMsearch searches against UniRef30 (version 2020_01), UniRef90, BFD, and Mgnify, respectively. The sequence 
hits from Jackhmmer, HHblits3 and HMMsearch in Stage 2, 3 and 4 of qMSA are converted into an HHblits-formatted 
database, against which the HHblits2 search is performed using the MSA input from the previous stage.  

mMSA (which stands for “multi-level MSA”) utilizes the alignment in Stage 3 of qMSA as a probe by 
HMMsearch to search through the in-house metagenomics sequence databases (TaraDB, MetaSourceDB and 
JGIclust), and the resulting sequence hits are converted into a new sequence database. This database is then used as 
the target database, which is searched by HHblits2 with three seed MSAs (MSAs from stage 2 of dMSA, and stages 
2 and 3 of qMSA), to derive three new MSAs.  
 
Text S3. The definition of Zscore used in LOMETS3 pipeline  

The 𝑍𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) in the above scoring function includes three score terms from contacts, distances, and hydrogen 
bond geometries predicted by AttentionPotential and DeepPotential, and one sequence profile score term from the 
original profile-based threading methods as follows: 

𝑍𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑤!	𝑍𝑠𝑐𝑜𝑟𝑒"#$(𝑖, 𝑗) + 𝑤%	𝑍𝑠𝑐𝑜𝑟𝑒&"'(𝑖, 𝑗)																																																					 
+𝑤(	𝑍𝑠𝑐𝑜𝑟𝑒)*(𝑖, 𝑗) + 𝑤+	𝑍𝑠𝑐𝑜𝑟𝑒,-./(𝑖, 𝑗)																																															(𝑆1) 

where 𝑍𝑠𝑐𝑜𝑟𝑒"#$(𝑖, 𝑗)  is the Zscore of the mean absolute error (MAE) based on the predicted distance map, 
𝑍𝑠𝑐𝑜𝑟𝑒&"'(𝑖, 𝑗) is the Z-score of the number of overlapping contacts based on the predicted contact map (CMO), 
𝑍𝑠𝑐𝑜𝑟𝑒)*(𝑖, 𝑗) is the Z-score based on the predicted hydrogen bond geometry (HB), and 𝑍𝑠𝑐𝑜𝑟𝑒,-./(𝑖, 𝑗) is a score 
which is based on the original profile threading scores. The formulas of these four Z-scores are as follows: 

𝑍𝑠𝑐𝑜𝑟𝑒"#$(𝑖, 𝑗) =
−𝑀𝐴𝐸(𝑖, 𝑗)— ⟨−𝑀𝐴𝐸(𝑗)⟩	

𝜎(−𝑀𝐴𝐸(𝑗)) 																																														(S2) 

𝑀𝐴𝐸(𝑖, 𝑗) =
∑ [𝛿(𝑚, 𝑛)|𝑑0,2

345-6 − 𝑑0,2
750,8975| + (1 − 𝛿(𝑚, 𝑛))𝐺𝑎𝑝𝑃𝑒𝑛𝑎𝑙𝑡𝑦]98:

0,2

∑ 𝛿(𝑚, 𝑛)98:
0,2

																			(𝑆3) 

where 𝑑0,2
345-6  is the predicted distance between residue m and n in the query structure, 𝑑0,2

750,8975  is the predicted 
distance between residue m and n in the template structure, GapPenalty = 1, ali means the length of alignment, and 

𝛿(𝑚, 𝑛) = L1,𝑚	𝑎𝑛𝑑	𝑛	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑔𝑎𝑝0, 𝑒𝑙𝑠𝑒																																	. ⟨−𝑀𝐴𝐸(𝑗)⟩ and 𝜎(−𝑀𝐴𝐸(𝑗))	are the average and standard deviation of the 

MAE scores across all templates for the j-th program, respectively. 

𝑍𝑠𝑐𝑜𝑟𝑒&"'(𝑖, 𝑗) =
𝐶𝑀𝑂(𝑖, 𝑗) − ⟨𝐶𝑀𝑂(𝑗)⟩

𝜎(𝐶𝑀𝑂(𝑗)) 																																											(S4) 

𝐶𝑀𝑂(𝑖, 𝑗) =
𝑁(𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑀345-6, 𝐶𝑀750,8975))

𝑁(𝐶𝑀345-6) 																																															(𝑆5) 

where 𝑁(𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑀345-6, 𝐶𝑀750,8975)) is the number of overlapping contacts between the predicted contact map 
and the contact map derived from the aligned template, and 𝑁(𝐶𝑀345-6)  is the number of predicted contacts. 
⟨𝐶𝑀𝑂(𝑗)⟩ and 𝜎(𝐶𝑀𝑂(𝑗))	are the mean and standard deviation of the contact overlap scores across all templates for 
the j-th program, respectively. 

𝑍𝑠𝑐𝑜𝑟𝑒)*(𝑖, 𝑗) =
𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) − ⟨𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)⟩

𝜎(𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)) 																																																							(S6) 

𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =X
1

1 + (
|𝑚𝑖𝑛(|𝜃0,2

345-6 − 𝜃0,2
750,8975|, 𝜋 − |𝜃0,2

345-6 − 𝜃0,2
750,8975|)|

𝜃 )%

98:

0,2
									(𝑆7) 

where 𝜃0,2
345-6 is the predicted hydrogen bond angle between residue m and n in the query structure, 𝜃0,2

750,8975 is the 
predicted hydrogen bond angle between residue m and n in the template structure, and 𝜃 = 15. ⟨𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗)⟩ and 
𝜎(𝐻𝐵𝑠𝑐𝑜𝑟𝑒(𝑗))	are the average and standard deviation of the alignment scores across all templates for the j-th 
program, respectively. 

𝑍𝑠𝑐𝑜𝑟𝑒,-./(𝑖, 𝑗) =
𝑆(𝑖, 𝑗) − ⟨𝑆(𝑗)⟩

𝜎(𝑆(𝑗)) 																																																														(S8) 

where 𝑆(𝑖, 𝑗) is the alignment score of the i-th template for the j-th program, and ⟨𝑆(𝑗)⟩ and 𝜎(𝑆(𝑗))	are the average 
and standard deviation of the alignment scores across all templates for the j-th program, respectively. 
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Text S4. Five contact predictors used in D-I-TASSER 
In addition to contact predictions from AttentionPotential and DeepPotential, D-I-TASSER also utilizes contact 

map information from TripletRes16, ResTriplet17, ResPRE18, ResPLM17, and NeBcon19, the methods of which are 
outlined below. 

TripletRes (https://zhanggroup.org/TripletRes)16 is a recently developed contact map predictor, which we used 
in CASP13. It is noteworthy that the TripletRes method was ranked as the top contact predictor in the CASP13 
experiment20. Starting from multiple sequence alignments created by DeepMSA2 (see “Text S2”), three co-
evolutionary features are extracted and then ensembled directly by residual neural networks. Each input feature is fed 
into a set of residual blocks and transformed into the output feature with 64 channels. The three output features are 
concatenated along the channel dimension as the input of the last layers. The last set of layers try to learn patterns 
from the three transformed features using another 12 residual blocks. All residual blocks have a channel size of 64, 
and the kernel size of the convolutional layers is set to 3 × 3 with a padding size equal to one. Such a padding 
parameter set-up can keep the spatial information fixed through different layers. Here, we use a convolutional layer 
with a 1×1 kernel size to transform each co-evolutionary input feature and the concatenated features into 64 channels. 
The final contact map prediction is obtained by a sigmoid activation function. 

ResTriplet17 is another recent contact map predictor, which we used in CASP13. ResTriplet is a two-stage 
ensemble model that uses a stacking strategy. In Stage I, three individual base models are trained separately based on 
the three different sets of co-evolutionary features, PRE, PLM and COV, respectively as described above. The base 
models have the same training data and the same neural network structure consisting of 22 residual basic blocks. In 
Stage II, we use a shallow neural network structure to combine the predictions of the base models from Stage I. Thus, 
the predicted contact maps from the base models are considered as the input features in Stage II. To reduce the risk of 
over-fitting, predicted contact maps produced by each base model are generated by 10-fold cross-validation as the 
input features of Stage II. The predicted secondary structures, denoted as PSS, obtained using PSIPRED21 are also 
adopted as an extra feature for the neural network model in Stage II. For shallow convolutional neural networks, the 
size of the receptive fields is usually limited. Hence, a dilated convolutional neural network structure with dilation 
equal to 2 is employed in order to enlarge the size of the receptive fields.  

ResPRE (https://zhanggroup.org/ResPRE)18 is a novel in-house contact map predictor, which consists of two 
consecutive steps of precision matrix-based feature generation and deep residual neural network-based contact 
inference. ResPRE is the average ensemble of ten base models trained by different subsets of the whole training data. 

ResPLM17 is another contact map predictor similar to ResPRE. The only difference is that ResPLM was trained 
using the PLM feature.  

NeBcon (https://zhanggroup.org/NeBcon)19 is a meta-approach designed for contact map prediction. In this study, 
we retrained NeBcon to improve its long-range contact prediction precision by using the a naïve Bayes classifier 
(NBC) to integrate eight state-of-the-art contact prediction methods, including four deep learning-based methods: 
DeepPLM17, DeepCov22, Deepcontact23, and DNCON224, three co-evolution-based methods: GREMLIN25, 
CCMpred26, and FreeContact27, and one meta-server-based methods MetaPSICOV228. NeBcon has two variants, 
NeBconA and NeBconB, designed for Cα and Cb atoms, respectively. 

 
Text S5. D-I-TASSER force field E-groups2-7 
E-Group2: Template-based restraints 

Four types of restraints have been derived from the LOMETS3 templates and used to guide the D-I-TASSER 
simulations. 

Template-based short-range distance restraints. This energy term considers only the short-range interactions 
which occur for |i-j|≤6 for the i-th and j-th residues of the model. 

𝐸;:<7=>.-7 =X X 𝐸;:<7=>.-7^𝑑:?_
:@A

?B:

CD!

:E!
																																																																			(S9) 

𝐸;:<7=>.-7^𝑑:?_ = L1, 					𝑖𝑓	|𝑑:? − 𝑑:?
F | > 𝜎:?F

0, 				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
																																																						(S10) 

where 𝑑:? is the Cα distance between the i-th and j-th residues of the model. 𝑑:?F  and 𝜎:?F  are the average and the mean 
square deviation of the Cα distances, respectively, between the i-th and j-th residues that are collected from the 
threading templates.  

Template-based long-range distance restraints. This energy term considers only the long-range interactions for 
|i-j|>6 for the i-th and j-th residues of the model. 

https://zhanggroup.org/TripletRes
https://zhanggroup.org/ResPRE
https://zhanggroup.org/NeBcon
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𝐸;:<7
C.2G =X X 𝐸;:<7

C.2G^𝑑:?_
C

?B:@A

CDH

:E!
																																																																	(S11) 

𝐸;:<7
C.2G^𝑑:?_ = −

1
max(1, |𝑑:? − 𝑑:?F |)

																																																												(S12) 

where 𝑑:? is the Cα distance between the i-th and j-th residues of the model. 𝑑:?F  is the average of the Cα distances 
between the i-th and j-th residues collected from the threading templates.  

Template-based contact restraints for Cα. This energy term considers the contact information corresponding to 
Cα atoms, which is extracted from the templates. 

𝐸FI.2&J =X X 𝐸FI.2&J ^𝑑:?_
C

?B:

CD!

:E!
																																																																														(S13) 

𝐸FI.2&J ^𝑑:?_ = L−𝑈:? , 					𝑖𝑓	𝑑:? < 6.5Å
0, 											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

																																																																						(S14) 

𝑈:? = k
1 + 4 ∗ m𝑐𝑜𝑛𝑓:?&J − 𝑐𝑜𝑛𝑓I47&Jm, 	𝑖𝑓	𝑐𝑜𝑛𝑓:?&J > 𝑐𝑜𝑛𝑓I47&J

1 − 2 ∗ m𝑐𝑜𝑛𝑓:?&J − 𝑐𝑜𝑛𝑓I47&Jm, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		
																															(S15) 

where 𝑑:? is the Cα distance between the i-th and j-th residues of the model; 𝑐𝑜𝑛𝑓:?&J is the contact confidence score 
for the i-th and j-th Cα atoms of the model, where the confidence scores are based on the threading results; 𝑐𝑜𝑛𝑓I47&J is 
the pre-tuned cut-off value for the contact confidence score for Cα atoms, which is query type-dependent. 

Template-based contact restraints for the center of side-group heavy atoms (SG). This energy term considers 
the contact information corresponding to the center of side-group heavy atoms, which is extracted from the templates. 

𝐸FI.2=K =X X 𝐸FI.2=K ^𝑑:?=K_
C

?B:

CD!

:E!
																																																																																					(S16)	

𝐸FI.2=K ^𝑑:?=K_ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧−𝑈:?

=K ,																																																																																									𝑑:?=K < 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_										

−
1
2𝑈:?

=K

⎣
⎢
⎢
⎢
⎡
1 − 𝑠𝑖𝑛

⎝

⎜
⎛
𝑑:?=K − x

𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_ + 𝐷
2 z

𝐷 − 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_
𝜋

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
, 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_ ≤ 𝑑:?=K < 𝐷		

1
2𝑈:?

=K �1 + 𝑠𝑖𝑛�
𝑑:?=K − �

𝐷 + 80
2 �

(80 − 𝐷) 𝜋�� , 																													𝐷 ≤ 𝑑:?=K < 80Å															

𝑈:?=K , 																																																																																													𝑑:?=K ≥ 80Å																								

		(S17) 

𝑈:?=K = k
1 + 4 ∗ m𝑐𝑜𝑛𝑓:?=K − 𝑐𝑜𝑛𝑓I47=K m, 	𝑖𝑓	𝑐𝑜𝑛𝑓:?=K > 𝑐𝑜𝑛𝑓I47=K

1 − 2 ∗ m𝑐𝑜𝑛𝑓:?=K − 𝑐𝑜𝑛𝑓I47=K m, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		
																																								(S18) 

where 𝑑:?=K is the distance between the i-th and j-th centers of the side-group heavy atoms in the model; 𝑐𝑜𝑛𝑓:?=K is the 
contact confidence score for the i-th and j-th pseudo side-group heavy atoms in the model, where the confidence scores 
are based on the threading results; 𝑐𝑜𝑛𝑓I47&J  is the pre-tuned cut-off value for the contact confidence score for the 
centers of the side-group heavy atoms, which is query type-dependent. 𝐷 = 2 + 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_ , where 
𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_ is an amino acid type-dependent cut-off value for the center of side-group heavy atoms. 
 
E-Group3: Burial interaction restraints 

This potential represents the general propensity of amino acids to be buried or exposed to the solvent.  

𝐸L4-:98=K = −X𝐸(𝑥: , 𝑦: , 𝑧:) ∗ 𝑃(𝐴𝑆𝐴:)
C

:E!

																																																															(S19) 

𝐸(𝑥: , 𝑦: , 𝑧:) = min(0,max(-1,	
(𝑥: − 𝑥I)%

𝑥M%
+
(𝑦: − 𝑦I)%

𝑦M%
+
(𝑧: − 𝑧I)%

𝑧M%
-2.5))																							(S20) 

where 𝑃(𝐴𝑆𝐴:)	is the accessible surface (ASA) of the i-th residue predicted through PSSpred29. If the i-th residue is 
predicted as buried, the value of	𝑃(𝐴𝑆𝐴:) is made negative. (𝑥: , 𝑦: , 𝑧:) is the coordinate for the center of the side-
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group heavy atoms (SG) for the i-th residue. (𝑥M, 𝑦M, 𝑧M) is the length of the principal axes of the protein ellipsoid, and 
(𝑥I , 𝑦I , 𝑧I) is the center of the protein ellipsoid30.  
 
E-Group4: Secondary structure-based restraints 

Secondary structure restraints for Cα. These three potential terms try to encourage local structures to form local 
secondary structures, where the secondary structure information for the query protein is predicted by PSSpred 29. 

𝐸<5I&J = 𝑤<5I!X 𝐸NOPQR ^𝑑:,:@+_
CD+

:E!
+𝑤<5I%X 𝐸NOPQR^𝐵S���⃑ , 𝐵S@+��������⃑ 	_

CD+

:E!
+𝑤<5I(X 𝐸NOPQR (𝐶S���⃑ , 𝐶S@%��������⃑ )

CD%

:E!
														(S21) 

𝐸NOPQR^𝑑:,:@+_ = �
−2 −

𝐷𝐹: ∗ 𝐷𝐹:@! +𝐷𝐹:@( ∗ 𝐷𝐹:@+
2 , 𝑖𝑓	𝛼 − ℎ𝑒𝑙𝑖𝑥

−2 − (𝐷𝐹: ∗ 𝐷𝐹:@! +𝐷𝐹:@( ∗ 𝐷𝐹:@+), 						𝑖𝑓	𝛽 − 𝑠ℎ𝑒𝑒𝑡
0, 																																																																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒				

																																																			(S22) 

𝐸<5I^𝐵S���⃑ , 𝐵S@+��������⃑ _ =

⎩
⎨

⎧−
𝐷𝐹: ∗ 𝐷𝐹:@! +𝐷𝐹:@( ∗ 𝐷𝐹:@+

2 , 			𝑖𝑓	𝑆:,:@+	𝑖𝑠	ℎ𝑒𝑙𝑖𝑥	𝑎𝑛𝑑	𝐵S���⃑ ∗ 𝐵S@+��������⃑ > 0.9				

−(𝐷𝐹: ∗ 𝐷𝐹:@! +𝐷𝐹:@( ∗ 𝐷𝐹:@+), 	𝑖𝑓	𝐵S���⃑ ∗ 𝐵S@+��������⃑ < −0.3	𝑜𝑟	𝐵S���⃑ ∗ 𝐵S@+��������⃑ > 0.5
0, 																																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																					

										(𝑆23) 

𝐸<5I^𝐶S���⃑ , 𝐶S@%��������⃑ _ = −
𝐷𝐹: +𝐷𝐹:@! +𝐷𝐹:@%

2 ∗
min^0.71, 𝐶S���⃑ ∗ 𝐶S@%��������⃑ _

0.71 																																																													(S24) 

𝐷𝐹: = minx𝑚𝑎𝑥 x
2.2 ∗ 𝐿M.(U

(𝑥: − 𝑥I)% + (𝑥: − 𝑥I)% + (𝑥: − 𝑥I)%
, 0.5z , 1z																																																									(S25) 

where (𝑥: , 𝑦: , 𝑧:) is the coordinate for the Cα atom of the i-th residue. (𝑥M, 𝑦M, 𝑧M) is the length of the principal axes of 
the protein ellipsoid, and (𝑥I , 𝑦I , 𝑧I) is the center of the protein ellipsoid. 2.2 ∗ 𝐿M.(U is the estimated radius of gyration 
for a protein with length L. 

For the first term, the conditions for forming an 𝛼 − ℎ𝑒𝑙𝑖𝑥  include: 𝑑:,:@+ < 7.53Å, 4Å < 𝑑:,:@( < 8Å,𝑈S���⃑ ∗
𝑈S@%��������⃑ <0, 𝑈S@!��������⃑ ∗ 𝑈S@(��������⃑ <0, 𝑈S���⃑ ∗ 𝑈S@(��������⃑ > 0, and the local segment 𝑆:@!,:@( is not predicted to be a sheet. Here, 𝑈S���⃑  is the unit 
vector starting from the i-th Cα atom and pointing to the (i+1)-th Cα atom. The conditions for forming β-sheets include: 
𝑑:,:@+ > 11Å, 𝑎𝑟𝑐𝑐𝑜𝑠 *!"#VVVVVVVVVV⃑ ∗*!"$VVVVVVVVVV⃑

|*!"#VVVVVVVVVV⃑ |∗|*!"$VVVVVVVVVV⃑ |
< 45°, 𝑎𝑟𝑐𝑐𝑜𝑠 *!"#VVVVVVVVVV⃑ ∗*!"%VVVVVVVVVV⃑

|*!"#VVVVVVVVVV⃑ |∗|*!"%VVVVVVVVVV⃑ |
> 135°, and the local segment 𝑆:@!,:@( is not predicted 

to be a helix. 𝐵S@!��������⃑  is the hydrogen bond direction of the (i+1)-th residue, which is equal to Z!
VVVV⃑ ×Z!"#VVVVVVVVVV⃑

|Z!VVVV⃑ ×Z!"#VVVVVVVVVV⃑ |
. The second term 

focuses on the direction of the hydrogen bond 𝐵S���⃑ , while the third term concerns 𝐶S���⃑ , which is equal to Z!&#
VVVVVVVVVV⃑ DZ!VVVV⃑

\Z!&#VVVVVVVVVV⃑ DZ!VVVV⃑ \
. 

𝑤<5I!, 𝑤<5I%, 𝑤<5I( are the weights used to balance each energy term. 
Penalty for crumpling structures. This potential term imposes a penalty to the irregular crumpled structures.  

𝐸I-40,8:2G =X 𝐸I-40,8:2G(𝑖)
CDU

:E!
																																																																								(S26) 

𝐸I-40,8:2G(𝑖) = k1, 	𝑖𝑓		𝑈S,S@+
����������⃗ ∙ 𝑈S@+,S@U���������������⃗ < 0, 	𝑈S@+,S@U���������������⃗ ∙ 𝑈S@U,S@!%�����������������⃗ < 0	𝑎𝑛𝑑	𝑈S,S@+����������⃗ ∙ 𝑈S@U,S@!%�����������������⃗ > 0

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																																																			
				(S27) 

where 𝑈S,]������⃗   is the unit vector starting from the i-th Cα atom and pointing to the j-th Cα atom. 
Alpha/beta fragment restraints. This potential encourages the continuous alpha/beta fragments for secondary 

structures. 

𝐸<5I
/-9G =X 𝐸<5I

/-9G(𝑖)
C

:E!
																																																																																									(S28) 

𝐸<5I
/-9G(𝑖) = �

m𝑑:,:@H − 10.5m, 								𝑖𝑓	𝑆:,:@H	𝑖𝑠	ℎ𝑒𝑙𝑖𝑥
m𝑑:,:@A − 19.1m ∗ 2, 	𝑖𝑓𝑆:,:@A	𝑖𝑠	𝑠ℎ𝑒𝑒𝑡
0, 																																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒										

																																										(S29) 

 
E-Group5: Statistical pairwise potentials 

Cα-SG pairwise potential. This potential is used for atomic packing and solvation between Cα atom and side-
group heavy atoms.  
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𝐸,9:-&JD=K =XX𝐸,9:-&JD=K^𝑑:?&JD=K_
C

?^:

C

:

																																																																					(S30) 

𝐸,9:-&JD=K =

⎩
⎪
⎨

⎪
⎧x

𝑟!
𝑑:?&JD=K

z
%

−
1
2 , 	𝑖𝑓	𝑟! ≤ 𝑑:?&JD=K < 𝑟%

1
2 ,																												𝑖𝑓	𝑑:?

&JD=K < 𝑟!
0, 																												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	

																																									(S31) 

where 𝑑:?&JD=K is the distance between the Cα atom of the i-th residue and the center of the side-group heavy atoms for 
the j-th residue. 𝑟!=3.14Å and 𝑟%=5.22Å. 

SG-SG pairwise potential. This potential is used for atomic packing and solvation between side-group heavy 
atoms. 

𝐸,9:-=K =XX𝐸,9:-=K (𝑑:?=K)
C

?^:

C

:

																																																																											(S32) 

𝐸,9:-=K ^𝑑:?=K_ = k𝑈:,?
.-: , 		𝑖𝑓	𝑑:?=K < 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_

0, 								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																										
																																					(S33) 

where 𝑑:?=K is the distance between the i-th and j-th centers of the side-group heavy atoms in the model; 𝑑I47=K ^𝐴𝐴: , 𝐴𝐴?_ 
is an amino acid type-dependent cut-off value for 𝑑:?=K. 𝑈:,?.-: is the generic orientation-dependent contact potential 
derived from 6,500 non-redundant high-resolution PDB structures 31, and the contacts are weighted by the sum of the 
BLOSUM 32 mutation score between the residue pairs of the query and the PDB structures over a window of ±5 
neighboring residues. This potential is query sequence specific but an alignment between the query and the PDB 
structure is not needed since we count all the contact pairs in the PDB structures that have the same amino acid identity 
^𝐴: , 	𝐴?_ to the query, where 𝐴: and 𝐴? are the amino acid identities of the residues. 

Parallel Cα-Cα pairwise potential. This potential is used for atomic packing and solvation between parallel Cα 
atoms. 

𝐸_&J =XX𝐸_&J^𝑑:?_
C

?B:

CD:

:

																																																																																																		(S34) 

𝐸_&J^𝑑:?_ = �minx0,−
𝑟!%

𝑚𝑎𝑥^𝑟!%, 	𝑑:?% _
+
1
2z , 	𝑖𝑓	𝐶 ∗ 𝐶]

���⃑ > 0.5		

0, 																																																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒												
																									(S35) 

Here, 𝑟!=4.77Å. 𝐶S���⃑ ∗ 𝐶]���⃑ > 0.5	 indicates that the i-th Cα vector, 𝑈S���⃑ , and the j-th Cα vector, 𝑈]���⃑ , are parallel, where 𝑈S���⃑  is 

the unit vector starting from the i-th Cα atom and pointing to the (i+1)-th Cα atom, and 𝐶S���⃑ =
Z!&#VVVVVVVVVV⃑ DZ!VVVV⃑

\Z!&#VVVVVVVVVV⃑ DZ!VVVV⃑ \
 as shown in Eq. 

18. 
Non-parallel Cα-Cα pairwise potential. This potential is used for atomic packing and solvation between non-

parallel Cα atoms. 

𝐸`_&J =XX𝐸`_&J^𝑑:?_
C

?B:

CD:

:

																																																																																	(S36) 

𝐸`_&J^𝑑:?_ = �
𝑟!%

𝑑:?%
−
1
2 , 	𝑖𝑓	𝐶S

���⃑ ∗ 𝐶]���⃑ ≤ 0.5, 	𝑑:? < 5Å

0,														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																															
																														(S37) 

Here, 𝑟!=3.48Å. 𝐶S���⃑ ∗ 𝐶]���⃑ ≤ 0.5 indicates that the i-th Cα vector, 𝑈S���⃑ , and the j-th Cα vector, 𝑈]���⃑ , are not parallel. 
 
E-Group6: Hydrogen bond restraints 

The hydrogen bonds in D-I-TASSER are specified by the backbone geometry following the STRIDE secondary 
structure assignments.  
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𝐸)* =XX𝐸)*	^𝑑:?_
C

?B:

CD!

:E!

																																																																																				(S38) 

𝐸)*	^𝑑:?_ = 		

⎩
⎪⎪
⎨

⎪⎪
⎧−𝑤)*(1 − |𝐶𝐶 − 𝐶𝐶M|)(1 − |𝐵𝐵 − 𝐵𝐵M|) �

1
(1 + |𝑏𝑟𝑖 − 𝑏𝑟M|)

+
1

(1 + |𝑏𝑟𝑗 − 𝑏𝑟M|)
� , 													

														𝑖𝑓		ℎ𝑒𝑙𝑖𝑥	𝑎𝑛𝑑	|𝑖 − 𝑗| = 3																																																																																									

−𝑤)*(|𝐵𝐵| ∗ 𝐶𝐶) �
1

1 + 𝑏𝑟𝑖 2⁄ +
1

1 + 𝑏𝑟𝑗 2⁄ � , 																																																																																	

													𝑖𝑓		𝑠ℎ𝑒𝑒𝑡 and |𝑖 − 𝑗| < 4	𝑓𝑜𝑟	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑜𝑟 |𝑖 − 𝑗| > 20	𝑓𝑜𝑟	𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

(S39) 

 
where CC = 𝐶S���⃑ ∗ 𝐶]���⃑ , 𝐵𝐵 = 𝐵S���⃑ ∗ 𝐵]���⃑ , 	𝑏𝑟𝑖 = m𝜀𝐻S����⃗ − 𝑟m and 𝑏𝑟𝑗 = m𝜀𝐻]���⃗ − 𝑟⃗m. Here, 𝜀=5.0Å or 4.6Å if both donor and 
receptor residues are predicted as α − ℎ𝑒𝑙𝑖𝑐𝑒𝑠 or 𝛽 − 𝑠ℎ𝑒𝑒𝑡𝑠. Similarly, 𝑤)* = 1 if both donor and receptor residues 
are predicted as α − ℎ𝑒𝑙𝑖𝑐𝑒𝑠 and 𝛽 − 𝑠ℎ𝑒𝑒𝑡𝑠; otherwise 𝑤)* = 0.5. 	The cutoff parameters for standard hydrogen 
bonds (𝐶𝐶M, 𝐵𝐵M, 𝑏𝑟M) were calculated from an average of 500 high resolution PDB structures with their secondary 
structure elements assigned by STRIDE 33.  
 
E-Group7: Statistical restraints from the PDB library 

Short-range correlation restraints. This type of potential considers the short-range Cα distance correlation 
between residues. It includes three energy terms as follows.  

𝐸I.--&J = 𝑤I.--!X 𝑐𝑜𝑟𝑟 �𝐴𝐴: , 𝐴𝐴:@%, 𝑏𝑖𝑛^𝑑:,:@%_�
CD%

:E!
																																																																		 

+𝑤I.--%X 𝑐𝑜𝑟𝑟^𝐴𝐴:@!, 𝐴𝐴:@%, 𝑏𝑖𝑛^𝑑:,:@(_, 𝜀: , 	𝑆:@!,:@(_
CD(

:E!
																																											 

+𝑤I.--(X 𝑐𝑜𝑟𝑟^𝐴𝐴:@!, 𝐴𝐴:@%, 𝑏𝑖𝑛^𝑑:,:@+_, 𝑆:@!,:@(_
CD+

:E!
																																					(S40) 

The first term 𝑐𝑜𝑟𝑟^𝐴𝐴: , 𝐴𝐴:@%, 𝑏𝑖𝑛(𝑑:,:@%)_ is the short-range Cα distance correlation between the i-th and the (i+2)-
th residues, which comes from a look-up table. 𝑑:,:@% is the Cα distance between the i-th and (i+2)-th residues of the 
model. 𝑏𝑖𝑛(𝑑:,:@%)  indicates that 𝑑:,:@% < 6.03  or that 𝑑:,:@% ≥ 6.03 . The second term 
𝑐𝑜𝑟𝑟^𝐴𝐴:@!, 𝐴𝐴:@%, 𝑏𝑖𝑛^𝑑:,:@(_, 𝜀: , 	𝑆:@!,:@(_ is from a look-up table for short-range Cα distance correlation between 
the i-th and the (i+3)-th residues. 𝑑:,:@( is the Cα distance between i-th and (i+3)-th residues of the model. 𝑏𝑖𝑛(𝑑:,:@() 
indicates that 𝑑:,:@( ∈ (0, 1Å], (1Å, 2Å], …, or (11Å, ∞]. 𝜀: 	denotes the local structure chirality of three consecutive 
Cα-Cα vectors from the i-th to (i+3)-th residue. 𝑆:@!,:@( denotes that the local segment from the i-th to (i+3)-th residue 
is an alpha-helix, beta-sheet or coil. The third term 𝑐𝑜𝑟𝑟^𝐴𝐴:@!, 𝐴𝐴:@(, 𝑏𝑖𝑛^𝑑:,:@+_, 𝑆:@!,:@(_ also comes from a look-
up table for correlation between the i-th and the (i+4)-th residues. 𝑑:,:@+ is the Cα distance between the i-th and (i+4)-
th residues of the model. 𝑏𝑖𝑛(𝑑:,:@+) indicates that 𝑑:,:@+ ∈ (0, 1Å], (1Å, 2Å], …, or (15Å, ∞]. 𝑤I.--!, 𝑤I.--%, 𝑤I.--( 
are the weights used to balance each energy term. 

Binary excluded volume restraints. This potential considers the general excluded volume interactions, which are 
represented by a smaller hard-sphere potential plus a 1/r type of soft-core potential with a slightly larger range. This 
mimics the minimal observed cutoff distance in real proteins, and allows a few atoms to approach closer than is 
normally observed with an accompanying penalty, thereby partly remedying the coarseness of the discrete lattice 
model. 

𝐸a.8=K =XX𝐸a.8=K ^𝑑:?=K_
C

?B:

CD:

:

																																																																														(S41) 

𝐸a.8=K ^𝑑:?=K_ =

⎩
⎪
⎨

⎪
⎧
1, 	𝑖𝑓

⎩
⎪
⎨

⎪
⎧ 𝐶S���⃑ ∗ 𝐶]���⃑ > 0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:2

,9 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b
,9 ^𝐴𝐴: , 𝐴𝐴?_�							

𝑜𝑟			𝐶S���⃑ ∗ 𝐶]���⃑ < −0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:292 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b92 ^𝐴𝐴: , 𝐴𝐴?_�												

𝑜𝑟	 − 0.5 ≤ 𝐶S���⃑ ∗ 𝐶]���⃑ ≤ 0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:2
,5 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b

,5 ^𝐴𝐴: , 𝐴𝐴?_�

							

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																																																													

(S42) 

where 𝑑:?=K is the distance between the i-th and j-th centers of the side-group heavy atoms in the model. 𝐶S���⃑ ∗ 𝐶]���⃑ >
0.5	and 𝑑:?=K ∈ �𝑑0:2

,9 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b
,9 ^𝐴𝐴: , 𝐴𝐴?_� indicate that the i-th Cα vector, 𝑈S���⃑ , and the j-th Cα vector, 𝑈]���⃑ , are 
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parallel. 𝐶S���⃑ ∗ 𝐶]���⃑ < −0.5 and 𝑑:?=K ∈ �𝑑0:292 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b92 ^𝐴𝐴: , 𝐴𝐴?_� indicate that the i-th Cα vector, 𝑈S���⃑ , and the j-

th Cα vector, 𝑈]���⃑ , are antiparallel. 𝐶S���⃑ ∗ 𝐶]���⃑ < −0.5 and  𝑑:?=K ∈ �𝑑0:2
,5 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b

,5 ^𝐴𝐴: , 𝐴𝐴?_� indicate that the i-th 

Cα vector, 𝑈S���⃑ , and the j-th Cα vector, 𝑈]���⃑ , are perpendicular. �𝑑0:2
,9 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b

,9 ^𝐴𝐴: , 𝐴𝐴?_� , 

�𝑑0:292 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b92 ^𝐴𝐴: , 𝐴𝐴?_�  and �𝑑0:2
,5 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b

,5 ^𝐴𝐴: , 𝐴𝐴?_� , which correspond to 
parallel/antiparallel/perpendicular Cα vectors,  are amino acid type-dependent statistical values that were extracted 
from the PDB.  

Statistical excluded volume restraints. This potential is the upgrade version of excluded volume restraints.  

𝐸0a.8=K =XX𝐸0a.8=K ^𝑑:?=K_
C

?B:

CD:

:

																																																																																	(S43) 

𝐸0a.8=K ^𝑑:?=K_ = 			

⎩
⎪
⎨

⎪
⎧ 𝑈,9^𝐴𝐴: , 𝐴𝐴?_, 𝑖𝑓	𝐶S���⃑ ∗ 𝐶]���⃑ > 0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:2

,9 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b
,9 ^𝐴𝐴: , 𝐴𝐴?_�																

	𝑈92^𝐴𝐴: , 𝐴𝐴?_, 𝑖𝑓	𝐶S���⃑ ∗ 𝐶]���⃑ < −0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:292 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b92 ^𝐴𝐴: , 𝐴𝐴?_�													

𝑈,5^𝐴𝐴: , 𝐴𝐴?_, 𝑖𝑓 − 0.5 ≤ 𝐶S���⃑ ∗ 𝐶]���⃑ ≤ 0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �𝑑0:2
,5 ^𝐴𝐴: , 𝐴𝐴?_, 𝑑09b

,5 ^𝐴𝐴: , 𝐴𝐴?_�
0, 																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																																																			

(S44) 

where  𝑈,9^𝐴𝐴: , 𝐴𝐴?_, 𝑈,9^𝐴𝐴: , 𝐴𝐴?_, and 𝑈,5^𝐴𝐴: , 𝐴𝐴?_, which correspond to parallel/antiparallel/perpendicular, 
are amino acid type-dependent statistical values that were extracted from the PDB.  

Separated Cα-Cα pairwise potential. This potential considers the Cα distance between separated residues.  

𝐸=,9:-!Dc&J =XX𝐸=,9:-!Dc&J ^𝑑:?_
CD!

?B:

CD(

:E(

																																																																										(S45) 

																																																																																																																						 

𝐸=,9:-!Dc&J ^𝑑:?_ =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧−𝑐𝑜𝑟𝑟^𝐴𝐴:D!, 𝐴𝐴:@!, 𝑏𝑖𝑛^𝑑:D%,:@%_, 𝑆:D!,:@!_																																																		
∗ 𝑐𝑜𝑟𝑟^𝐴𝐴?D!, 𝐴𝐴d@!, 𝑏𝑖𝑛^𝑑?D%,?@%_, 𝑆?D!,?@!_, 																																																

												𝑖𝑓

⎩
⎪
⎨

⎪
⎧ 𝐶S���⃑ ∗ 𝐶]���⃑ > 0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �0, 𝑑09b

,9 ^𝐴𝐴: , 𝐴𝐴?_�										

𝑜𝑟		𝐶S���⃑ ∗ 𝐶]���⃑ < −0.5	𝑎𝑛𝑑	𝑑:?=K ∈ �0, 𝑑09b92 ^𝐴𝐴: , 𝐴𝐴?_�													

𝑜𝑟	 − 0.5 ≤ 𝐶S���⃑ ∗ 𝐶]���⃑ ≤ 0.5	𝑎𝑛𝑑	𝑑:?��K ∈ �0, 𝑑09b
,5 ^𝐴𝐴: , 𝐴𝐴?_�

			 	

0, 								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																																				

							(S46) 

where 𝑑:? is the Cα distance between the i-th and j-th residues of the model; 𝑑:?=K is the distance between the i-th and 
j-th centers of the side-group heavy atoms in the model. 𝑐𝑜𝑟𝑟^𝐴𝐴:D!, 𝐴𝐴:@!, 𝑏𝑖𝑛^𝑑:D%,:@%_, 𝑆:D!,:@!_ is similar to the 
description in Eq. S40.  

Contact profile constraints. The potential describes the contact environment.  

𝐸I,-./ =X 𝐸I,-./^𝑁:
,9, 𝑁:92, 𝑁:

,5 , 𝐴𝐴:_
C

:E!
																																																	(S47) 

where 𝑁:
,9, 𝑁:92, 𝑁:

,5 are the number of residues that are in parallel/antiparallel/perpendicular contact with the i-th 
residue. 𝐸I,-./(𝑁:

,9, 𝑁:92, 𝑁:
,5 , 𝐴𝐴:) is the statistic value from the PDB and calculated using the negative logarithm 

of the relative frequency histogram. 
Contact number constraints. This potential accounts for the biases to the expected contact order and contact 

number.  

𝐸`I.2 = |𝑁&.2 −𝑁M&.2| + m𝑆&.2¢¢¢¢¢¢ − 𝑆M&.2m																																																				(S48) 

where 𝑁&.2 is the number of contacts in a decoy structure and 𝑆&.2¢¢¢¢¢¢ is the average sequence separation of the contacts. 
𝑁M&.2 and 𝑆M&.2 are statistical values extracted from the PDB, which are a linear function of 𝛼 ∗ 𝐿, where L is the 
protein length and 𝛼 is 1.5. 
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Supplementary Figures 
 

 

 
Fig. S1. Structural modeling of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (PDB ID: 3fpiA) using 
various I-TASSER workflows. The images are shown for the superposition of the experimental structure (red) with 
predicted models by (A) the best LOMETS template (PDB ID: 4cvhA); (B) I-TASSER without using deep-learning 
restraints; (C) I-TASSER with contact-map prediction (C-I-TASSER); (D) I-TASSER with distance map by 
DeepPotential; (E) I-TASSER with distance maps by DeepPotential and AttentionPotential; (F) I-TASSER with 
distance maps by DeepPotential, AttentionPotential and AlphaFold2. 
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Fig. S2. The average RMSDs between the top five models generated by D-I-TASSER and those by AlphaFold2 for 
91 disordered regions lacking experimentally determined structures on the Benchmark-I dataset of 1,262 proteins. 
 
  



 
 

13 
 

 
Fig. S3. Application of D-I-TASSER to multi-state modeling of the SARS-CoV-2 Spike protein. (A) Open and closed 
states of the experimental structure for the SARS-CoV-2 Spike protein. (B) Open and closed states of the D-I-TASSER 
models superposed with experimental structures for the SARS-CoV-2 Spike protein. (C) Head-to-head comparison 
between TM-scores of open and closed states of the 4,362 D-I-TASSER models for the SARS-CoV-2 Spike protein. 
Notably, the structure members of cluster1 and cluster2 are more similar, resulting in a higher degree of point overlap, 
which makes cluster1 and cluster2 appear relatively "smaller" than cluster3. 
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Fig. S4. The relationship between Neff and TM-score of D-I-TASSER models on CASP15 targets. (A) Neff versus 
TM-score of D-I-TASSER models on 94 CASP15 targets. (B) Two examples of orphan proteins for targets T1122-
D1 and T1131-D1 for which poor modeling performance was observed due to low-information MSAs. 
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Fig. S5. Summary of the protein lengths and experimental structure coverage for the human proteome dataset of 
20,596 proteins. The red bars represent the number of sequences with >90% coverage by known structures; the cyan 
bars correspond to the >60% and ≤90% coverage; the yellow bars are for >30% and ≤60% coverage. 
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Fig. S6. Number of human proteins at each stage of the analysis, where each set is a subset of the previous set. 
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Fig. S7. Frequency analysis of the most commonly predicted functions for 19,512 proteins in the human proteome 
arising from our pipeline. The number of proteins on top 20 BP GO terms (A), CC GO terms (B), MF GO terms (C), 
EC terms (D) and non-peptide ligands (E). 
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Fig. S8. Statistics on human proteome dataset of 19,512 proteins. (A) The ratio of Easy and Hard targets for the 
domain-level and full-chain human proteins. (B) MSA Neff value distribution for domain-level and full-chain human 
proteins. 
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Fig. S9. Schematic of the DeepMSA2 pipeline, which contains four approaches, (A) dMSA, (B) qMSA, (C) mMSA 
and (D) MSA selection. 
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Fig. S10. Definition of hydrogen bonds used by D-I-TASSER. 
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Fig. S11. Schematics of the modeling and simulation settings in D-I-TASSER. (A) Reduced representation of an 
amino acid using a three-dimensional underlying cubic lattice system with a lattice grid of 0.87 Å. Only the alpha 
carbon (Ca) atom of each residue is treated explicitly. Considering the Ca of the i-th residue, Ca(i), the lattice cube is 
from (-5,-5,-5) to (5,5,5). Ca(i) is located at (0,0,0). The Ca of the previous (i-1)-th residue, Ca(i-1) is located at (3,-
3,0) and the Ca-Ca bond length between Ca(i-1) and Ca(i) is 3.69 Å. The Ca of the next (i+1)-th residue, Ca(i+1), is 
located at (3,4,0) and the Ca-Ca bond length between Ca(i+1) and Ca(i) is 4.35 Å. Additionally, the Ca-Ca bond angle 
is 98º. (B) Determination of the positions for the Cb atom and the center of the side-group heavy atoms. The positions 
of three consecutive Cα atoms are used to define a local coordinate system for the determination of the beta carbon 
(Cb) (except glycine), and the center of the side-group heavy atoms (SG) (except glycine and alanine). 𝑽eD𝟏��������⃑  is the 
vector from Ca(i-1) to Ca(i), and 𝑼eD𝟏���������⃑  is the unit vector for 𝑽eD𝟏��������⃑ . The cross product of 𝑼eD𝟏���������⃑  and 𝑼e����⃑ , 𝑼eD𝟏���������⃑ × 𝑼e����⃑ , is the 
direction of the hydrogen bond (HB). (C) Conformational movements in the D-I-TASSER Monte Carlo simulations. 
The cyan and red lines are the Cα traces before and after the movements, respectively. There are 6 types of 
conformational movements in the D-I-TASSER simulations: (1) 2-bond vector walk; (2) 3-bond vector walk; (3) 4- 
bond vector walk; (4) 5-bond vector walk; (5) 6-bond vector walk; (6) N- or C-terminal random walk. (D)  Illustration 
of the local and global movements used during the REMC simulations. There are N replicas, which are implemented 
in parallel. After every 200*L local conformational movements, where L is the protein length, a global swap movement 
between each pair of neighboring replicas is attempted following the standard Metropolis criterion. 
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Fig. S12. Illustrations of (A) distance and (B) hydrogen bond potentials for three different situations. 
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Fig. S13. Comparison of time requirements for D-I-TASSER and AlphaFold2 on different size proteins on a dataset 
of 645 proteins. Both programs were run using 10 CPUs with parallel processing, generating 5 models each. The 
AlphaFold2 program was executed with default settings, including 1 ensemble, full_dbs and monomer pipeline as 
implemented in AlphaFold version 2.2.0. The running time reported excludes the DeepMSA2 search time, as the speed 
of large database searches is largely influenced by I/O performance. For instance, storing databases on SSD or NVMe 
drives can significantly reduce search time. 
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Supplementary Tables 
 
Table S1. Comparison of modeling results by D-I-TASSER with other methods for different target types on the 1,262 
benchmark dataset (Benchmark-I). P-values were calculated between TM-scores by D-I-TASSER and others using 
paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a TM-score >0.5. Here, AlphaFold2 
refers to version both 2.2 and 2.3. 
 

Method Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 

All (1,262) 0.9097 - 1239 

Easy (762) 0.9359 - 759 

Hard (500) 0.8698 - 480 

I-TASSER 

All (1,262) 0.6062 1.73E-206 858 

Easy (762) 0.7290 6.87E-125 713 

Hard (500) 0.4191 9.66E-84 145 

C-I-TASSER 

All (1,262) 0.6852 9.07E-207 1066 

Easy (762) 0.7615 3.34E-125 737 

Hard (500) 0.5688 9.83E-84 329 

AlphaFold2 

(version 2.2) 

All (1,262) 0.8814 1.52E-137 1213 

Easy (762) 0.9227 9.79E-78 757 

Hard (500) 0.8185 1.11E-61 456 

AlphaFold2 

(version 2.3) 

All (1,262) 0.8869 1.15E-117 1218 

Easy (762) 0.9252 9.01E-76 760 

Hard (500) 0.8286 9.25E-46 458 

AlphaFold2 

+DeepMSA2 

All (1,262) 0.8937 2.12E-121 1228 

Easy (762) 0.9281 2.94E-66 759 

Hard (500) 0.8413 2.89E-56 469 
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Table S2. The contributions of different spatial restraints used in I-TASSER folding simulations to the final modeling 
results, compared with different versions of AlphaFold (including AlphaFold3, AlphaFold2.3, AlphaFold2.2, 
AlphaFold2.1, and AlphaFold2.0) for all 500 Hard targets in our benchmark dataset (Benchmark-I). P-values were 
calculated between TM-scores by D-I-TASSER and others using paired one-sided Student’s t-tests. #{TM-score >0.5} 
is the number of targets with a TM-score >0.5. Here, “I-TASSER+contact” indicates the standard I-TASSER method 
with contact potential used in folding simulation; “I-TASSER+DeepPotential distance+DeepMSA2” means standard 
I-TASSER method with DeepPotential distance restraints used in folding simulation in combination with  DeepMSA2 
for MSA generation; “I-TASSER+DeepPotential+AttentionPotential distance+DeepMSA2” means standard I-
TASSER method with DeepPotential and AttentionPotential distance restraints used in folding simulation in 
combination with  DeepMSA2 for MSA generation; “I-TASSER+ AlphaFold2 distance+DeepMSA2” means standard 
I-TASSER method with AlphaFold2 distance restraints used in folding simulation in combination with  DeepMSA2 
for MSA generation; “D-I-TASSER - DeepMSA2” means default D-I-TASSER method without using DeepMSA2 
for MSA generation; “D-I-TASSER - pLDDT MSA ranking” means default D-I-TASSER method without pLDDT 
MSA ranking step. 
 

Method TM-score P-value #{TM-score>0.5} 

D-I-TASSER 0.8698 - 480 

I-TASSER 0.4191 9.66E-84 145 

I-TASSER 
+contact 0.5688 9.83E-84 329 

I-TASSER 
+DeepPotential distance+DeepMSA2 0.6731 4.91E-82 393 

I-TASSER 
+DeepPotential+AttentionPotential distance+DeepMSA2 0.7494 7.97E-76 428 

I-TASSER 
+AlphaFold2 distance+DeepMSA2 0.8571 4.47E-16 472 

D-I-TASSER 
-DeepMSA2 0.8362 3.63E-69 471 

D-I-TASSER 
-pLDDT MSA ranking 0.8536 2.99E-38 476 

AlphaFold3 0.8488 1.79E-07 466 

AlphaFold2.3 0.8286 9.25E-46 458 

AlphaFold2.2 0.8185 1.11E-61 456 

AlphaFold2.1 0.8179 2.24E-62 453 

AlphaFold2.0 0.8173 4.49E-63 452 
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Table S3. The comparison of D-I-TASSER with different versions of AlphaFold on 176 nun-redundant Hard targets 
whose structures were released after May 1, 2022. P-values were calculated between TM-scores by D-I-TASSER and 
each AlphaFold program using paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a 
TM-score >0.5. 
 

Method TM-score P-value #{TM-score>0.5} 
D-I-TASSER 0.8101 - 164 
AlphaFold3 0.7657 1.61E-12 157 
AlphaFold2.3 0.7390 2.42E-23 148 
AlphaFold2.2 0.7269 5.45E-28 150 
AlphaFold2.1 0.7275 4.88E-27 150 
AlphaFold2.0 0.7336 1.49E-26 151 

 
Table S4. Comparison of full-chain-level modeling results by D-I-TASSER, AlphaFold2, and 
AlphaFold2+DeepMSA2 on the 230 multi-domain targets with different number of domains. P-values were calculated 
between TM-scores by D-I-TASSER and AlphaFold2 using paired one-sided Student’s t-tests. #{TM-score >0.5} is 
the number of targets with a TM-score >0.5. 
 

Method Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 

All (230) 0.7196 - 208 
2-domain (167) 0.7142 - 149 
3-domain (37) 0.7468 - 34 
≥4 domain (26) 0.7154 - 25 

AlphaFold2 
(version 2.2) 

All (230) 0.6374 6.52E-28 193 
2-domain (167) 0.6393 2.59E-19 139 
3-domain (37) 0.6272 2.04E-06 30 
≥4 domain (26) 0.6400 5.96E-05 24 

AlphaFold2 
(version 2.3) 

All (230) 0.6379 1.59E-31 194 
2-domain (167) 0.6401 5.34E-22 140 
3-domain (37) 0.6273 1.90E-06 30 
≥4 domain (26) 0.6386 2.41E-05 24 

AlphaFold2 
+DeepMSA2 

All (230) 0.6723 7.86E-34 198 
2-domain (167) 0.6709 6.98E-24 142 
3-domain (37) 0.6842 1.43E-04 33 
≥4 domain (26) 0.6644 6.54E-06 23 

 
Table S5. Comparison of domain-level modeling results between D-I-TASSER, AlphaFold2, and 
AlphaFold2+DeepMSA2 on the 557 domains that came from 230 multi-domain targets. P-values were calculated 
between TM-scores by D-I-TASSER and AlphaFold2 using paired one-sided Student’s t-tests. #{TM-score >0.5} is 
the number of targets with a TM-score >0.5. 
 

Method TM-score P-value #{TM-score>0.5} 
D-I-TASSER 0.8577 - 536 
AlphaFold2.2 0.8341 1.45E-10 529 
AlphaFold2.3 0.8345 2.31E-16 530 

AlphaFold2+DeepMSA2 0.8504 1.61E-06 534 
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Table S6. Comparison of the structure prediction abilities of D-I-TASSER, NBIS-AF2-standard (AlphaFold2), and 
Wallner group predictions on 62 Template-based modeling (TBM) and 50 Free Modeling (FM) domains from the 
CASP15 experiment. P-values were calculated between TM-scores of D-I-TASSER and AlphaFold2 models using 
paired one-sided Student’s t-tests. #{TM-score>0.5} is the number of predicted domains with a TM-score >0.5. 
 

Method Domain Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 
All (112) 0.878 - 106 
TBM (62) 0.915 - 60 
FM (50) 0.833 - 46 

NBIS-AF2-standard 
(AlphaFold2) 

All (112) 0.801 9.35E-09 97 
TBM (62) 0.881 3.89E-04 59 
FM (50) 0.701 3.41E-06 38 

Wallner 
All (112) 0.809 1.30E-05 97 
TBM (62) 0.875 4.87E-04 58 
FM (50) 0.726 3.16E-03 39 

 
 
 
Table S7. Comparison of structure predictions by D-I-TASSER, NBIS-AF2-standard (AlphaFold2), and Wallner 
group predictions on 55 single-domain and 22 multi-domain targets from the CASP15 experiment. P-values were 
calculated between TM-scores of D-I-TASSER and AlphaFold2 models using paired one-sided Student’s t-tests. 
#{TM-score>0.5} is the number of predicted proteins with a TM-score >0.5. 
 

Method Target Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 
All (77) 0.851 - 72 

Single-domain (55) 0.893 - 52 
Multi-domain (22) 0.747 - 20 

NBIS-AF2-standard 
(AlphaFold2) 

All (77) 0.787 3.67E-05 64 
Single-domain (55) 0.870 5.30E-03 51 
Multi-domain (22) 0.578 1.18E-03 13 

Wallner 
All (77) 0.795 1.11E-03 62 

Single-domain (55) 0.872 4.77E-02 49 
Multi-domain (22) 0.602 4.22E-03 13 
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Table S8. Results of all 132 groups (server and human) on ‘Single-domain Structure Prediction’ in CASP15. Data 
were copied from the CASP15 webpage at https://predictioncenter.org/casp15/zscores_final.cgi?formula=assessors, 
in which the Group rankings are based on Assessors’ formulae, i.e., Assessor Score=1/6*(Z-scoreGDT_HA + Z-
scorereLLG_lddt + Z-scoreASE) + 1/16*(Z-scoreLDDT + Z-scoreCAD_aa + Z-scoreSG + Z-scoreSC_error) + 1/12*(Z-scoreMolProbity 
+ Z-scoreBB_error + Z-scoreDipDiff), and two Z-score thresholds (-2.0 or -0.0) were used to excluded models. The D-I-
TASSER server was registered as ‘UM-TBM’ (highlighted in bold) in the Table.  
 

Groups 
Rank 

(Z>-2.0) 
Sum 

Z-score 
(>-2.0) 

Avg 
Z-score 
(>-2.0) 

Rank 
(Z>-0.0) 

Sum 
Z-score 
(>-0.0) 

Avg 
Z-score 
(>-0.0) 

Groups 
Rank 

(Z>-2.0) 
Sum 

Z-score 
(>-2.0) 

Avg 
Z-score 
(>-2.0) 

Rank 
(Z>-0.0) 

Sum 
Z-score 
(>-0.0) 

Avg 
Z-score 
(>-0.0) 

PEZYFoldings 2 28.2448 0.3014 1  70.8310 0.6620 Bhattacharya 67 -49.9268 -0.4580 67  23.1218 0.2121 
UM-TBM 1 33.4626 0.3070 2  68.5623 0.6290 Zheng 81 -121.1419 0.1524 68  22.9098 0.5091 

Yang-Server 4 20.0022 0.2037 3  61.2772 0.5674 FTBiot0119 69 -76.4316 -0.7012 69  22.8312 0.2095 
DFolding 3 25.8625 0.2373 4  61.0695 0.5603 Graphen_Medical 72 -82.3454 -0.1417 70  22.4165 0.3071 

Yang 5 16.2255 0.1688 5  59.0136 0.5464 GinobiFold 66 -43.2247 -0.3512 71  22.2223 0.2096 
McGuffin 19 2.6214 0.0240 6  49.7262 0.4562 GinobiFold-SER 65 -36.4549 -0.2710 72  21.8518 0.2081 

MULTICOM 21 2.3021 0.0211 7  48.8284 0.4480 Seder2022easy 73 -83.5517 -0.7316 73  21.8495 0.2061 
MULTICOM_refine 6 13.6109 0.1249 8  48.8258 0.4479 NBIS-AF2-multimer 80 -114.7135 0.0657 74  21.2860 0.4257 

BAKER 11 4.3748 0.0401 9  47.9903 0.4403 Yang-Multimer 82 -122.2089 0.1287 75  21.2429 0.4721 
MULTICOM_human 20 2.4662 0.0226 10  47.9002 0.4395 ESM-single-sequence 70 -77.8559 -0.4931 76  20.0903 0.2160 
MULTICOM_deep 8 9.8068 0.0900 11  46.2544 0.4244 RaptorX-Multimer 85 -128.2922 -0.0065 77  19.6842 0.4374 
MULTICOM_qa 9 9.4572 0.0868 12  46.2344 0.4242 Takeda-Shitaka_Lab 84 -124.3999 0.0800 78  19.1241 0.4250 

MULTICOM_egnn 7 11.9136 0.1093 13  45.7611 0.4198 Seder2022hard 77 -96.8854 -0.7115 79  19.0334 0.2025 
Manifold-E 34 -5.7186 -0.0525 14  45.1978 0.4147 SHT 74 -86.0486 -0.6255 80  18.2032 0.1896 
Kiharalab 25 -0.9270 -0.0085 15  45.1273 0.4140 Grudinin 87 -130.8786 -0.0200 81  16.7652 0.3810 

MUFold_H 12 4.2297 0.0388 16  44.2540 0.4060 Agemo 76 -90.3782 -0.8292 82  16.1139 0.1478 
ColabFold 10 4.9637 0.0455 17  44.0177 0.4038 DFolding-refine 75 -89.0381 -0.7834 83  14.5185 0.1370 

colabfold_human 18 2.9425 0.0270 18  43.2644 0.3969 EMBER3D 88 -132.7949 -1.0739 84  13.8847 0.1509 
Wallner 14 4.0416 0.0371 19  43.1163 0.3956 CoDock 89 -135.5668 -0.2461 85  12.3283 0.2623 

Asclepius 26 -1.5361 0.0043 20  43.0518 0.3986 QUIC 79 -110.2350 -0.9537 86  11.2555 0.1093 
bench 16 3.7085 0.0529 21  42.8291 0.3966 PICNIC 86 -129.3268 -1.1307 87  10.7159 0.1051 

Manifold 39 -6.4946 -0.0596 22  42.8201 0.3928 Pierce 98 -169.8130 -0.2153 88  10.5512 0.3908 
DFolding-server 13 4.0592 0.0372 23  41.9520 0.3849 RostlabUeFOFold 92 -155.9174 -1.2429 89  9.2273 0.1125 

Elofsson 59 -23.6888 0.1121 24  41.7392 0.4537 Shen-CAPRI 94 -160.2618 -0.3018 90  8.4582 0.2488 
MUFold 15 3.8458 0.0353 25  40.9513 0.3757 UNRES 78 -105.8942 -0.9116 91  8.1109 0.0787 
RaptorX 17 2.9560 0.0271 26  40.5804 0.3723 Zou 95 -160.8293 -0.6056 92  8.0372 0.1960 

Agemo_mix 32 -4.2573 -0.0391 27  40.4984 0.3715 WL_team 83 -123.6216 -0.9852 93  8.0090 0.0861 
ShanghaiTech 47 -11.8306 -0.1085 28  40.1253 0.3681 wuqi 91 -143.2171 -1.1404 94  7.7618 0.0892 

UltraFold_Server 22 1.0805 0.0099 29  40.0715 0.3676 ClusPro 100 -174.4625 -0.9634 95  5.6107 0.1336 
UltraFold 30 -3.9657 0.0003 30  39.7243 0.3713 Fernandez-Recio 102 -181.0940 -0.9145 96  5.1969 0.1528 

B11L 44 -10.2095 0.0372 31  38.2788 0.3753 TB_model_prediction 109 -191.2786 0.0555 97  5.1589 0.3968 
GuijunLab-DeepDA 23 -0.4924 -0.0045 32  38.2400 0.3508 AIchemy_LIG2 113 -194.8586 -0.2199 98  4.5994 0.3538 

BeijingAIProtein 49 -12.5932 -0.0058 33  38.0237 0.3692 AIchemy_LIG 113 -194.8586 -0.2199 98  4.5994 0.3538 
ChaePred 33 -5.5144 -0.0142 34  37.9319 0.3545 AIchemy_LIG3 112 -194.8543 -0.2196 100  4.5960 0.3535 
Shennong 28 -2.8649 0.0489 35  37.3845 0.3560 Panlab 90 -143.0865 -1.3127 101  4.3993 0.0404 

MultiFOLD 48 -12.1034 -0.1110 36  36.6712 0.3364 Manifold-X 107 -189.7355 -0.4298 102  4.2898 0.2383 
GuijunLab-Assembly 27 -2.6529 -0.0243 37  36.4567 0.3345 DELCLAB 93 -157.8925 -1.3803 103  3.8920 0.0401 

GuijunLab-Human 36 -6.2358 -0.0209 38  36.2609 0.3389 Kozakov-Vajda 106 -188.8308 -0.9582 104  3.8780 0.1385 
Kiharalab_Server 43 -10.1914 -0.0935 39  36.0746 0.3310 ACOMPMOD 111 -193.4552 -1.6853 105  3.7334 0.0479 

server_124 40 -6.7143 -0.0616 40  35.8061 0.3285 SHORTLE 101 -174.8588 -1.1541 106  3.6861 0.0723 
GuijunLab-Threader 31 -4.1330 -0.0379 41  35.6270 0.3269 TensorLab 116 -198.8770 -0.2615 107  3.5494 0.3227 

hFold_human 24 -0.8240 -0.0076 42  35.1927 0.3229 Pan_Server 96 -164.4871 -1.4855 108  2.9232 0.0281 
BAKER-SERVER 52 -14.2912 -0.1311 43  35.1349 0.3223 Manifold-LC-E 115 -196.1421 -0.5428 109  2.8952 0.1930 

hFold 35 -5.7866 0.0020 44  35.0783 0.3309 Convex-PL 120 -206.2240 -0.0373 110  2.6877 0.4479 
NBIS-AF2-standard 29 -2.8881 -0.0265 45  34.6335 0.3177 UTMB 119 -205.8203 0.0299 111  2.5274 0.4212 

IntFOLD7 57 -20.4751 -0.1878 46  34.4688 0.3162 FALCON2 104 -182.3897 -1.6672 112  2.4164 0.0226 
hks1988 38 -6.4477 -0.0592 47  34.4345 0.3159 FALCON0 103 -182.1541 -1.6650 113  2.4086 0.0225 

DMP 64 -36.1319 -0.1055 48  34.0681 0.3549 noxelis 123 -207.4929 0.1014 114  2.4028 0.4806 
FoldEver 42 -9.9724 -0.0915 49  33.8486 0.3105 KORP-PL 118 -204.0169 -0.2521 115  2.3884 0.2985 

GuijunLab-Meta 37 -6.2794 -0.0213 50  33.6273 0.3143 MESHI_server 99 -172.4795 -1.4010 116  2.3765 0.0313 
AP_1 51 -14.1961 -0.1302 51  33.5073 0.3074 MESHI 97 -165.2689 -1.2467 117  2.1919 0.0313 

server_122 45 -10.4840 -0.0962 52  33.4822 0.3072 ddquest 122 -207.4390 0.1122 118  2.1296 0.4259 
OpenFold 55 -19.6548 -0.1635 53  33.2518 0.3079 Convex-PL-R 121 -207.0127 -0.1688 119  1.9614 0.3269 
server_125 46 -10.9894 -0.1008 54  33.0675 0.3034 zax 124 -209.0193 -0.8774 120  1.4544 0.1818 

OpenFold-SingleSeq 56 -19.8857 -0.1656 55  32.9778 0.3054 Gonglab-THU 108 -190.9123 -1.7515 121  1.4451 0.0133 
server_123 50 -13.1209 -0.1204 56  32.9353 0.3022 bio3d 129 -214.0009 -0.0005 122  1.2791 0.6396 

FoldEver-Hybrid 58 -22.2976 -0.0624 57  32.9350 0.3261 MeilerLab 125 -211.5698 0.1434 123  1.2702 0.4234 
server_126 41 -8.4517 -0.0775 58  32.8951 0.3018 Cerebra 110 -192.3969 -1.7651 124  1.0310 0.0095 
Venclovas 71 -78.8584 -0.1197 59  32.2406 0.4357 Spider 117 -200.0590 -1.4563 125  0.9318 0.0282 

ManiFold-serv 53 -14.4926 -0.1330 60  30.3083 0.2781 FEIGLAB 126 -212.2364 -0.0788 126  0.7872 0.2624 
TRFold 60 -27.0165 -0.2316 61  29.4315 0.2725 BhageerathH-Pro 105 -185.0512 -1.6801 127  0.6974 0.0068 

GuijunLab-RocketX 54 -15.7410 -0.1272 62  29.3099 0.2714 Sun_Tsinghua 127 -213.0850 -1.7766 128  0.6866 0.0312 
trComplex 61 -28.1287 -0.2419 63  29.2205 0.2706 PerezLab_Gators 128 -213.5777 -0.5259 129  0.2630 0.0877 
XRC_VU 68 -61.0768 -0.0385 64  26.1843 0.3273 CSRC_ICM 132 -217.1089 -1.1089 130  0.2540 0.2540 

ShanghaiTech-TS-SER 62 -32.4376 -0.2327 65  26.0202 0.2478 coco 130 -215.3389 -0.6695 131  0.2100 0.1050 
Coqualia 63 -35.7053 -0.2472 66  24.0265 0.2310 GatorsML 131 -216.4563 -1.4854 132  0.1091 0.0364 

 
  

https://predictioncenter.org/casp15/zscores_final.cgi?formula=assessors
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Table S9. Results of all 98 groups (server and human) on ‘Inter-domain Structure Prediction’ in CASP15. Data are 
copied from the official CASP15 webpage at https://predictioncenter.org/casp15/zscores_interdomain.cgi, in which 
the ranking of the groups is based on the linear combination Z-score (F1) + Z-score (Jaccard score) + Z-score 
(QS_best), with models having a Z-score below the tolerance threshold (-0.0) excluded. The D-I-TASSER server was 
registered as ‘UM-TBM’ (highlighted in bold) in the table.  
 

# Groups Sum Z-score 
(>-0.0) 

Avg Z-score 
(>-0.0) 

# Groups Sum Z-score 
(>-0.0) 

Avg Z-score 
(>-0.0) 

1 UM-TBM 35.5277 1.7764 50 Kiharalab 5.4940 0.2747 
2 Yang-Server 24.9602 1.2480 51 MULTICOM_deep 5.4897 0.2889 
3 Yang 19.7115 0.9856 52 Seder2022easy 5.3198 0.2800 
4 PEZYFoldings 18.0578 1.2039 53 GuijunLab-DeepDA 4.8945 0.2576 
5 Manifold 14.9308 0.7858 54 XRC_VU 4.8243 0.6892 
6 Venclovas 14.5386 0.7652 55 ColabFold 4.7985 0.2399 
7 server_124 14.0810 0.7040 56 colabfold_human 4.7985 0.2399 
8 DFolding 13.1098 0.6555 57 GuijunLab-Assembly 4.3734 0.2302 
9 bench 12.0811 0.6041 58 Wallner 4.1617 0.2312 
10 BAKER-SERVER 12.0030 0.6002 59 FoldEver 3.9173 0.2062 
11 Manifold-E 11.6732 0.6144 60 MULTICOM 3.9011 0.2167 
12 DFolding-server 11.5870 0.6098 61 MULTICOM_human 3.6862 0.2048 
13 server_126 10.9291 0.5465 62 GuijunLab-Meta 3.6577 0.1925 
14 Shennong 10.1011 0.5051 63 MULTICOM_qa 3.5934 0.1797 
15 RaptorX 9.3845 0.4692 64 GuijunLab-Human 3.4694 0.1826 
16 IntFOLD7 9.0429 0.4759 65 FoldEver-Hybrid 3.3126 0.2366 
17 BAKER 8.8620 0.4431 66 MULTICOM_egnn 3.1465 0.1573 
18 server_123 8.5973 0.4299 67 GinobiFold 2.7459 0.1615 
19 Asclepius 8.5891 0.4521 68 Coqualia 2.7459 0.1615 
20 MultiFOLD 8.2488 0.4583 69 Cerebra 2.5507 0.1500 
21 DFolding-refine 8.1694 0.4300 70 MUFold 2.4377 0.1219 
22 B11L 8.0841 0.4491 71 GuijunLab-RocketX 2.4240 0.1276 
23 DMP 7.7417 0.5530 72 GuijunLab-Threader 2.4147 0.1342 
24 MUFold_H 7.5603 0.3780 73 Bhattacharya 2.3720 0.1248 
25 hFold 7.1212 0.4451 74 SHT 2.2983 0.1149 
26 OpenFold-SingleSeq 7.0733 0.3723 75 BhageerathH-Pro 2.2781 0.1627 
27 OpenFold 7.0733 0.3723 76 GinobiFold-SER 2.2577 0.1411 
28 ShanghaiTech 7.0584 0.3529 77 FALCON2 2.2265 0.1113 
29 ManiFold-serv 6.9819 0.3675 78 FALCON0 2.2265 0.1113 
30 Graphen_Medical 6.8295 0.4878 79 hks1988 2.1535 0.1077 
31 AP_1 6.8095 0.3405 80 NBIS-AF2-standard 2.1141 0.1057 
32 Elofsson 6.6876 0.3520 81 Pan_Server 2.0335 0.1070 
33 Agemo_mix 6.6477 0.3499 82 Gonglab-THU 1.8164 0.1068 
34 Panlab 6.5871 0.3294 83 DELCLAB 1.1885 0.0660 
35 McGuffin 6.5509 0.3448 84 ESM-single-sequence 1.1811 0.1312 
36 TRFold 6.4502 0.3794 85 UNRES 1.1657 0.0833 
37 MULTICOM_refine 6.4210 0.3379 86 QUIC 1.1187 0.0559 
38 server_122 6.1989 0.3099 87 PICNIC 1.1002 0.0550 
39 BeijingAIProtein 6.1858 0.3639 88 ShanghaiTech-TS-SER 0.8613 0.0538 
40 UltraFold 6.1858 0.3639 89 Seder2022hard 0.5910 0.0591 
41 UltraFold_Server 6.1858 0.3437 90 SHORTLE 0.5900 0.5900 
42 server_125 6.0672 0.3034 91 wuqi 0.4176 0.0464 
43 Agemo 5.9827 0.3519 92 MESHI_server 0.1894 0.0947 
44 FTBiot0119 5.9501 0.2975 93 EMBER3D 0.1591 0.0159 
45 ChaePred 5.7616 0.2881 94 Manifold-LC-E 0.0809 0.0809 
46 WL_team 5.7417 0.3022 95 Manifold-X 0.0809 0.0809 
47 Kiharalab_Server 5.7358 0.2868 96 RostlabUeFOFold 0.0346 0.0087 
48 trComplex 5.6135 0.3302 97 MESHI 0.0000 0.0000 
49 hFold_human 5.5688 0.3094 98 ACOMPMOD 0.0000 0.0000 

 
  

https://predictioncenter.org/casp15/zscores_interdomain.cgi


 
 

30 
 

Table S10. The comparison of D-I-TASSER with different versions of AlphaFold (including AlphaFold3, 
AlphaFold2.3, AlphaFold2.2, AlphaFold2.1, and AlphaFold2.0) on 50 Free Modeling (FM) domains and 22 multi-
domain targets from the CASP15 experiment. P-values were calculated between TM-scores by D-I-TASSER and 
others using paired one-sided Student’s t-tests. #{TM-score >0.5} is the number of targets with a TM-score >0.5. 
 

Method Target Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER FM (50) 0.8326 - 46 
Multi-domain (20) 0.7419 - 18 

AlphaFold2.0 FM (50) 0.7149 1.04E-05 37 
Multi-domain (20) 0.5988 8.59E-03 13 

AlphaFold2.1 FM (50) 0.7230 8.34E-06 38 
Multi-domain (20) 0.5980 6.81E-03 11 

AlphaFold2.2 FM (50) 0.7212 6.10E-05 37 
Multi-domain (20) 0.5947 5.34E-03 12 

AlphaFold2.3 FM (50) 0.7262 2.55E-04 38 
Multi-domain (20) 0.5920  8.59E-03 13 

AlphaFold3 FM (50) 0.7265 4.65E-04 39 
Multi-domain (20) 0.6088 2.00E-02 12 

 
 
 
Table S11. The structure prediction accuracy of D-I-TASSER and AlphaFold2 on 1,907 full-chain sequences from 
the human genome that have experimentally solved structures. These sequences contain 1,147 cases with single-
domain and 760 cases with multi-domain structures. P-values were calculated between TM-scores of D-I-TASSER 
and AlphaFold2 models using paired one-sided Student’s t-tests. #{TM-score>0.5} is the number of predicted proteins 
with a TM-score >0.5. 
 

Method Target Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 
All (1,907) 0.931 - 1,872 

Single-domain (1,147) 0.918 - 1,119 
Multi-domain (760) 0.951 - 753 

AlphaFold2 
All (1,907) 0.916 3.17E-130 1,865 

Single-domain (1,147) 0.903 5.69E-84 1,113 
Multi-domain (760) 0.935 1.07E-47 752 

 
 
 
Table S12. The results are the same as shown in Table S9, but the 1,907 proteins are categorized into two categories 
of ‘Easy-zone’ and ‘Hard-zone’ based on the D-I-TASSER and AlpahFold2 results. The ‘Easy-zone’ targets refer to 
those for which both D-I-TASSER and AlphaFold2 can achieve a TM-score >0.8, while the ‘Hard-zone’ targets are 
those for which at least one method performs poorly with a TM-score <0.8. P-values were calculated between TM-
scores of D-I-TASSER and AlphaFold2 models using paired one-sided Student’s t-tests. #{TM-score>0.5} is the 
number of predicted proteins with a TM-score >0.5. 
 

Method Target Type TM-score P-value #{TM-score>0.5} 

D-I-TASSER 
All (1,907) 0.931 - 1,872 

Easy-zone (1,659) 0.966 - 1,659 
Hard-zone (248) 0.699 - 213 

AlphaFold2 
All (1,907) 0.916 3.17E-130 1,865 

Easy-zone (1,659) 0.958 2.47E-97 1,659 
Hard-zone (248) 0.633 1.17E-26 206 
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Table S13. Statistical summary of the top 20 most abundant prediction results for ligand-binding interactions, EC 
terms, and GO terms (BP, CC, and MF) for foldable full-chain human proteins. #{protein} is the number of proteins 
with the corresponding labels. 
 

Type ID Name #{protein} 

Ligand-
binding 

ANP ADENYLYL IMIDODIPHOSPHATE 308 
FES DI-MU-SULFIDO-DIIRON 306 
F3S TRI-MU-SULFIDO-MU3-SULFIDO-TRIIRON 228 
ADP ADENOSINE 5'-DIPHOSPHATE 226 
CA CALCIUM 222 
RET RETINAL 212 
SF4 TETRA-MU3-SULFIDO-TETRAIRON 204 
QNA 1~{A}~{R},7~{B}~{S})-5-FLUORANYL-2,2-BIS(OXIDANYL)- 

1~{A},7~{B}-DIHYDRO-1~{H}-CYCLOPROPA[C][1, 
2]BENZOXABORININE-4-CARBOXYLIC ACID 

203 

CLR CHOLESTEROL 164 
HEM PROTOHEME 147 
ATP ADENOSINE-5'-TRIPHOSPHATE 131 
FAD FLAVIN ADENINE DINUCLEOTIDE 126 
GDP GUANOSINE-5'-DIPHOSPHATE 123 
GNP PHOSPHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER 115 
ZN ZINC ION 109 
NA SODIUM ION 108 
NAD NICOTINAMIDE-ADENINE-DINUCLEOTIDE  104 
FMN FLAVIN MONONUCLEOTIDE 98 
NAP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE 90 
PTY PHOSPHATIDYLETHANOLAMINE 82 

EC 

3.2.1.17 Lysozyme 426 
2.7.7.6 DNA-directed RNA polymerase  338 
1.17.1.4 Xanthine dehydrogenase 335 
2.3.1.86 Fatty-acyl-CoA synthase 295 
3.4.24.69 Bontoxilysin 289 
1.17.3.2 Xanthine oxidase 280 
2.7.11.1 Non-specific serine/threonine protein kinase 258 
1.4.1.13 Glutamate synthase (NADPH) 233 
2.3.1.85 Fatty-acid synthase 167 
1.4.7.1 Glutamate synthase (ferredoxin) 162 
3.2.1.18 Exo-alpha-sialidase 160 
1.9.3.1 Cytochrome-c oxidase 150 
4.3.2.2 Adenylosuccinate lyase 150 
3.6.5.2 Small monomeric GTPase 148 
2.7.7.7 DNA-directed DNA polymerase 142 
4.2.1.2 Fumarate hydratase 138 
3.2.1.97 Endo-alpha-N-acetylgalactosaminidase 125 
3.2.1.41 Pullulanase 122 
2.7.10.1 Receptor protein-tyrosine kinase 116 
4.3.2.1 Argininosuccinate lyase 103 

BP 

GO:0055114 oxidation-reduction process 1,026 
GO:0043547 positive regulation of GTPase activity 772 
GO:0030335 positive regulation of cell migration 687 
GO:0009612 response to mechanical stimulus 678 
GO:0098542 defense response to other organism 628 
GO:0097305 response to alcohol 616 
GO:0019058 viral life cycle 589 
GO:0007601 visual perception 584 
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GO:0007613 memory 577 
GO:0044248 cellular catabolic process 573 
GO:0018298 protein-chromophore linkage 572 
GO:0050806 positive regulation of synaptic transmission 568 
GO:0001101 response to acid chemical 567 
GO:0007612 learning 561 
GO:0000302 response to reactive oxygen species 561 
GO:0050678 regulation of epithelial cell proliferation 552 
GO:0019229 regulation of vasoconstriction 551 
GO:1901654 response to ketone 551 
GO:0009617 response to bacterium 548 
GO:1903532 positive regulation of secretion by cell 547 

CC 

GO:0005829 cytosol 3,085 
GO:0070062 extracellular exosome 2,362 
GO:0016021 integral component of membrane 1,556 
GO:0005887 integral component of plasma membrane 1,555 
GO:0005886 plasma membrane 1,239 
GO:0044444 cytoplasmic part 1,175 
GO:0071944 cell periphery 983 
GO:0005654 nucleoplasm 973 
GO:0005615 extracellular space 945 
GO:0005789 endoplasmic reticulum membrane 912 
GO:0005634 nucleus 910 
GO:1903561 extracellular vesicle 846 
GO:0043231 intracellular membrane-bounded organelle 814 
GO:0005737 cytoplasm 801 
GO:0000139 Golgi membrane 769 
GO:0031988 membrane-bounded vesicle 762 
GO:0043005 neuron projection 703 
GO:0044424 intracellular part 666 
GO:0036477 somatodendritic compartment 637 
GO:0005911 cell-cell junction 632 

MF 

GO:0046872 metal ion binding 1,754 
GO:0043169 cation binding 1,490 
GO:0032550 purine ribonucleoside binding 1,432 
GO:0035639 purine ribonucleoside triphosphate binding 1,430 
GO:0032559 adenyl ribonucleotide binding 1,387 
GO:0005524 ATP binding 1,369 
GO:0042802 identical protein binding 1,255 
GO:0042803 protein homodimerization activity 886 
GO:0008092 cytoskeletal protein binding 878 
GO:0046914 transition metal ion binding 708 
GO:0003676 nucleic acid binding 693 
GO:0019842 vitamin binding 658 
GO:0046983 protein dimerization activity 638 
GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds 547 
GO:0008270 zinc ion binding 517 
GO:0044822 poly(A) RNA binding 500 
GO:0005509 calcium ion binding 493 
GO:0005501 retinoid binding 463 
GO:0008020 G-protein coupled photoreceptor activity 463 
GO:0005515 protein binding 453 
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