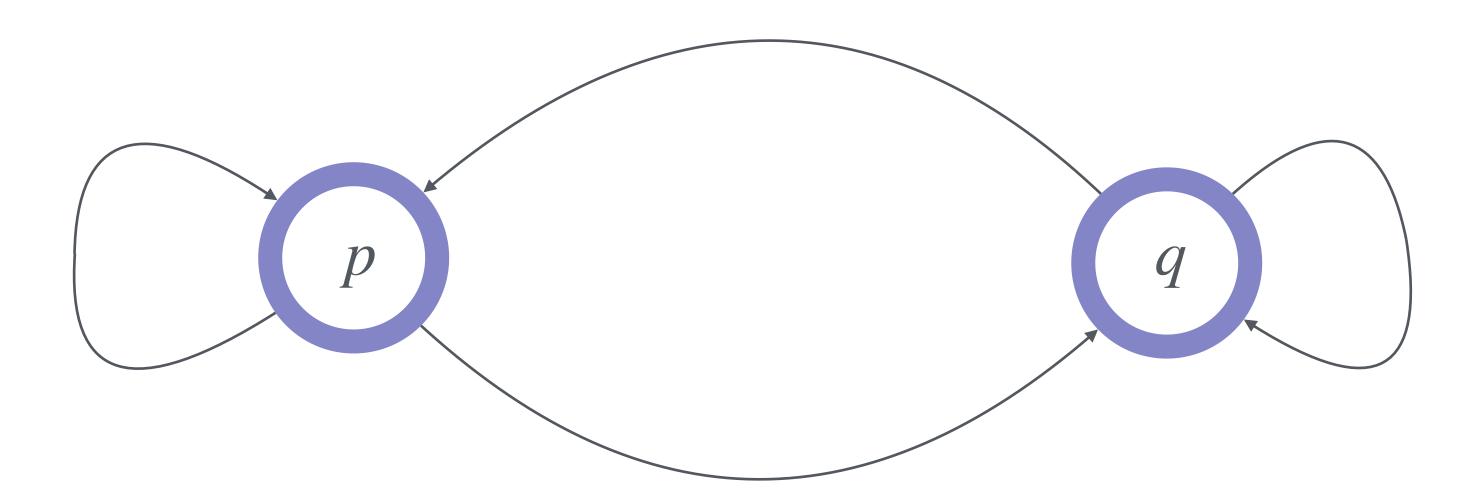
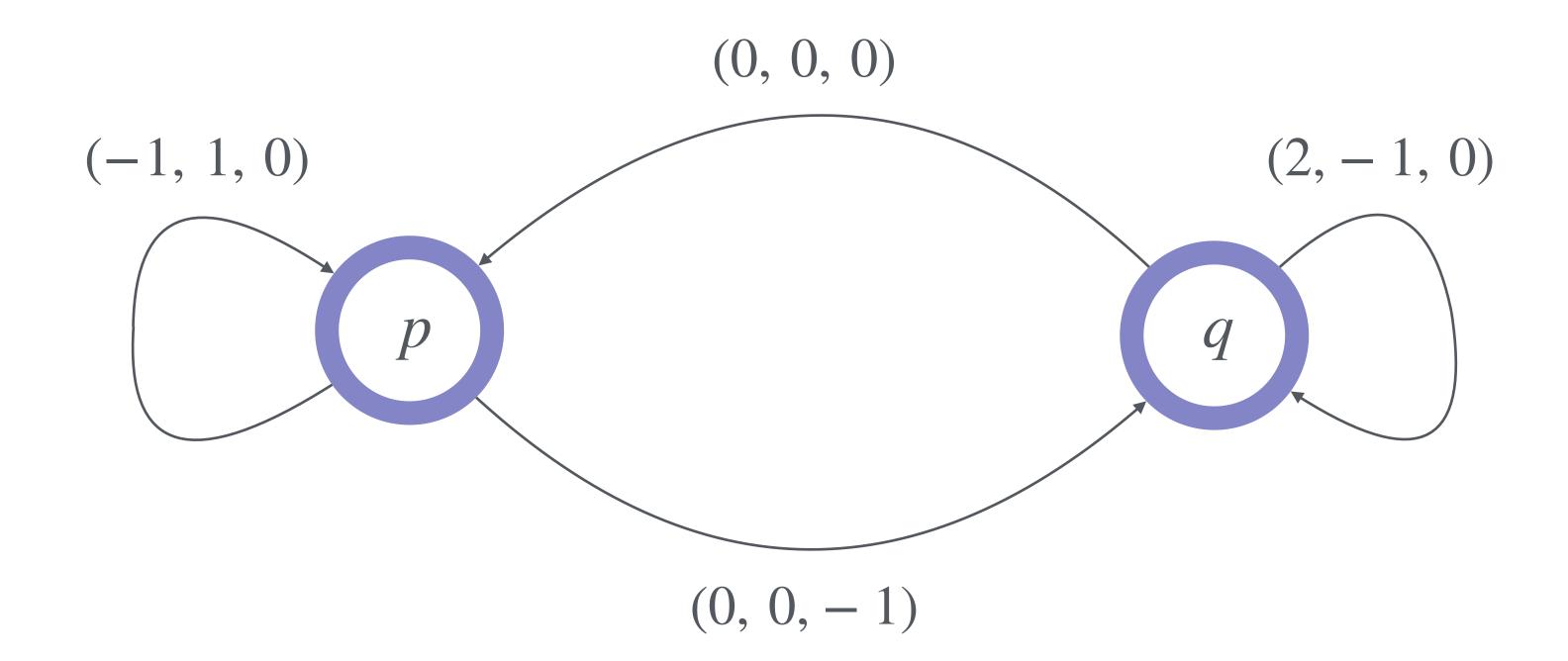
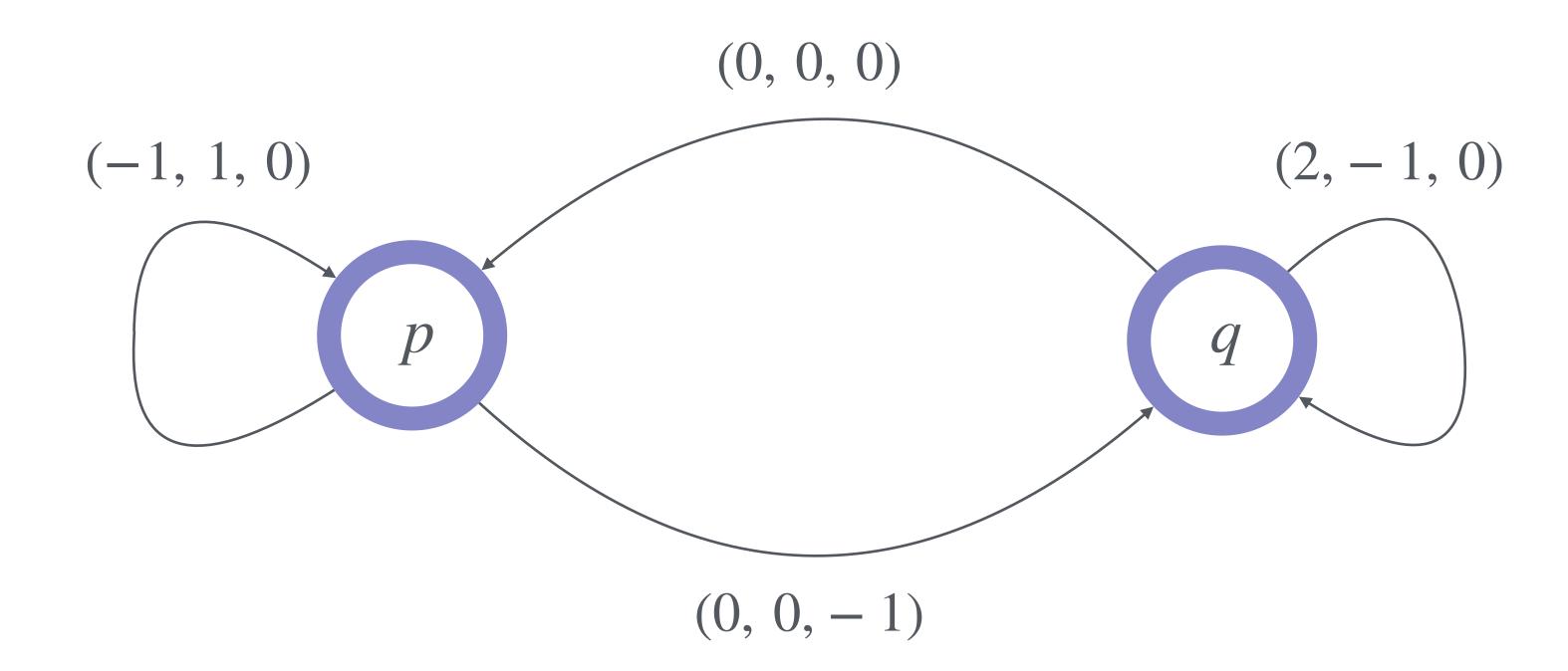
Reachability in Symmetric VASS

<u>Łukasz Kamiński</u> Sławomir Lasota

University of Warsaw

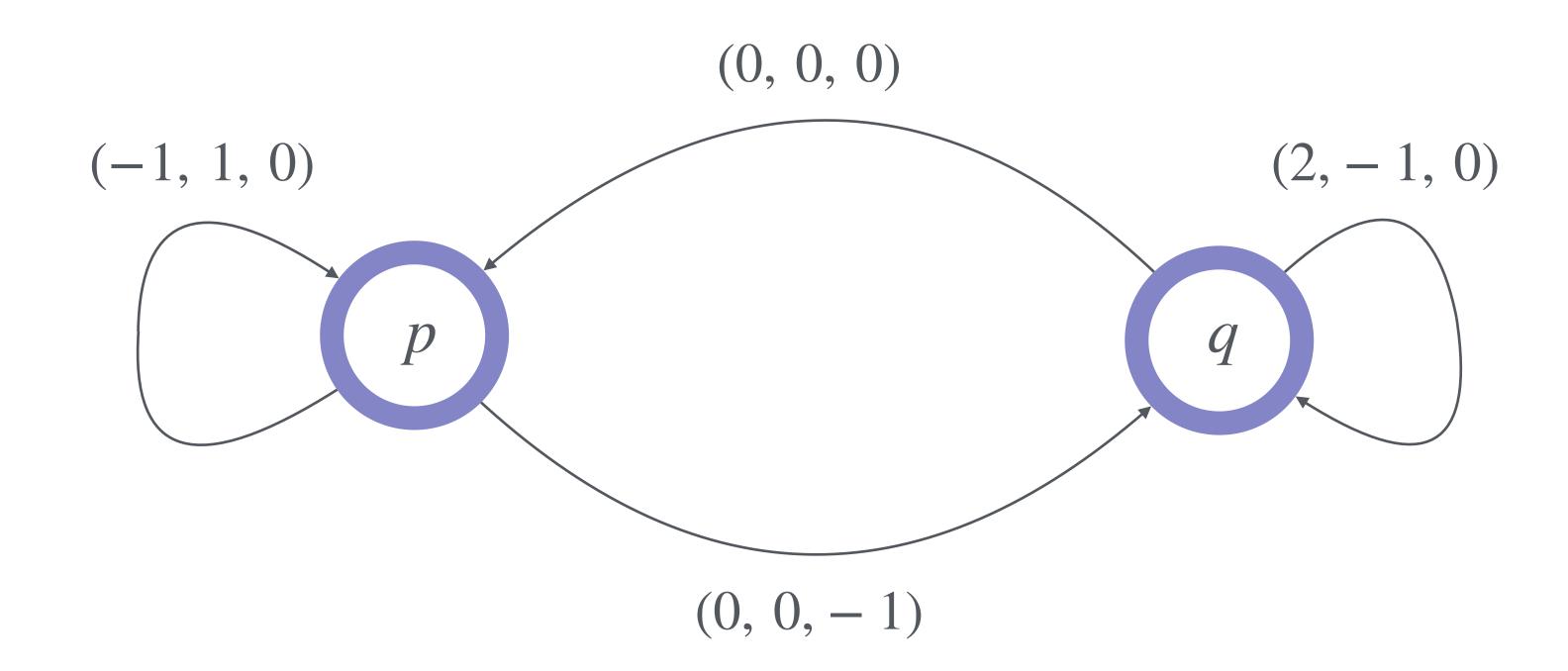






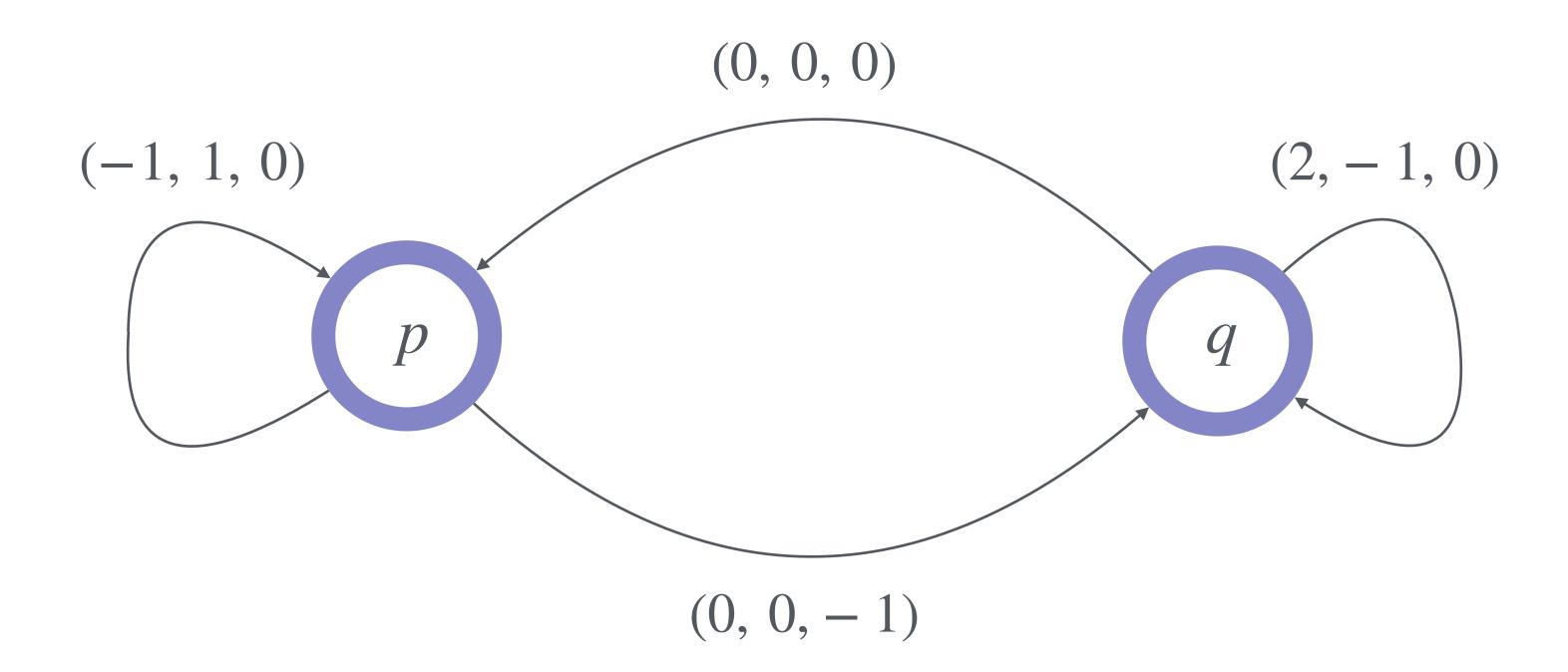
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$



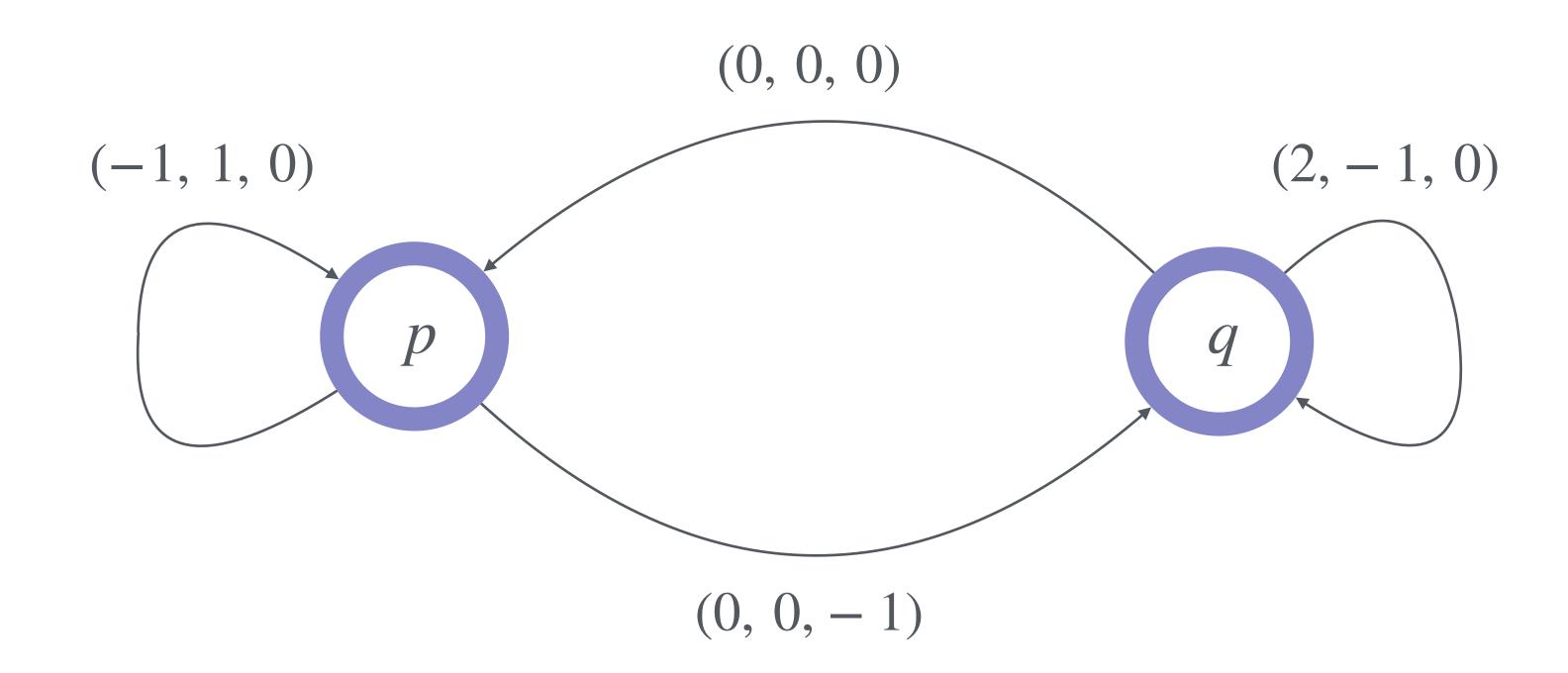
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



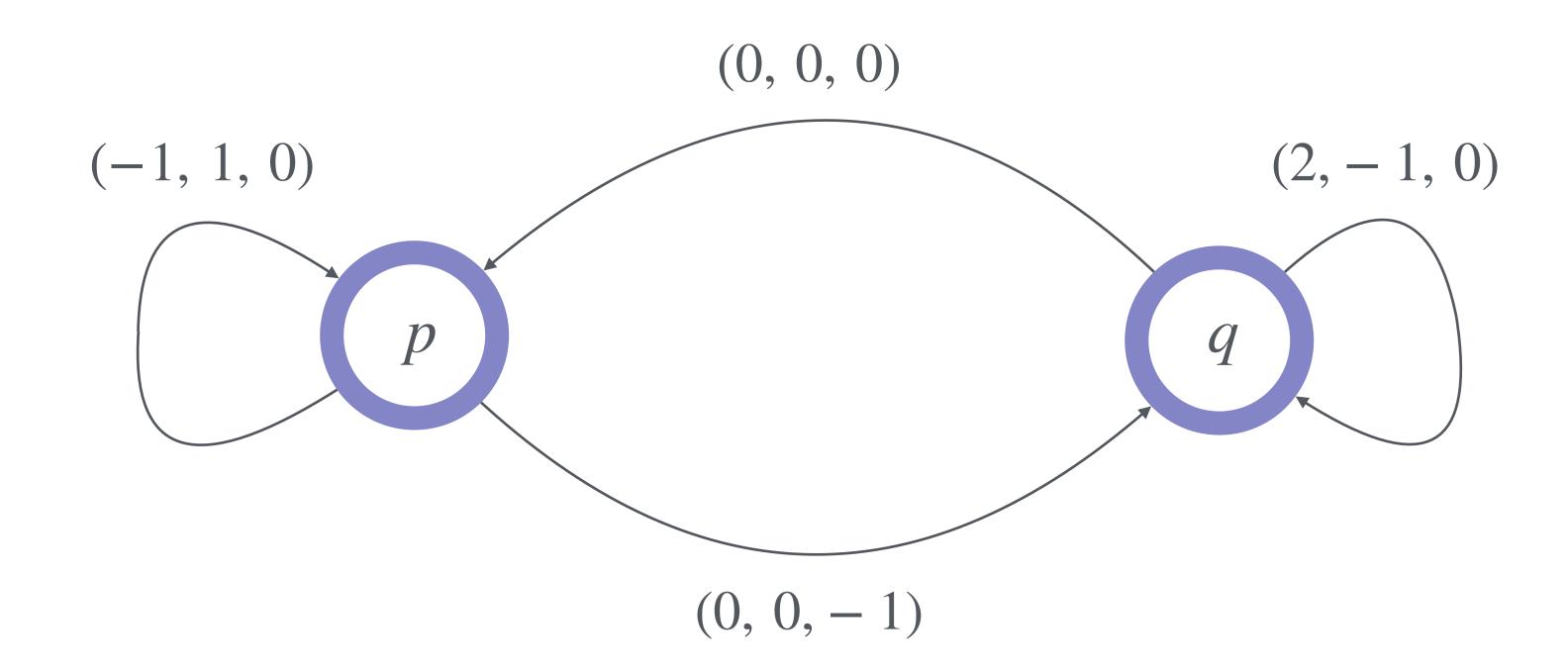
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



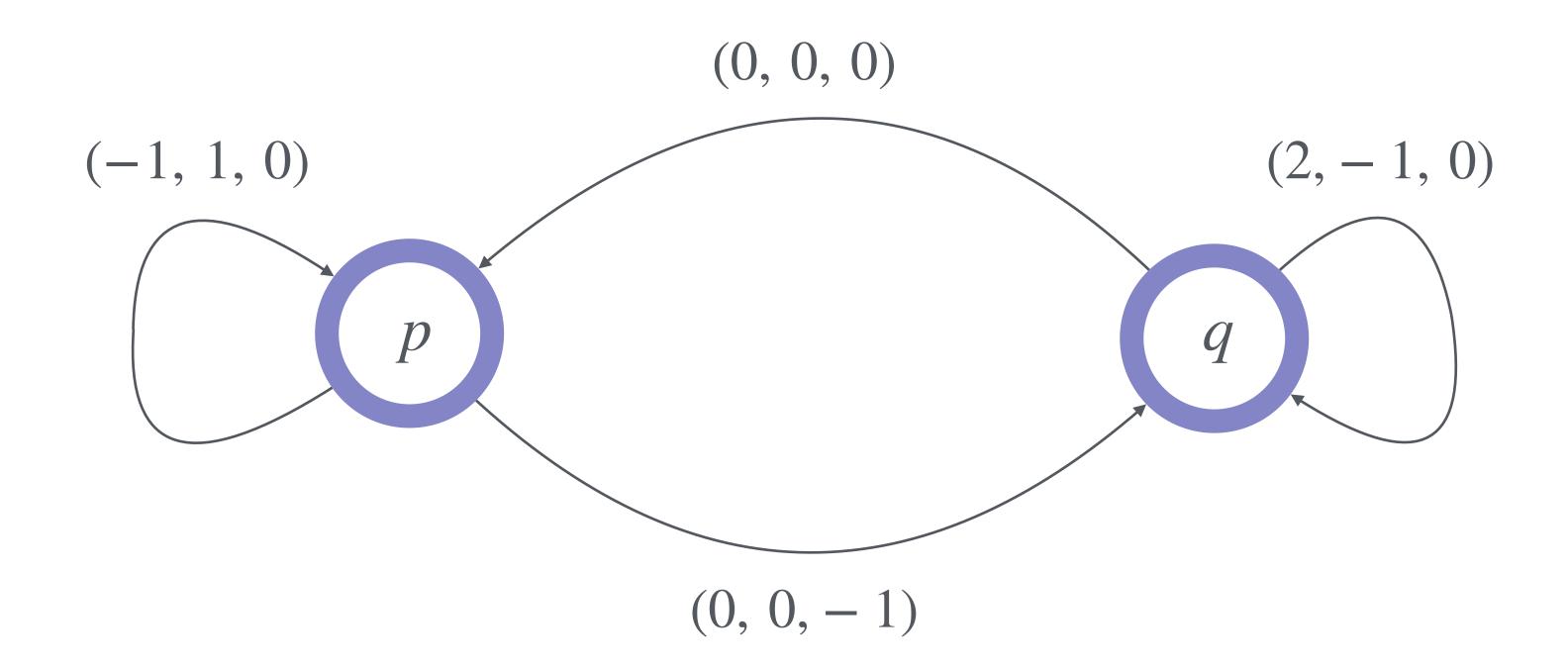
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



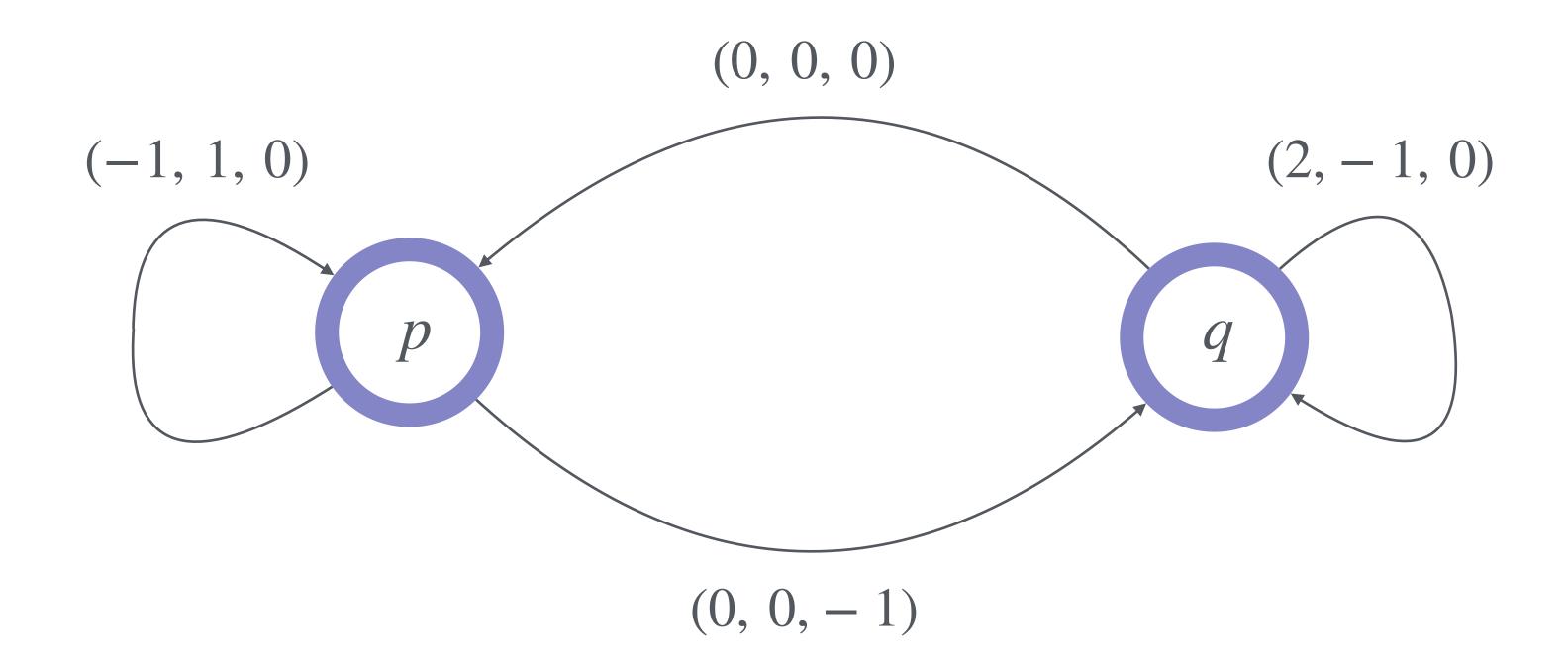
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



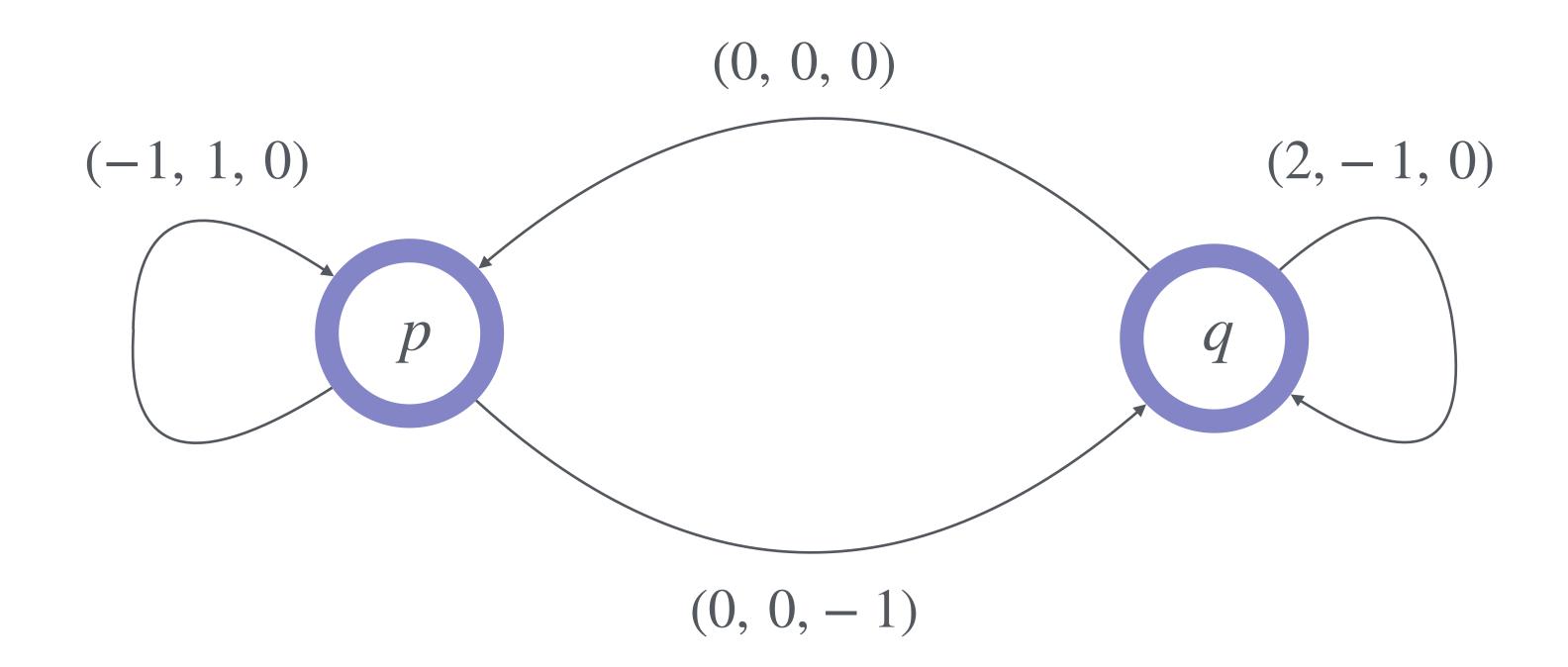
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



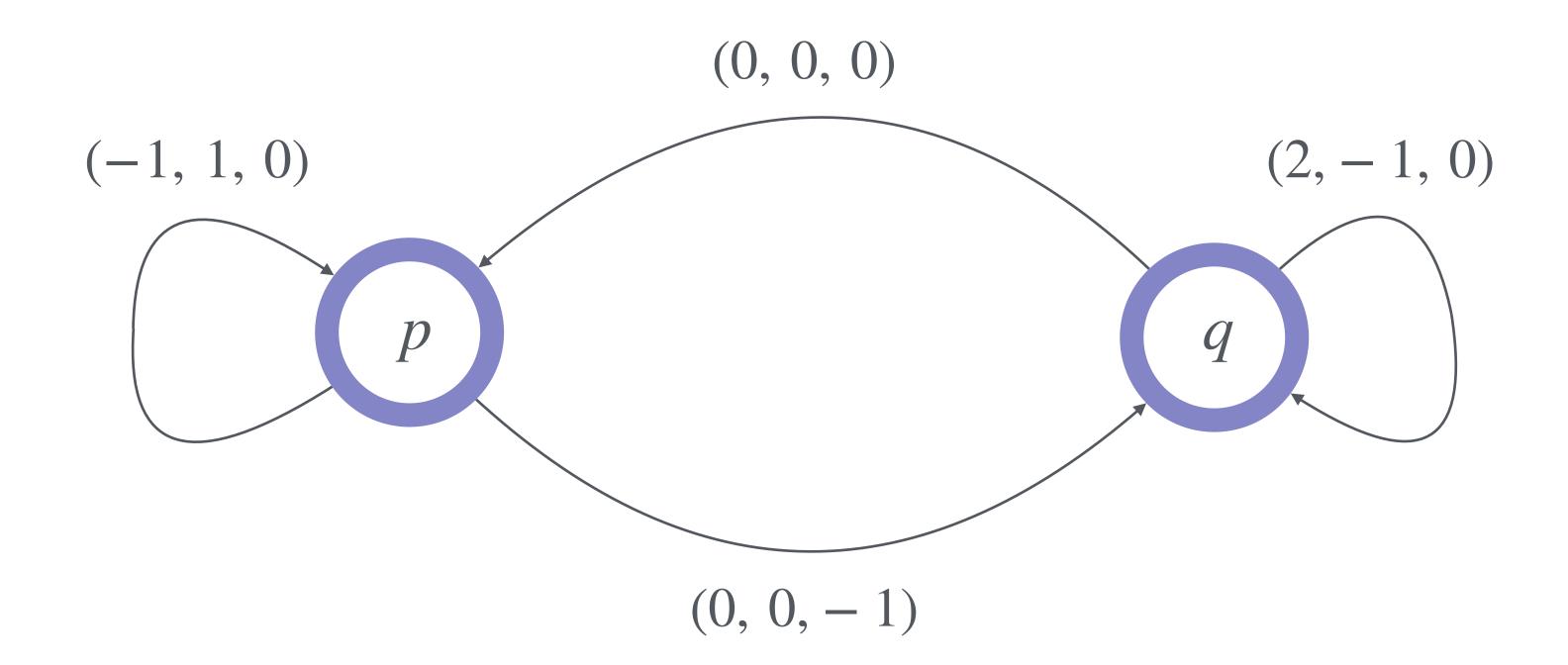
Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states



Configuration

$$p(\mathbf{v}) \in Q \times \mathbb{N}^d$$
 dimension set of states

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Upper bound: [Leroux, Schmitz, '19]

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Upper bound: [Leroux, Schmitz, '19]

Lower bound: [Czerwiński, Orlikowski, '21][Leroux, '21]

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Upper bound: [Leroux, Schmitz, '19]

Lower bound: [Czerwiński, Orlikowski, '21][Leroux, '21]

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Upper bound: [Leroux, Schmitz, '19]

Lower bound: [Czerwiński, Orlikowski, '21][Leroux, '21]

d-Reach belongs to \mathcal{F}_d [Fu, Yang, Zheng, '24]

Input: a VASS, initial and final configurations

Output: is there a run from the initial to the final configuration?

The problem is Ackermann-complete

Upper bound: [Leroux, Schmitz, '19]

Lower bound: [Czerwiński, Orlikowski, '21][Leroux, '21]

d-Reach belongs to \mathcal{F}_d [Fu, Yang, Zheng, '24]

(2d+3)-Reach is \mathcal{F}_d -hard [Czerwiński, Jecker, Lasota, Leroux, Orlikowski, '23]

Input: a VASS, initial and final configurations

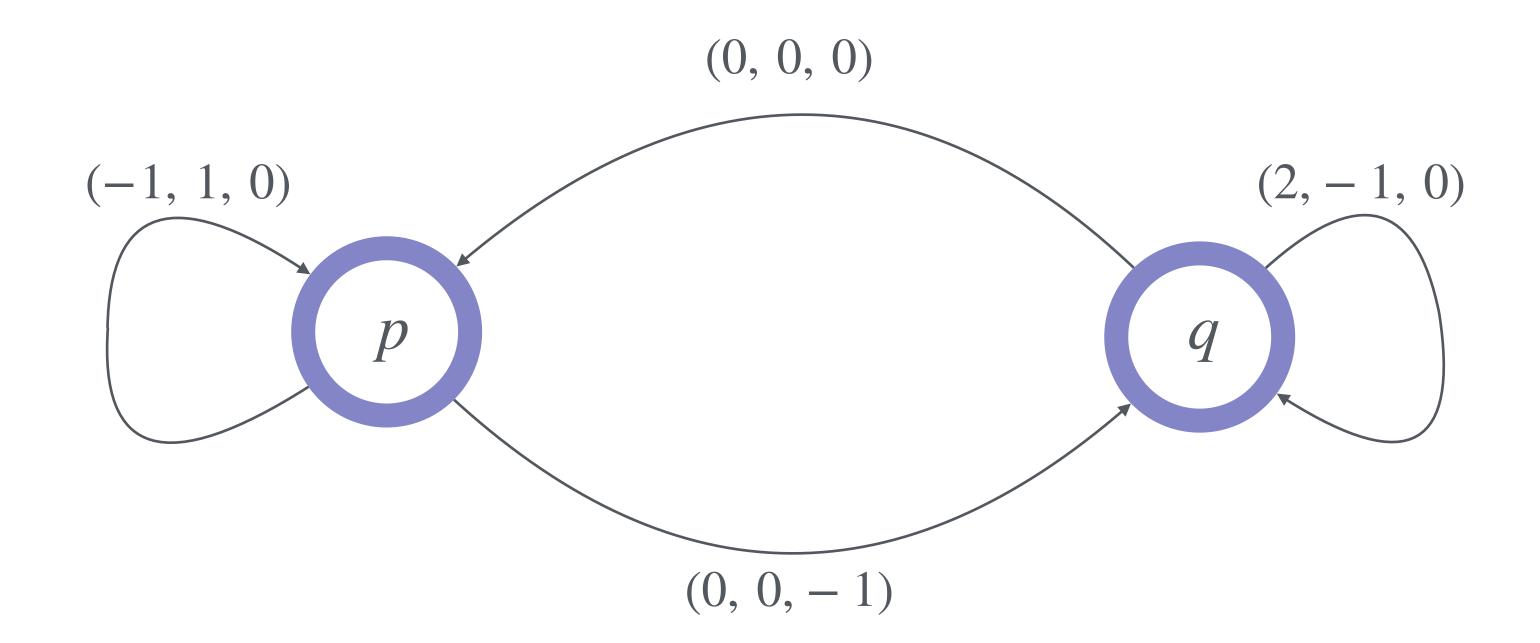
Output: is there a run from the initial to the final configuration?

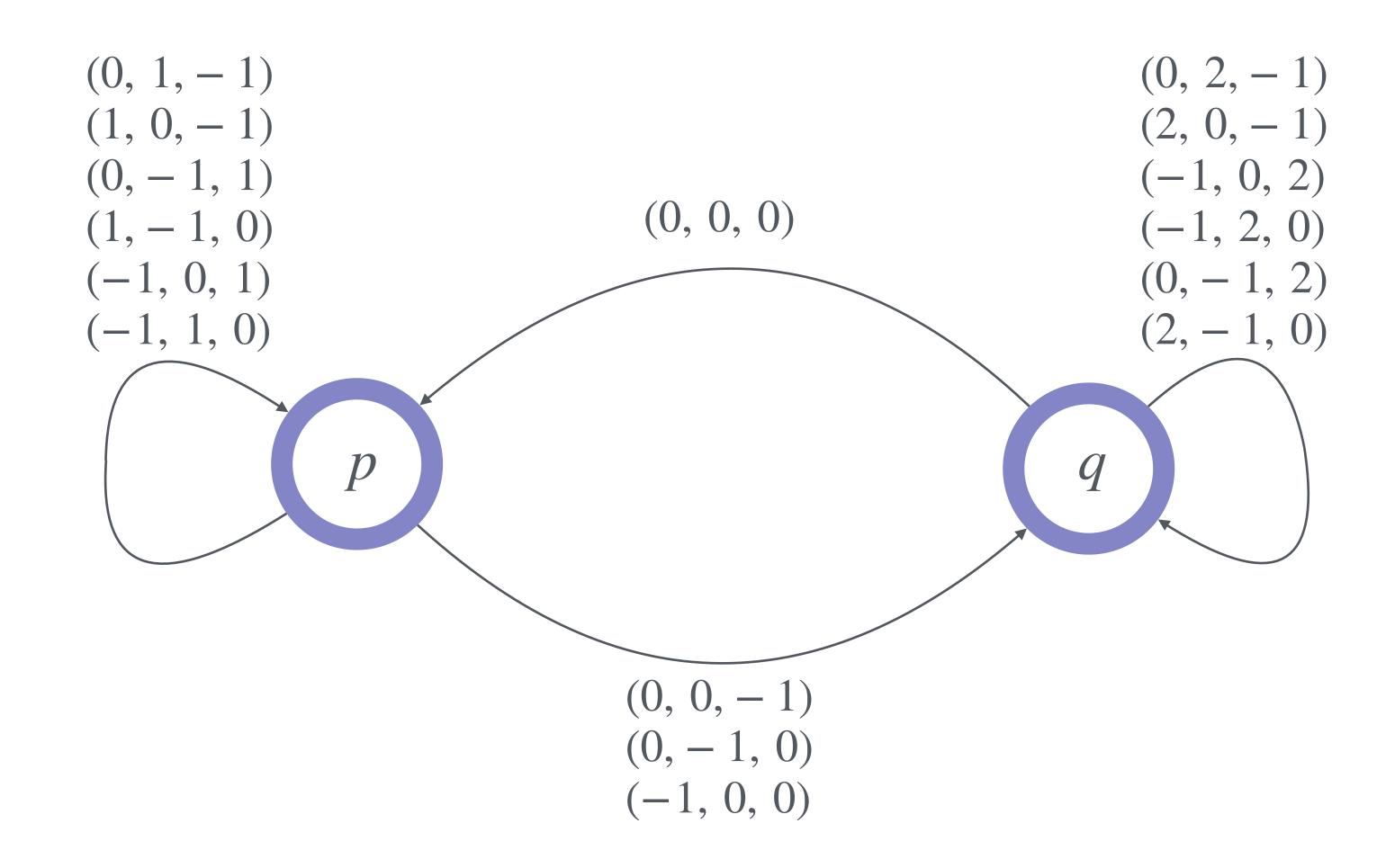
The problem is Ackermann-complete

```
Upper bound: [Leroux, Schmitz, '19]
```

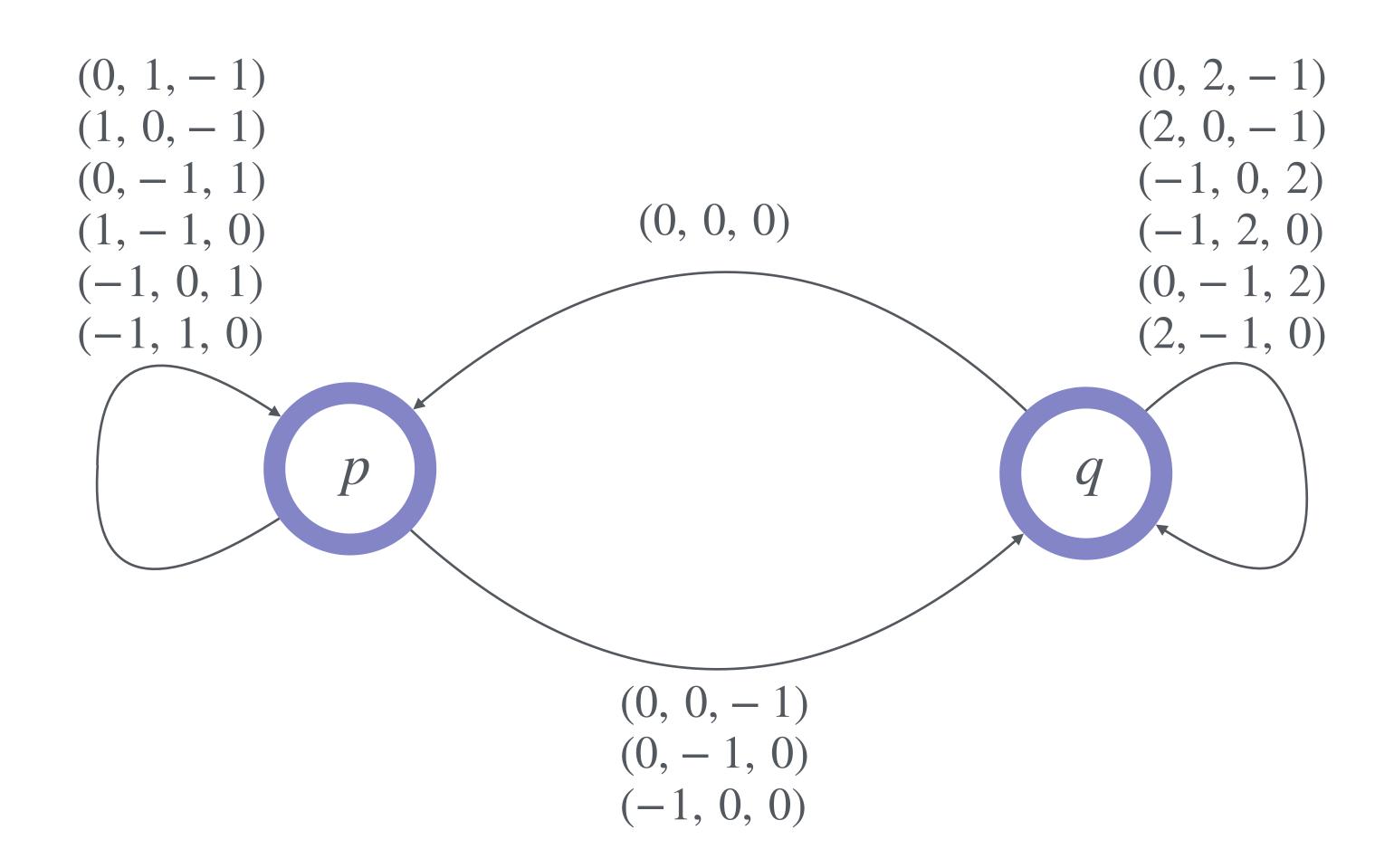
Lower bound: [Czerwiński, Orlikowski, '21][Leroux, '21]

$$d$$
-Reach belongs to \mathcal{F}_d fast-growing hierarchy of complexity classes $(2d+3)$ -Reach is \mathcal{F}_d -hard [Czerwiński, Jecker, Lasota, Leroux, Orlikowski, '23]

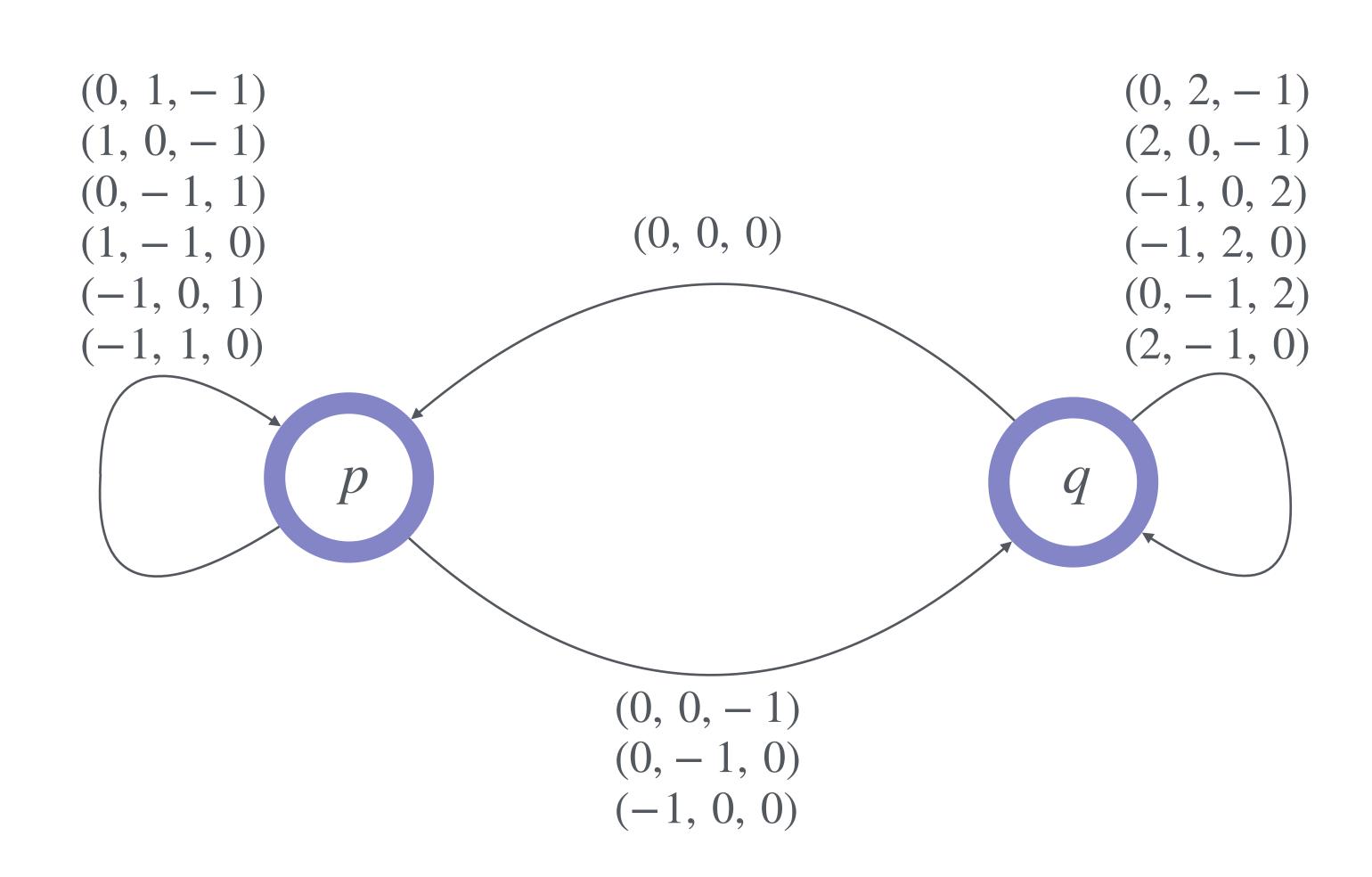




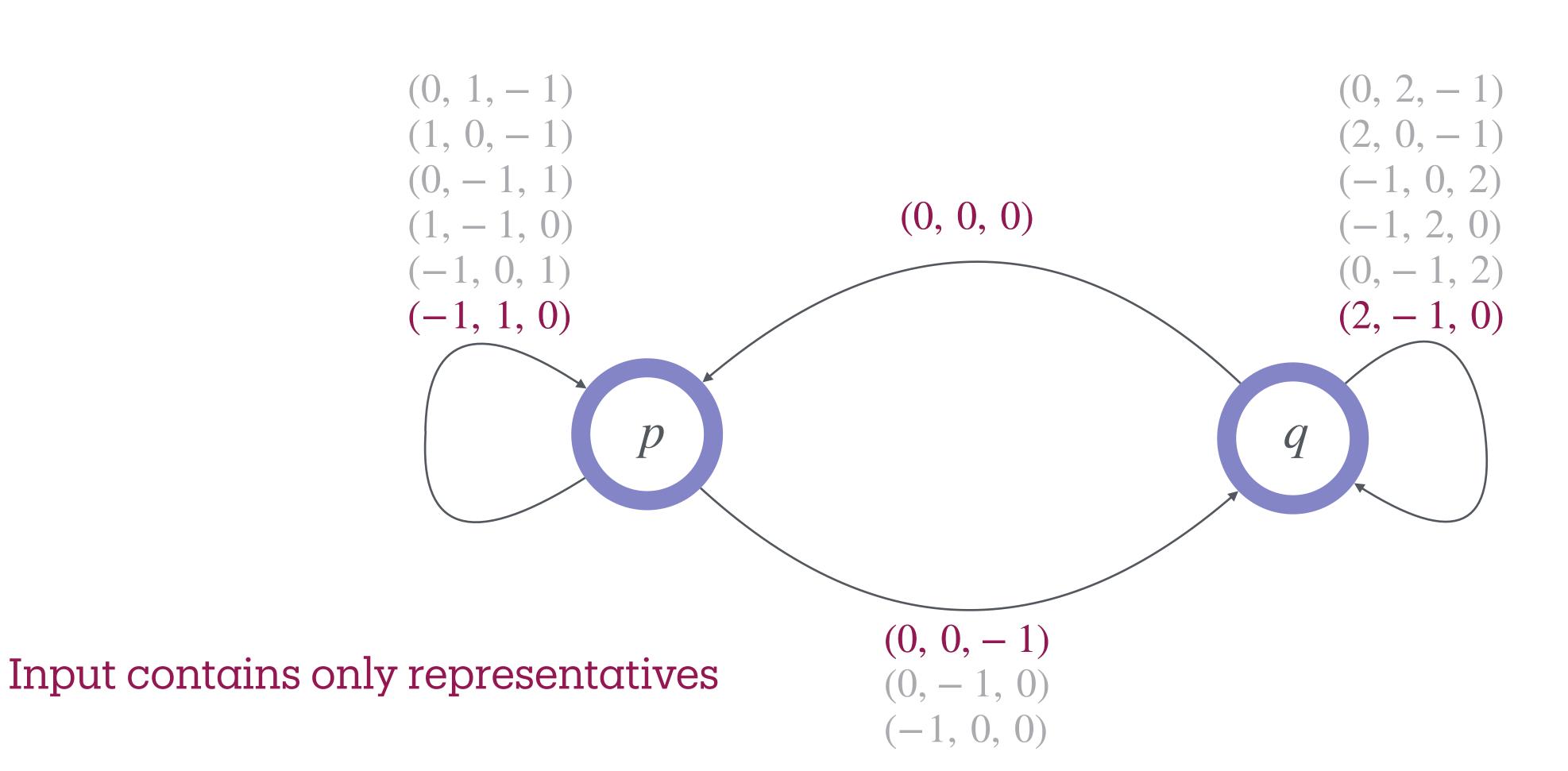
Sa-VASS



the group of all permutations of *d*-element set



the group of all permutations of *d*-element set



the group of all permutations of *d*-element set

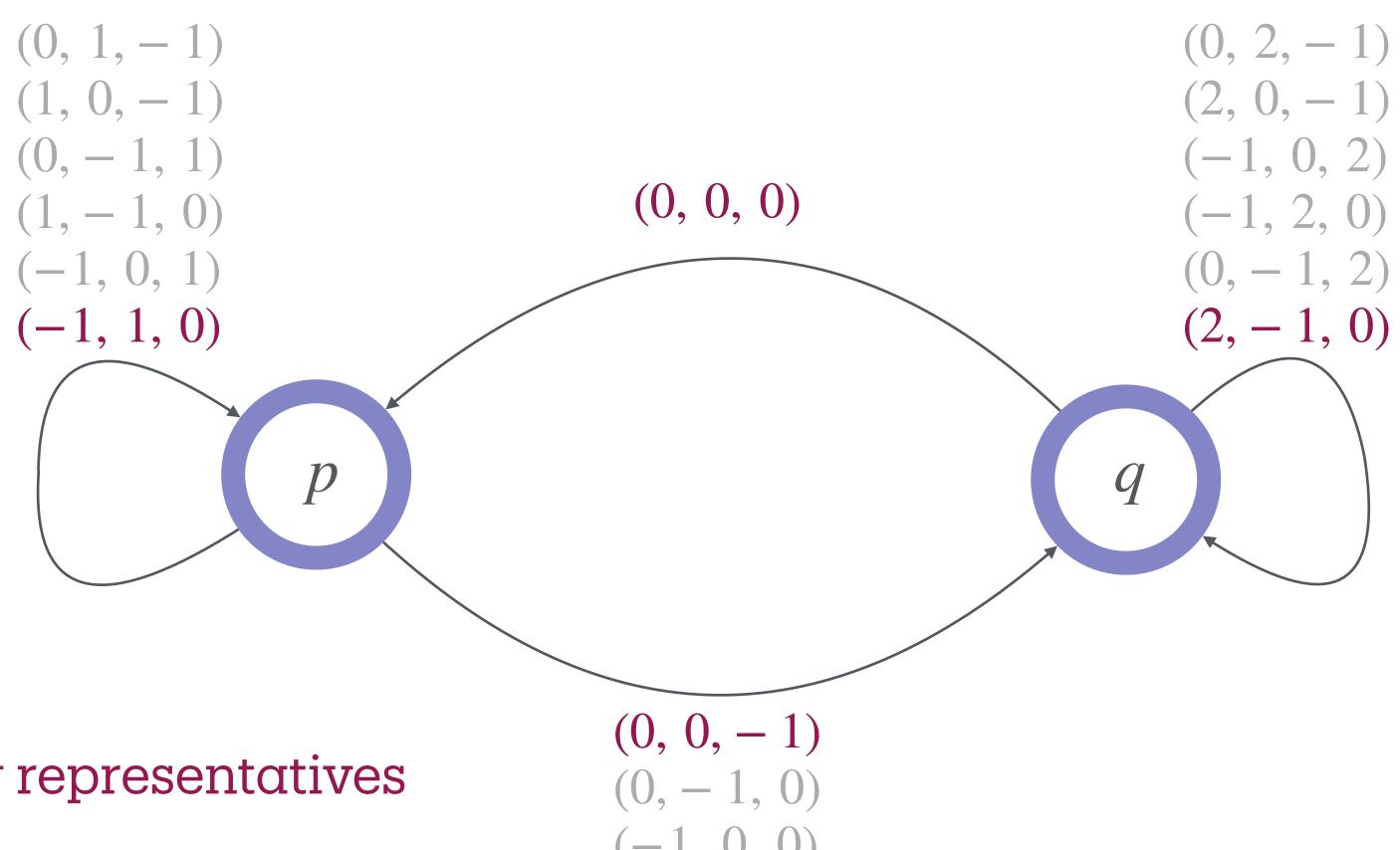


Input contains only representatives

We use binary encoding

the group of all permutations of d-element set

Similarly we define G-VASS for $G \leq S_d$



Input contains only representatives

We use binary encoding

$$(-1, 0, 0)$$

Main results

Theorem

 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

The reachability problem for S_d -VASS

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Theorem \checkmark The reachability problem for S_d -VASS

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Remark: for d = 1 it is NP-complete.

[Haase, Kreutzer, Ouaknine, Worrell, '09]

Theorem \checkmark The reachability problem for S_d -VASS

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Remark: for d = 1 it is NP-complete.

[Haase, Kreutzer, Ouaknine, Worrell, '09]

Theorem

 A_d -Reach is PSPACE-complete, for every $d \ge 2$.

The reachability problem for S_d -VASS Theorem

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Remark: for d = 1 it is NP-complete.

[Haase, Kreutzer, Ouaknine, Worrell, '09]

Theorem

 A_d -Reach is PSPACE-complete, for every $d \ge 2$.

 A_d is the alternating group of degree d.

The reachability problem for S_d -VASS

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Remark: for d = 1 it is NP-complete.

[Haase, Kreutzer, Ouaknine, Worrell, '09]

Theorem

 A_d -Reach is PSPACE-complete, for every $d \ge 2$.

 A_d is the alternating group of degree d.

The reachability problem for S_d -VASS

 S_d -Reach) is PSPACE-complete, for every $d \ge 2$.

Remark: it improves the PSPACE-hardness of 2-Reach.

[Blondin, Finkel, Göller, Haase, McKenzie, '15]

Remark: for d = 1 it is NP-complete.

[Haase, Kreutzer, Ouaknine, Worrell, '09]

Theorem

 A_d -Reach is PSPACE-complete, for every $d \ge 2$.

 A_d is the alternating group of degree d.

d-Reach reduces in polynomial time to Z_{2d+8} -Reach.

d-Reach reduces in polynomial time to Z_{2d+8} -Reach.

 Z_{2d+8} is the cyclic group of degree 2d + 8.

d-Reach reduces in polynomial time to Z_{2d+8} -Reach.

 Z_{2d+8} is the cyclic group of degree 2d + 8.

Easy Hard

 S_d A_d Z_d

Let $G \leq S_g$ and $H \leq S_h$.

Let $G \leq S_g$ and $H \leq S_h$.

Then $G \wr H$ acts on set consisting of h blocks of g elements.

Let $G \leq S_g$ and $H \leq S_h$.

Then $G \wr H$ acts on set consisting of h blocks of g elements.

Example $S_2 \wr S_3$

Let $G \leq S_g$ and $H \leq S_h$.

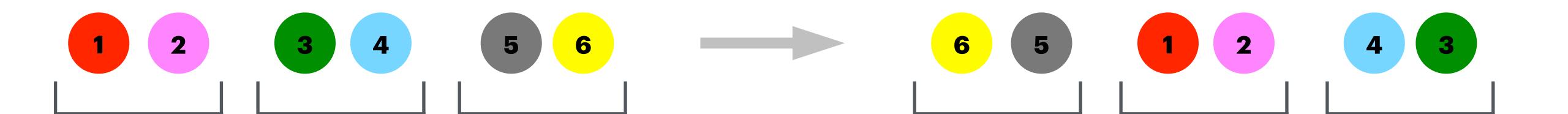
Then $G \wr H$ acts on set consisting of h blocks of g elements.

Example $S_2 \wr S_3$

Let $G \leq S_g$ and $H \leq S_h$.

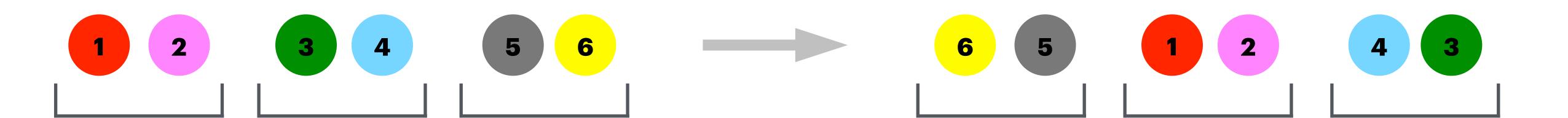
Then $G \wr H$ acts on set consisting of h blocks of g elements.

Example $S_2 \wr S_3$



Let $G \leq S_g$ and $H \leq S_h$.

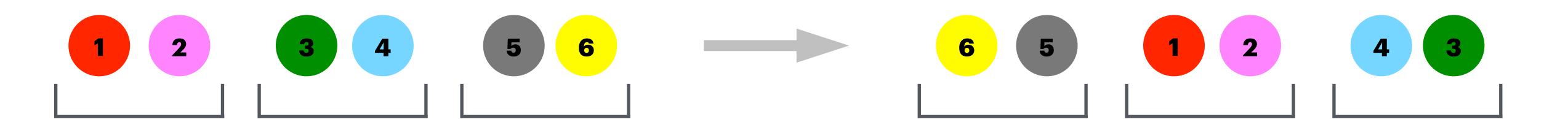
Then $G \wr H$ acts on set consisting of h blocks of g elements.



Motivation: $(I_d \wr S_n)$ -VASS are VASS of dimension d which use only n data.

Let $G \leq S_g$ and $H \leq S_h$.

Then $G \wr H$ acts on set consisting of h blocks of g elements.



(d-1)n-Reach reduces in polynomial time to $(I_d \wr S_n)$ -Reach, for $d \geq 2$.

X

(d-1)n-Reach reduces in polynomial time to $(I_d \wr S_n)$ -Reach, for $d \geq 2$.

(d-1)n-Reach reduces in polynomial time to $(I_d \wr S_n)$ -Reach, for $d \geq 2$.

Theorem

 $(S_n \wr I_d)$ -Reach reduces in exponential time to d-Reach.

(d-1)n-Reach reduces in polynomial time to $(I_d \wr S_n)$ -Reach, for $d \geq 2$.

Theorem

 $(S_n \wr I_d)$ -Reach reduces in exponential time to d-Reach.

Proofs

 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

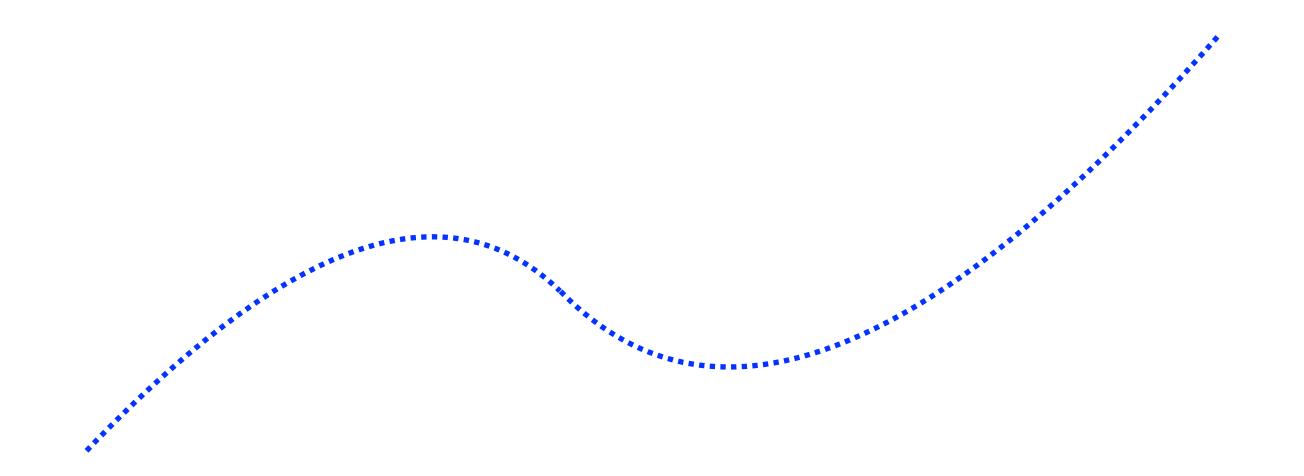
Key idea for upper bound: fairness

 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

Key idea for upper bound: fairness

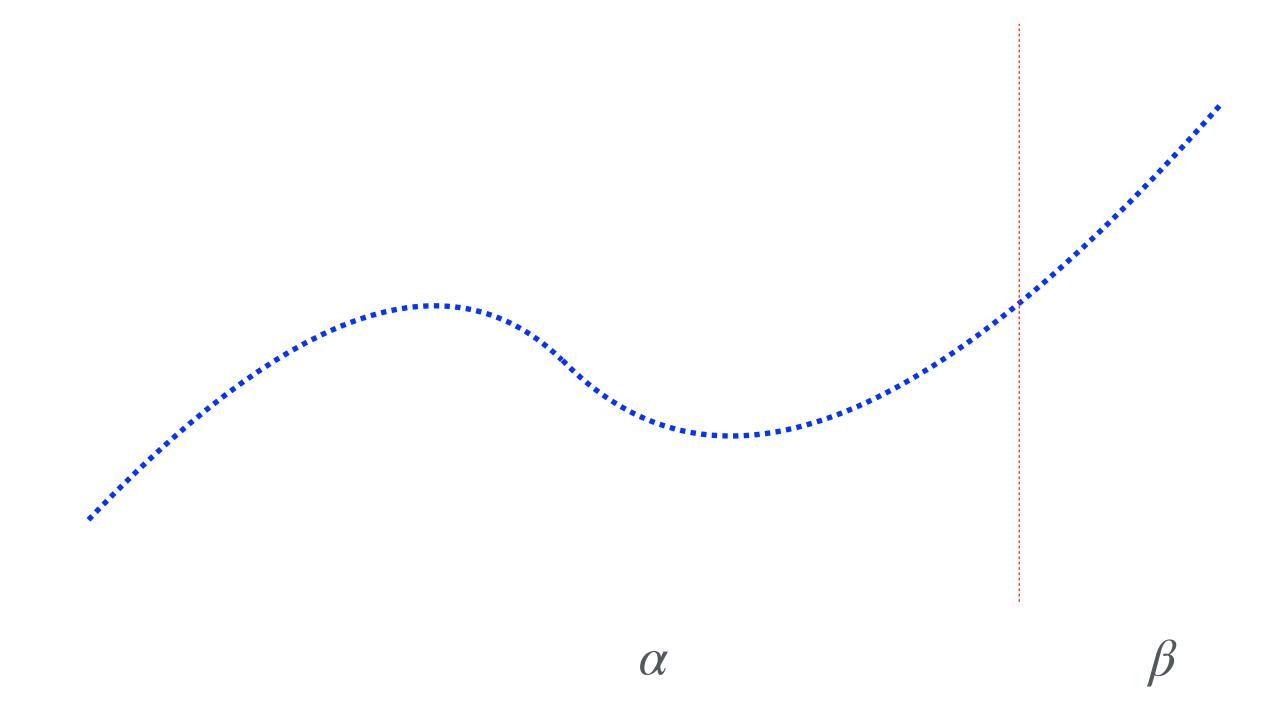
 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

Key idea for upper bound: fairness



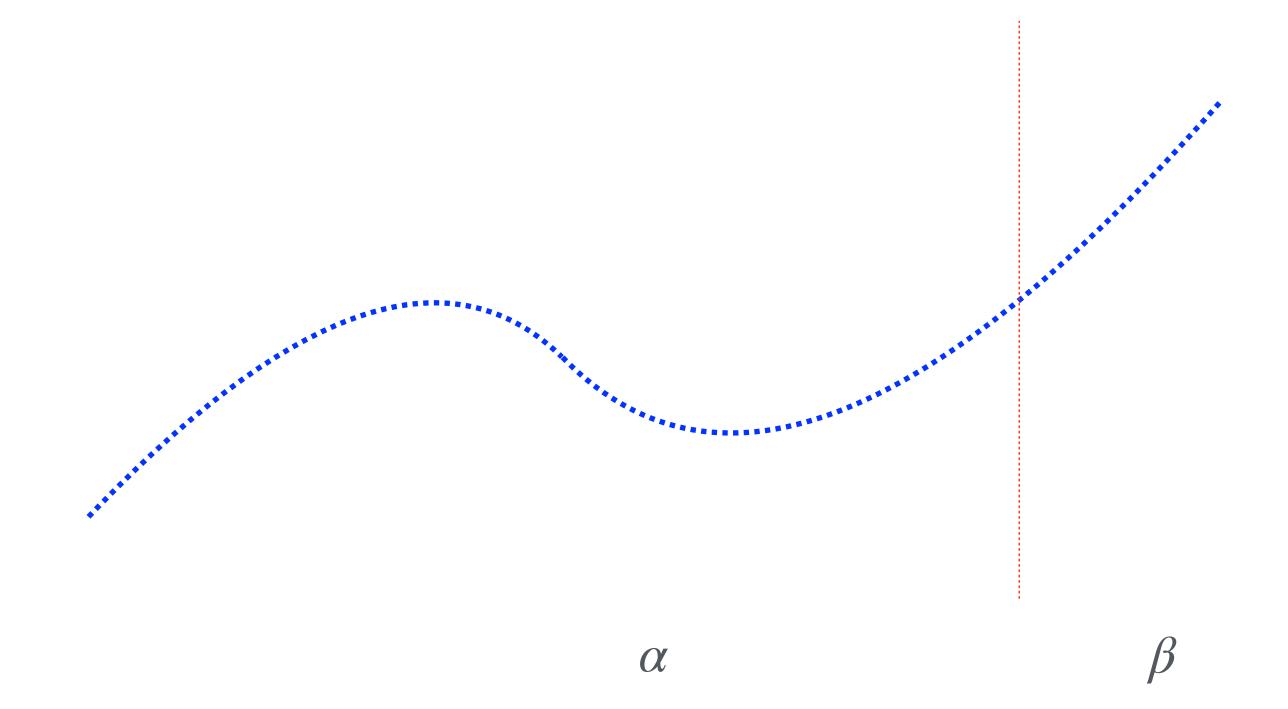
 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

Key idea for upper bound: fairness



 S_d -Reach is PSPACE-complete, for every $d \ge 2$.

Key idea for upper bound: fairness + pumping



Easy

 $S_d \quad A_d \quad S_n \wr I_d$

Hard

 $I_d \wr S_n \quad Z_d$

Easy Hard S_d $S_n \wr I_d$ $I_d \wr S_n$ Z_d

Problem

Is there a parameter of a group G which determines the complexity of G-Reach?

Easy Hard $S_n \wr I_d$ $I_d \wr S_n \wr Z_d$

Problem

Is there a parameter of a group G which determines the complexity of G-Reach?

Problem

The complexity in particular cases.

Easy Hard $S_n \wr I_d$ $I_d \wr S_n \wr Z_d$

Problem

Is there a parameter of a group G which determines the complexity of G-Reach?

Problem

The complexity in particular cases.

• $S_n \wr S_d$

Easy

 S_d A_d

 $S_n \wr I_d$

 $I_d \wr S_n \quad Z_d$

Problem

Is there a parameter of a group G which determines the complexity of G-Reach?

Problem

The complexity in particular cases.

• $S_n \wr S_d$

