

Bi-reachability in Petri nets with data

Łukasz Kamiński

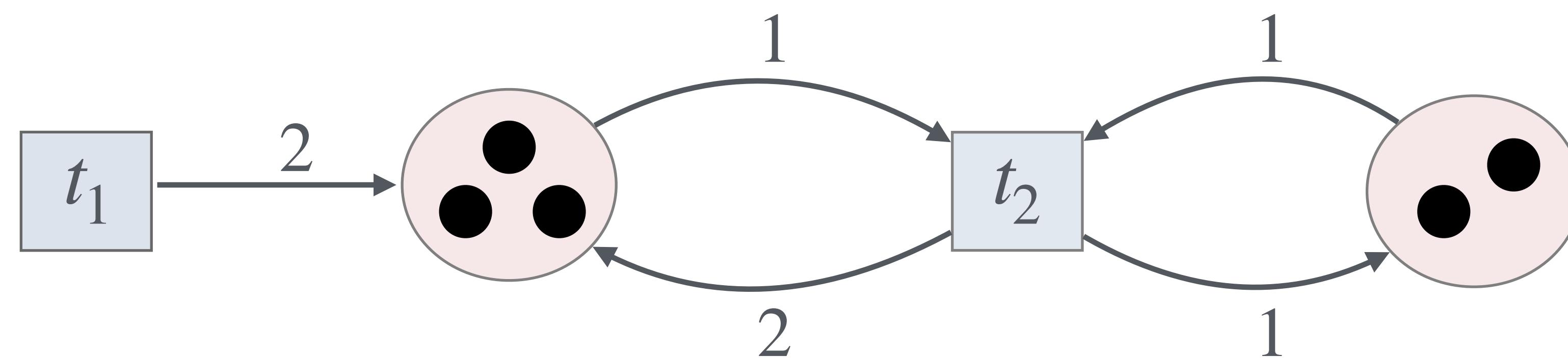
University of Warsaw

Sławomir Lasota

University of Warsaw

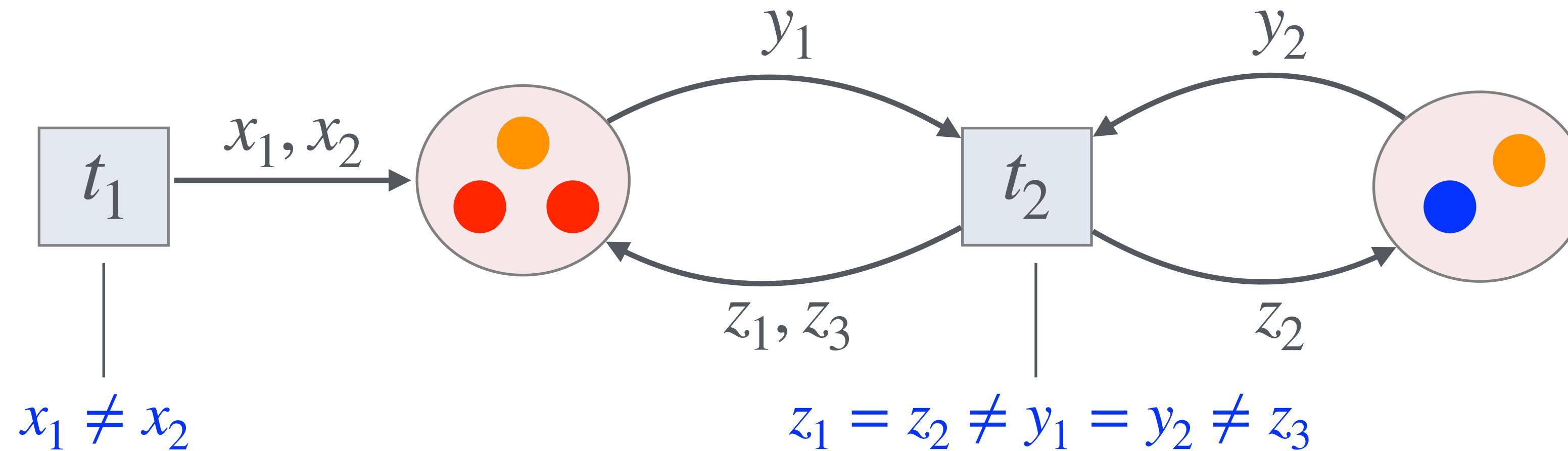
CONCUR'24, Calgary, 10th Sep 2024

Petri nets



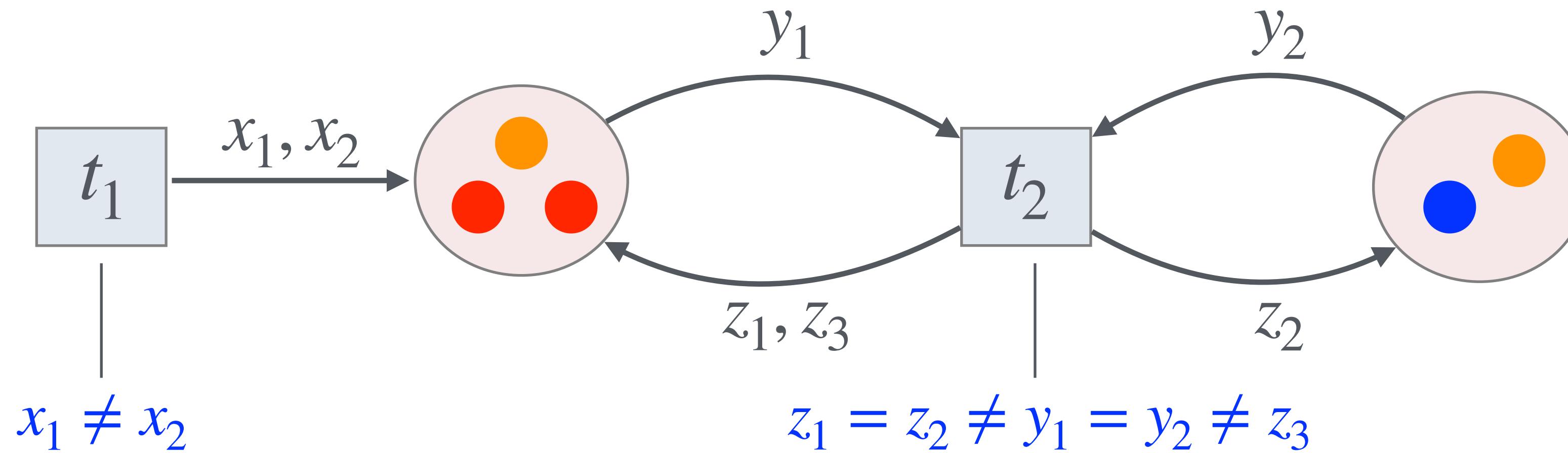
Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.

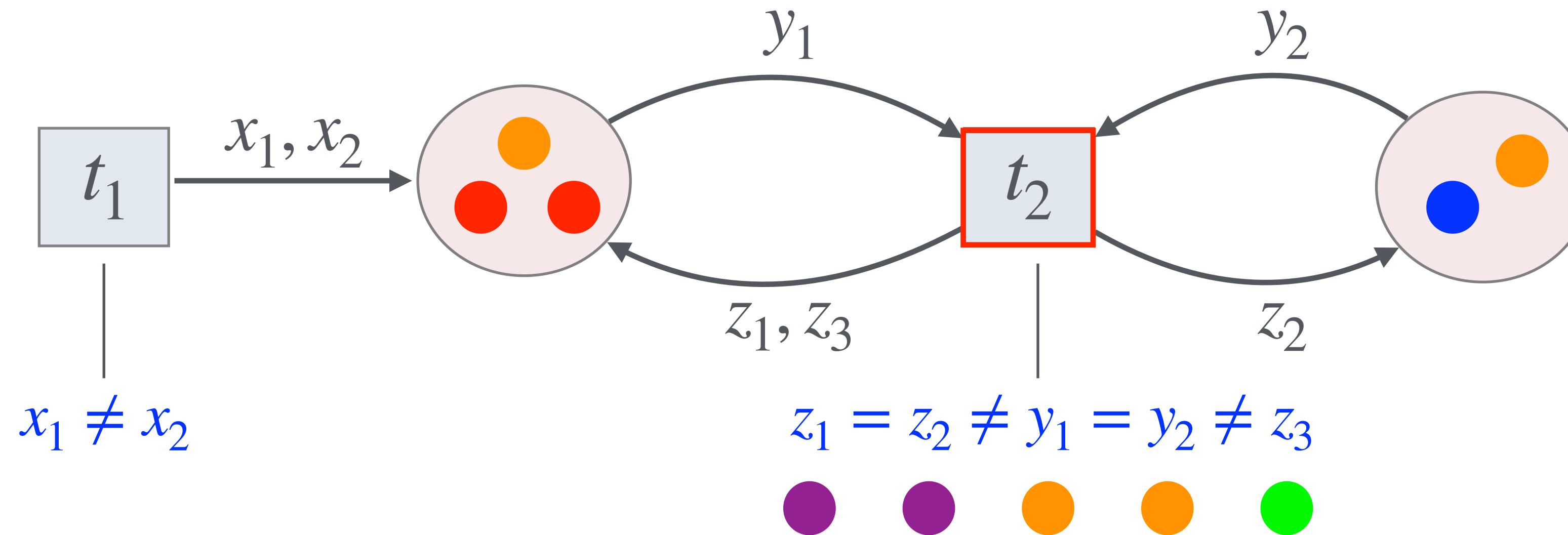


Configuration = distribution of tokens over the places

Formally, a function $P \times \mathbb{A} \rightarrow \mathbb{N}$ with finite support.

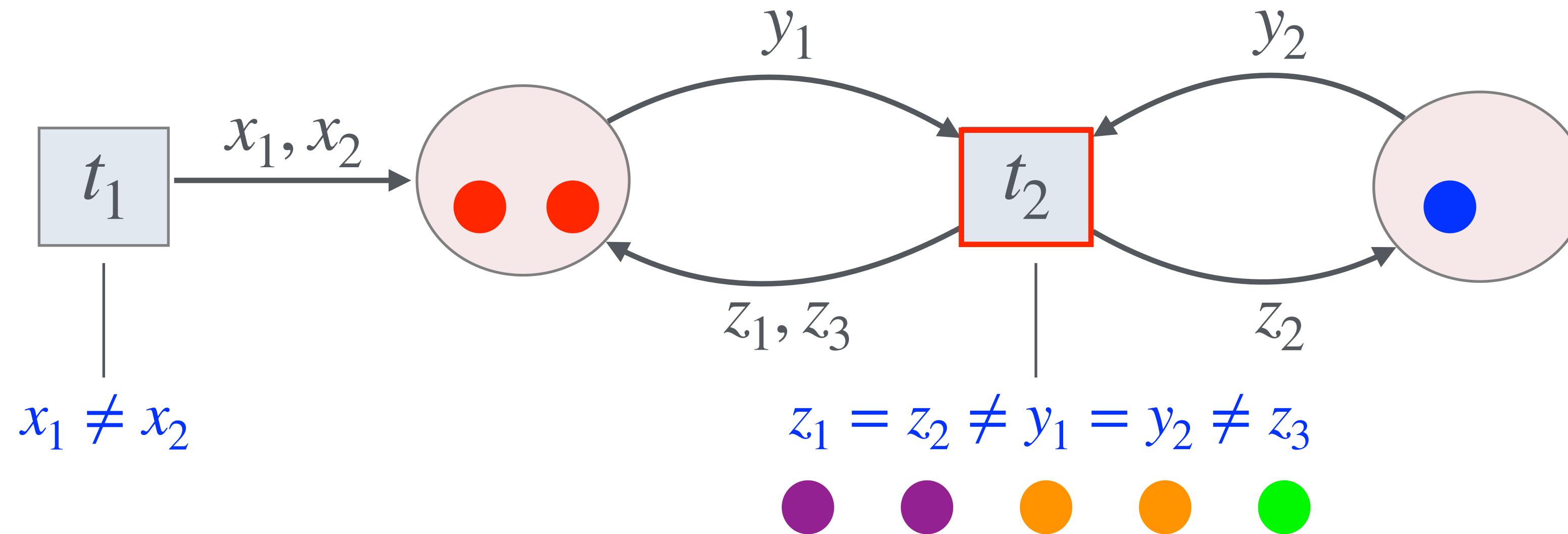
Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



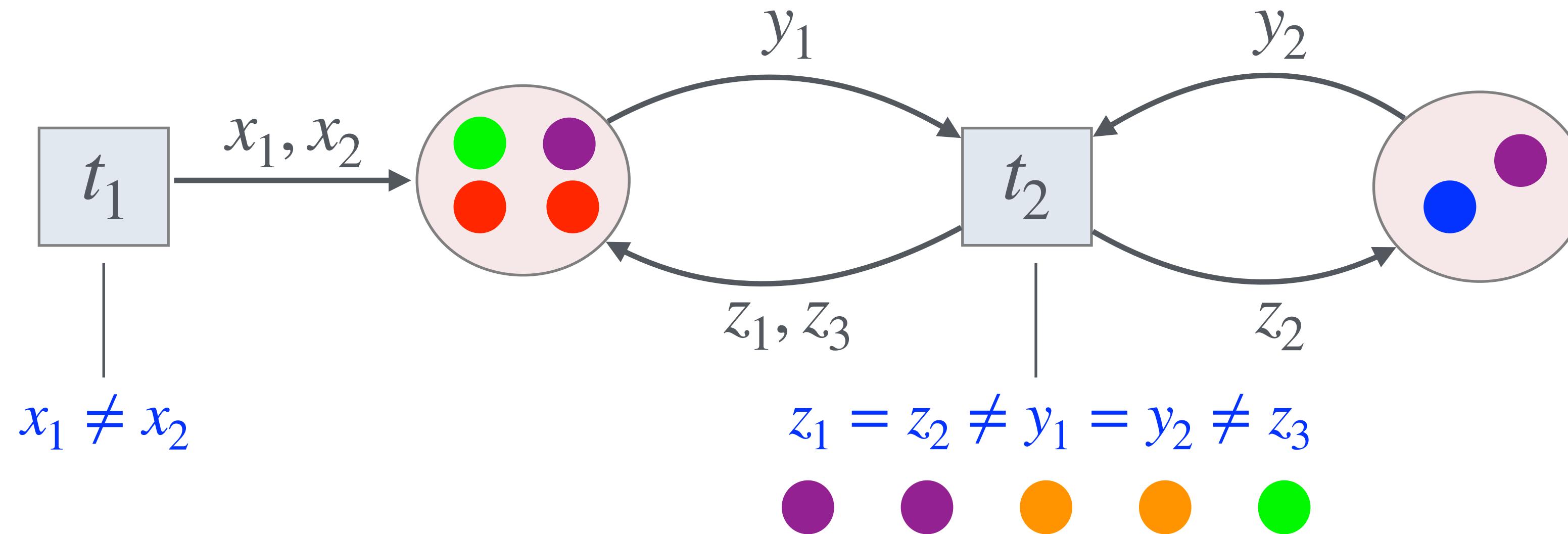
Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



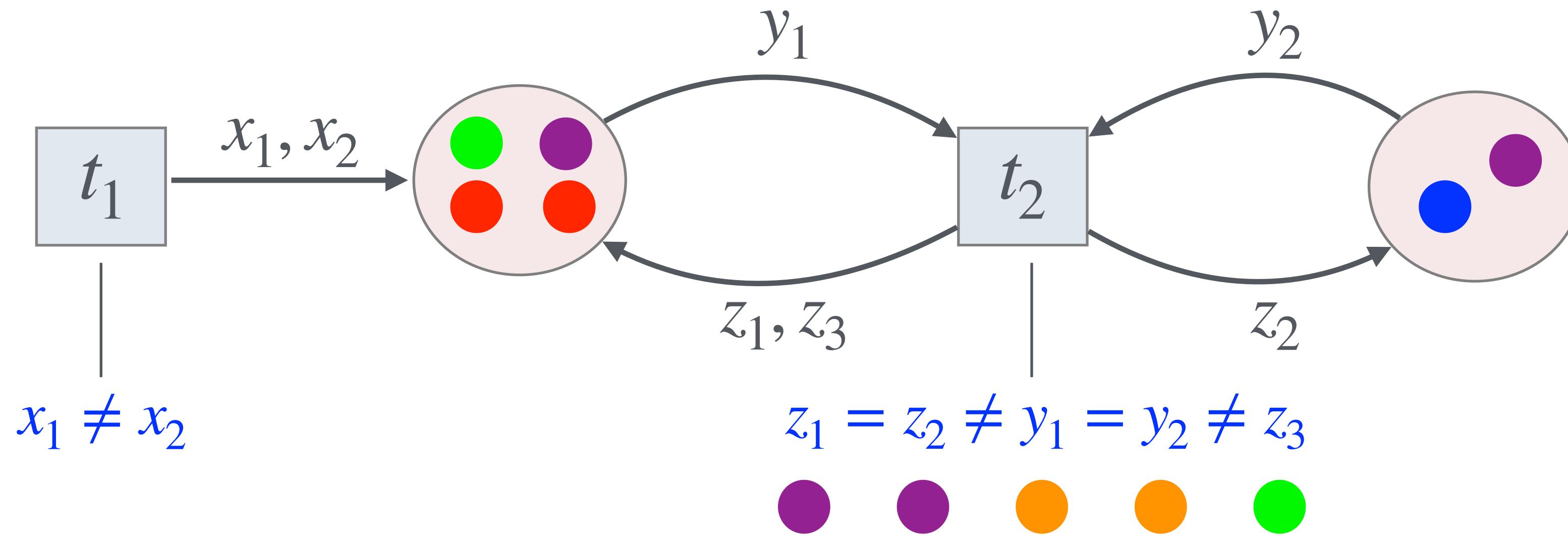
Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.

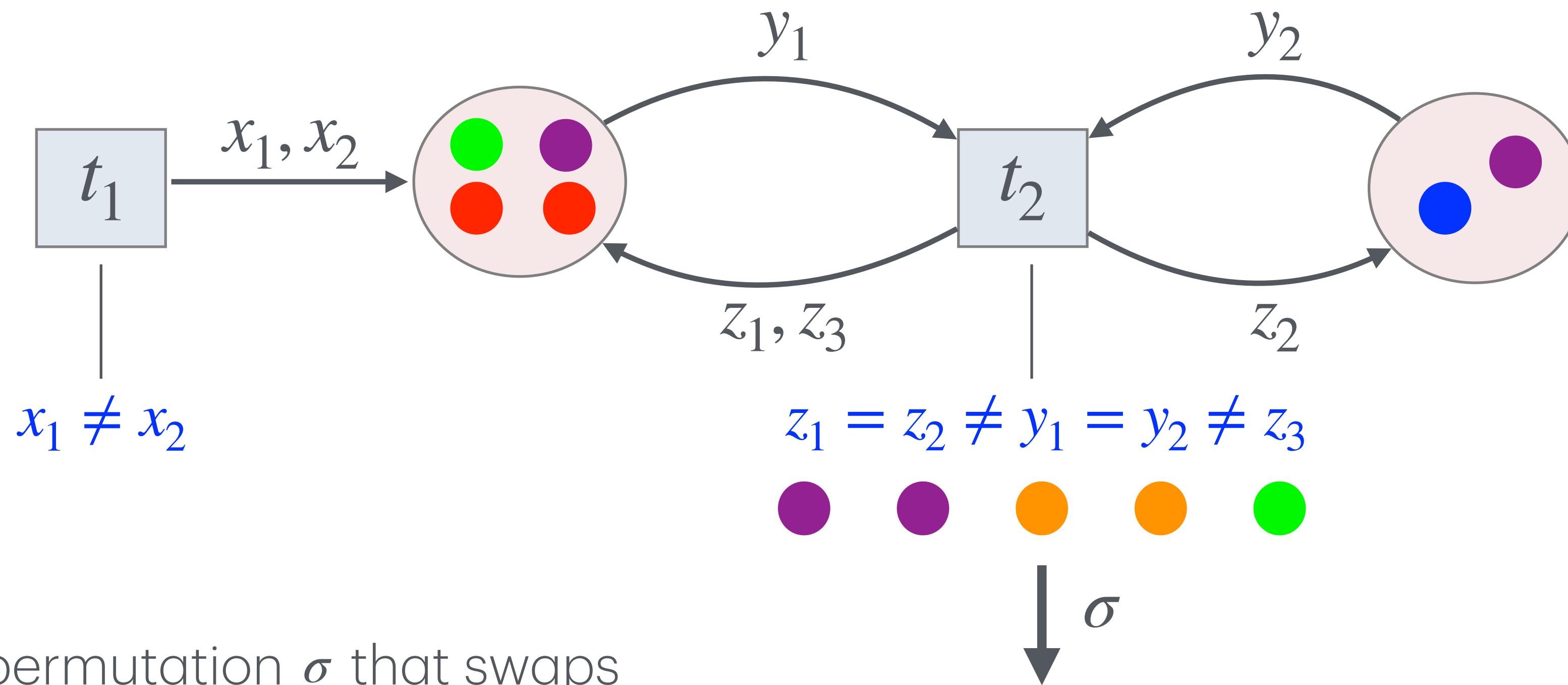


Consider a permutation σ that swaps

purple and orange

Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.

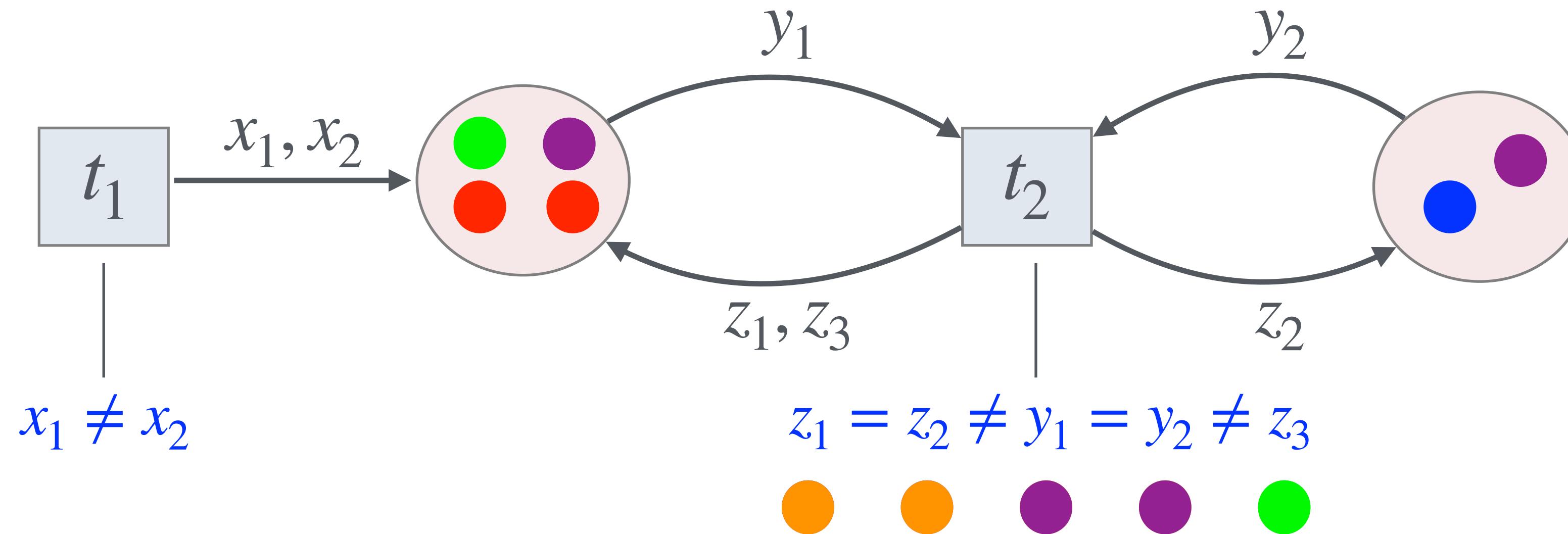


Consider a permutation σ that swaps

purple and orange

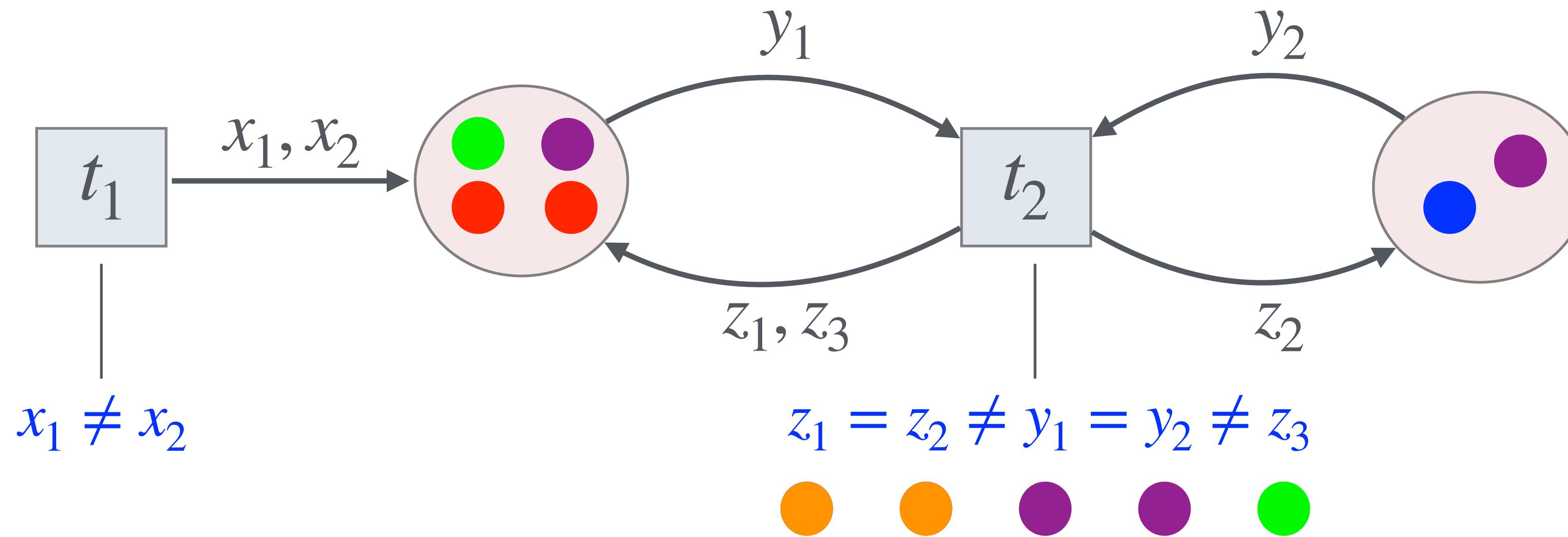
Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



Petri nets with equality data

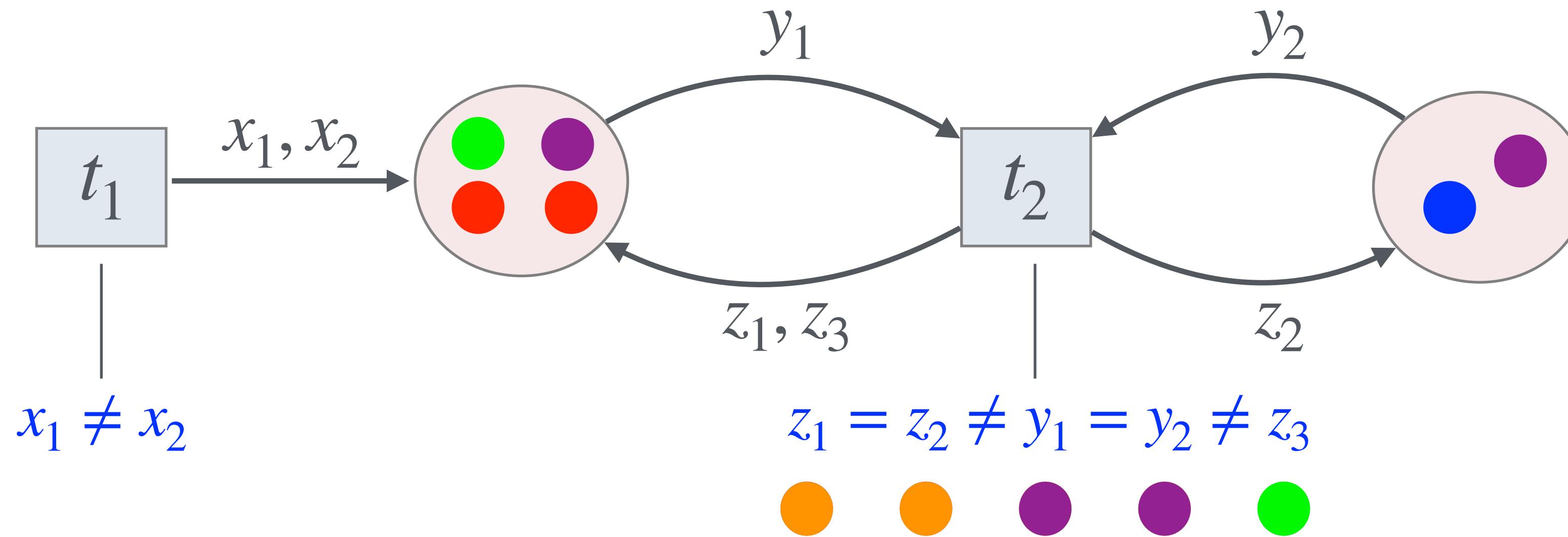
Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



Orbit of a transition = equivalence class w.r.t. actions of permutations

Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



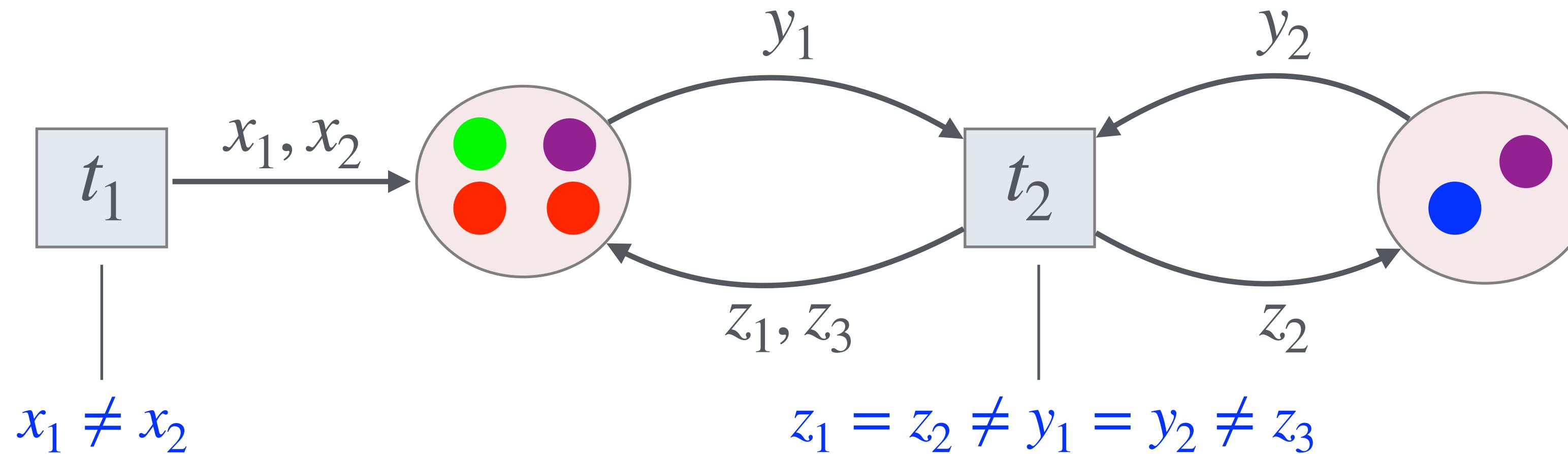
Orbit of a transition = equivalence class w.r.t. actions of permutations

The set of transitions is infinite, but **orbit-finite**

[Bojańczyk, Klin, Lasota, Toruńczyk, '13]
[Bojańczyk, Klin, Lasota, '14]

Petri nets with equality data

Let $\mathbb{A} = \{ \text{orange}, \text{red}, \text{blue}, \text{green}, \dots \}$ be an infinite set of data.



High-level Petri nets

[Genrich, Lautenbach, '81]

Coloured Petri nets

[Jensen, '81]

Constrained multiset rewriting

[Cervesato, Durgin, Lincoln, Mitchell, Scedrov, '99]

[Delzanno, '05]

Petri nets with data

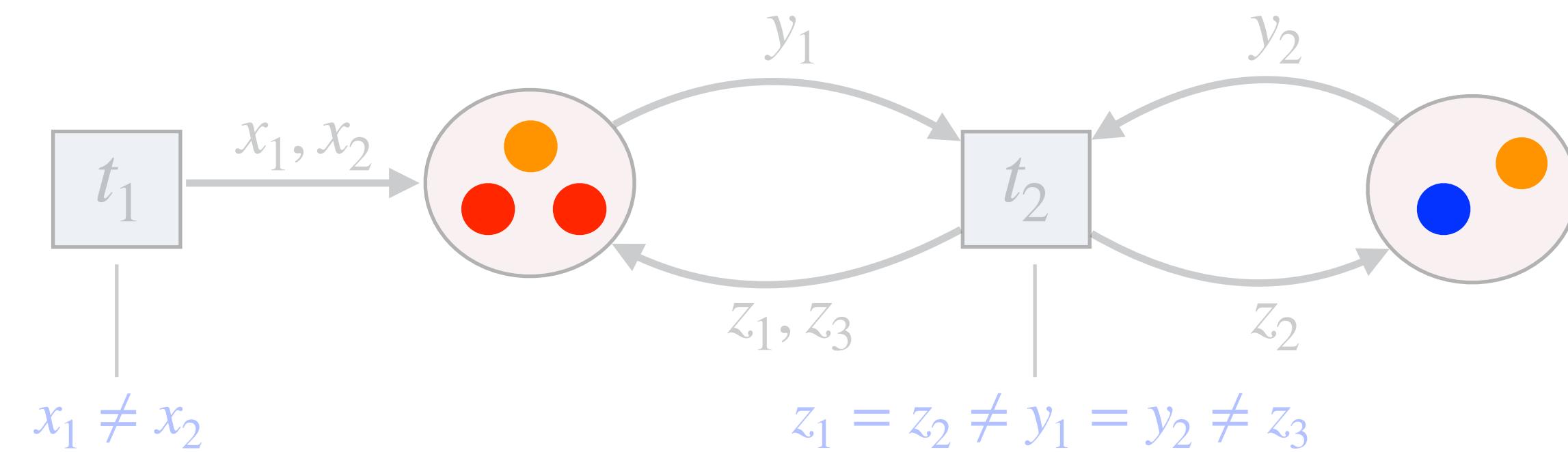
[Lazic, Newcomb, Ouaknine, Roscoe, Worrell, '07]

[Rosa-Velardo, Frutos-Escríg, '11]

[Lasota, '16]

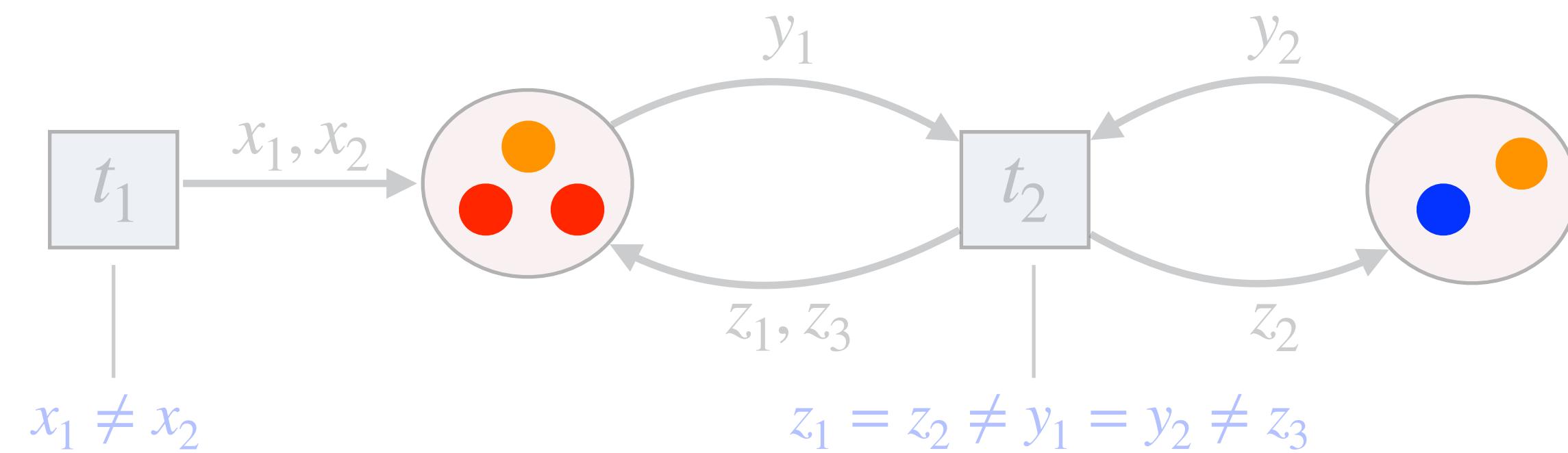
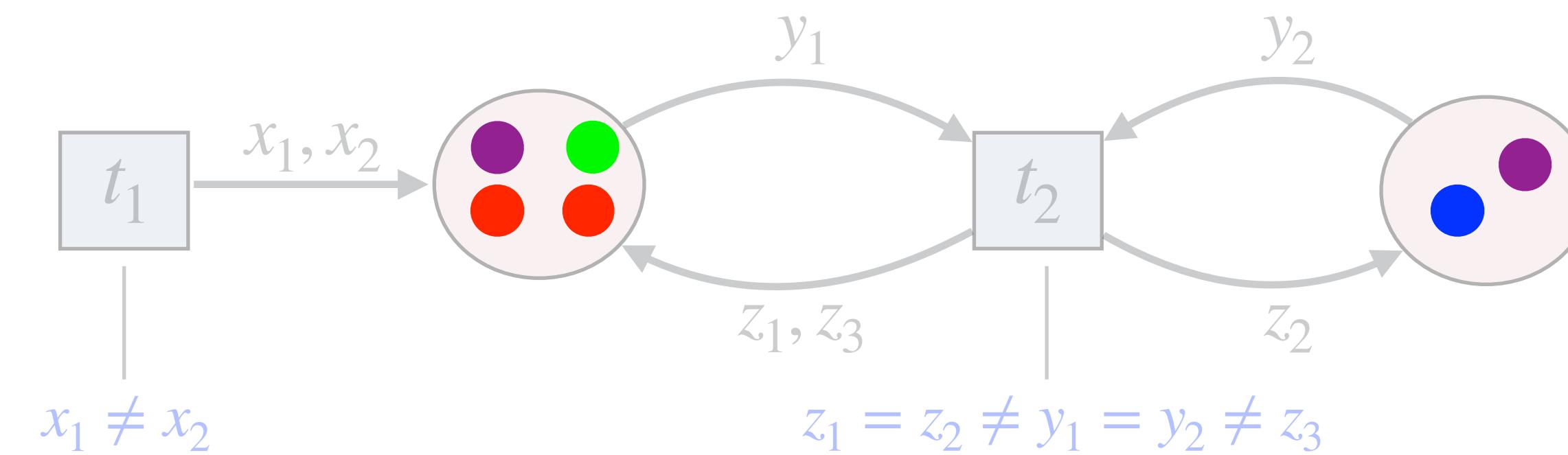
Runs

Source



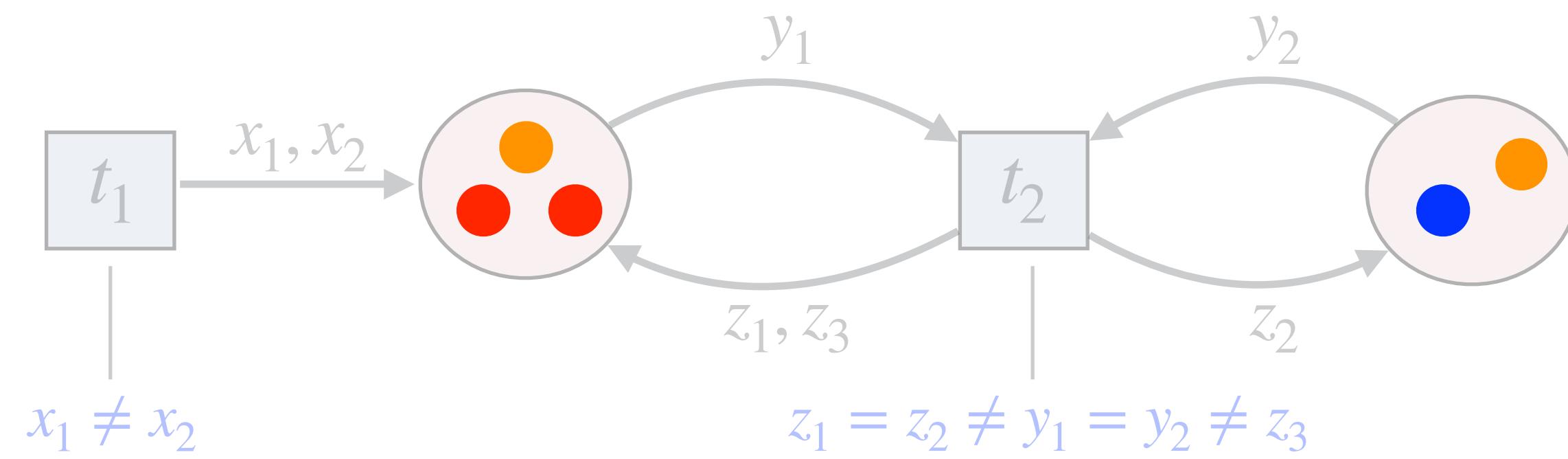
Runs

Source

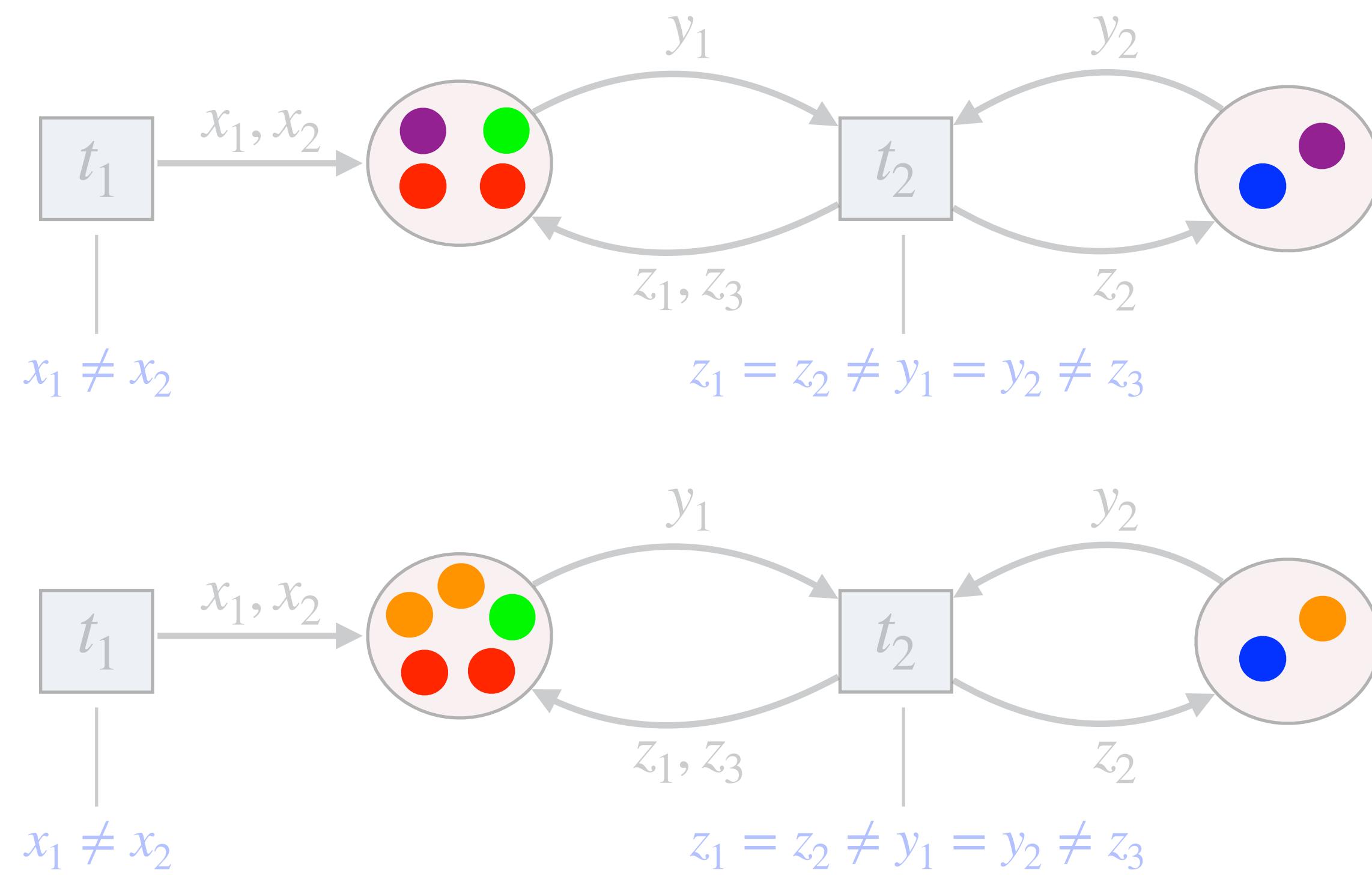


Runs

Source



Target



Decision problems

Input: a (data) Petri net, source and target configurations

Decision problems

Input: a (data) Petri net, source and target configurations

Reachability

Is there a run from source to target?

Decision problems

Input: a (data) Petri net, source and target configurations

Reachability

Is there a run from source to target?

Coverability

Is there a run from source to target or a greater configuration?

Decision problems

Input: a (data) Petri net, source and target configurations

Reachability

Is there a run from source to target?

Coverability

Is there a run from source to target or a greater configuration?

Reachability in reversible Petri net

Assuming that all transitions are reversible, is there a run from source to target?

Decision problems

Input: a (data) Petri net, source and target configurations

Reachability

Is there a run from source to target?

Coverability

Is there a run from source to target or a greater configuration?

Reachability in reversible Petri net

Assuming that all transitions are reversible, is there a run from source to target?

Bi-reachability (mutual reachability)

Are there two runs, from source to target, and from target to source?

Decision problems

Input: a (data) Petri net, source and target configurations

Reachability

Is there a run from source to target?

Coverability

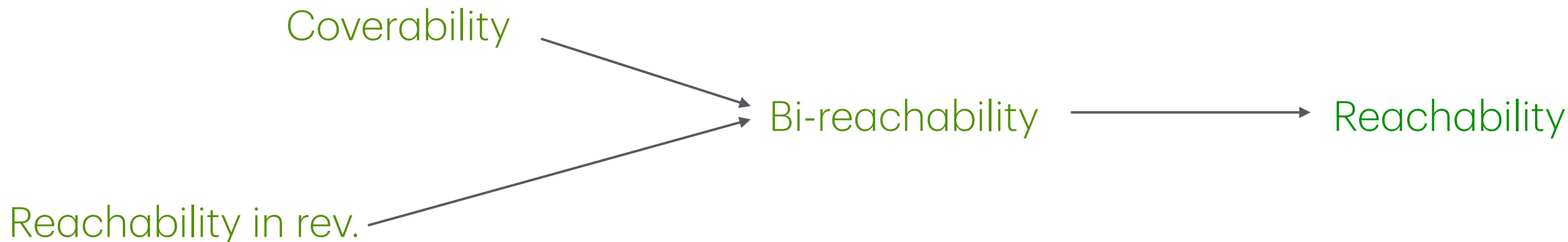
Is there a run from source to target or a greater configuration?

Reachability in reversible Petri net

Assuming that all transitions are reversible, is there a run from source to target?

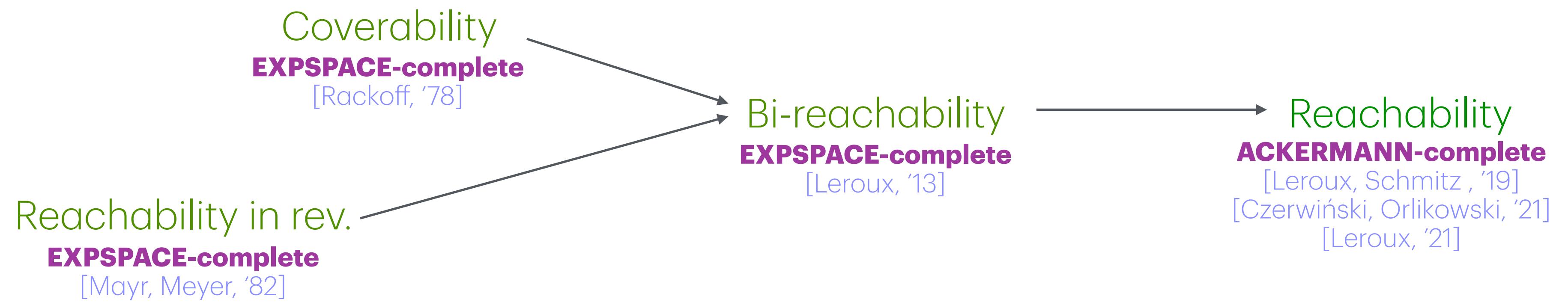
Bi-reachability (mutual reachability)

Are there two runs, from source to target, and from target to source?

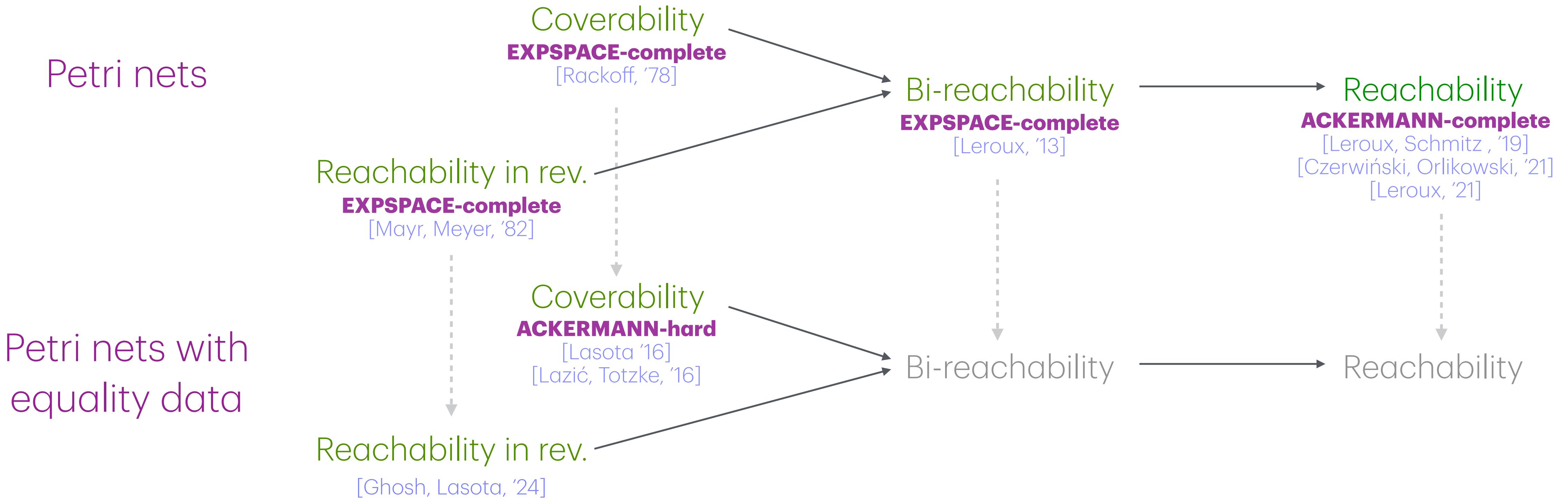


State of the art

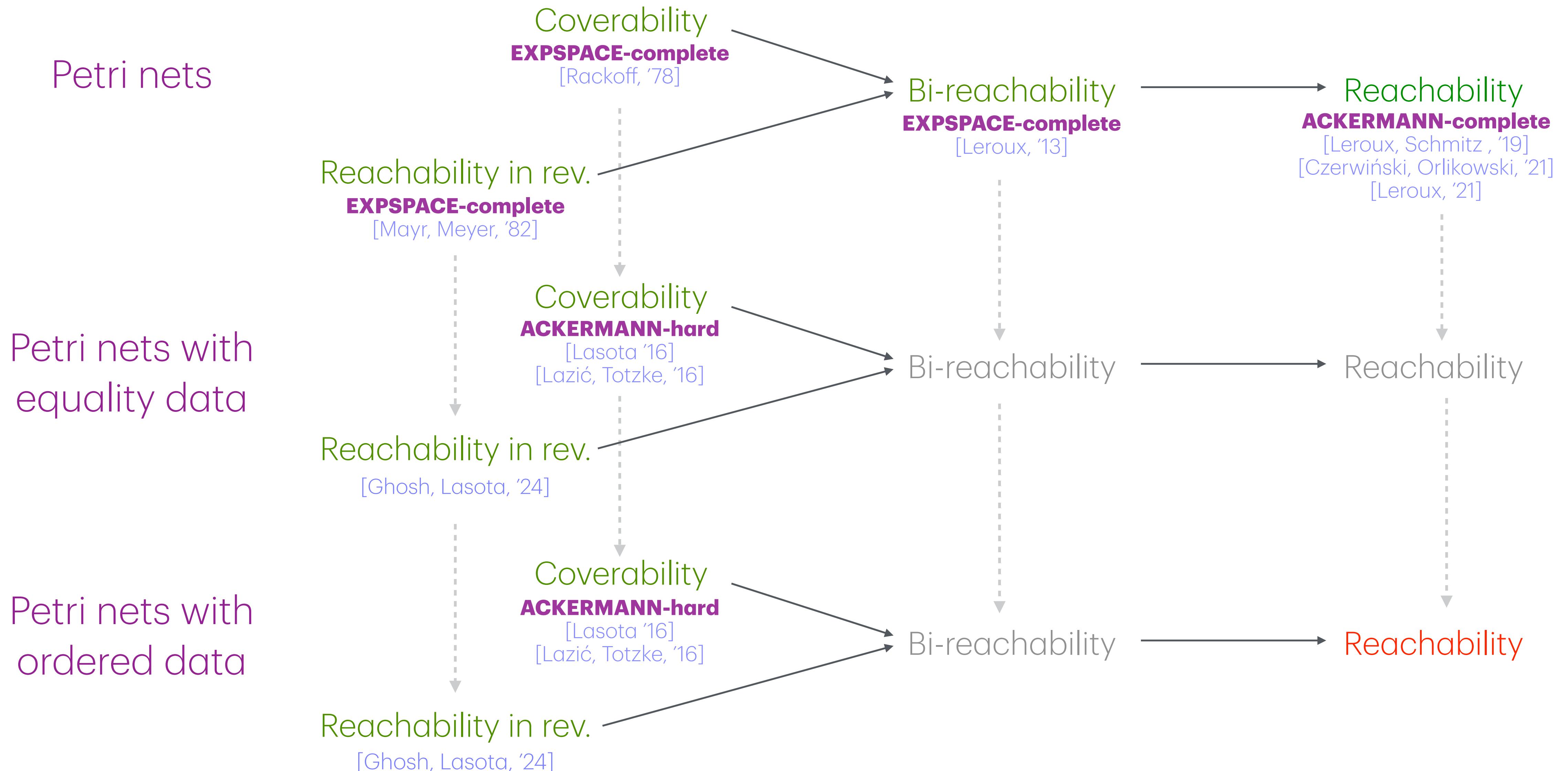
Petri nets



State of the art



State of the art

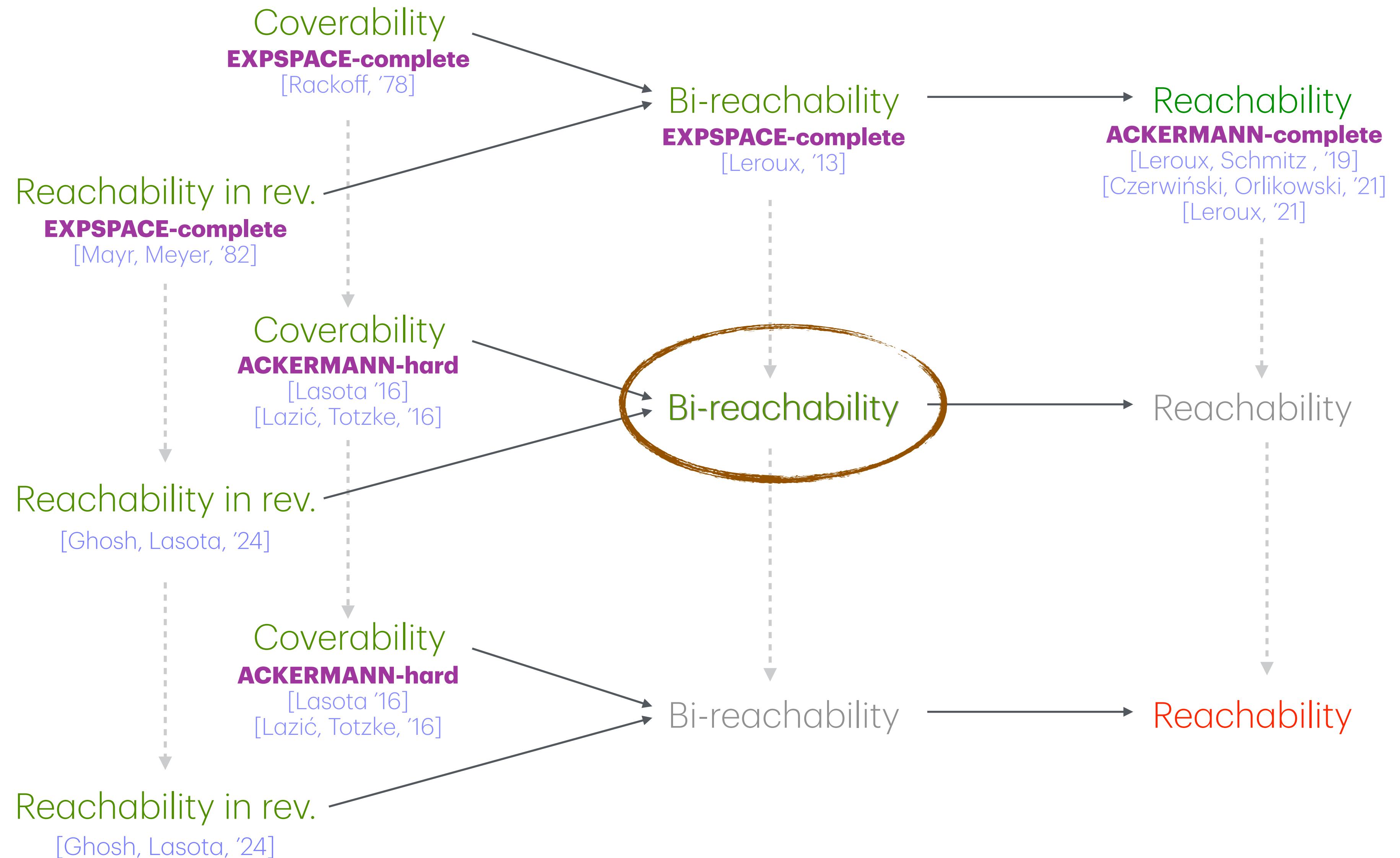


State of the art and the result

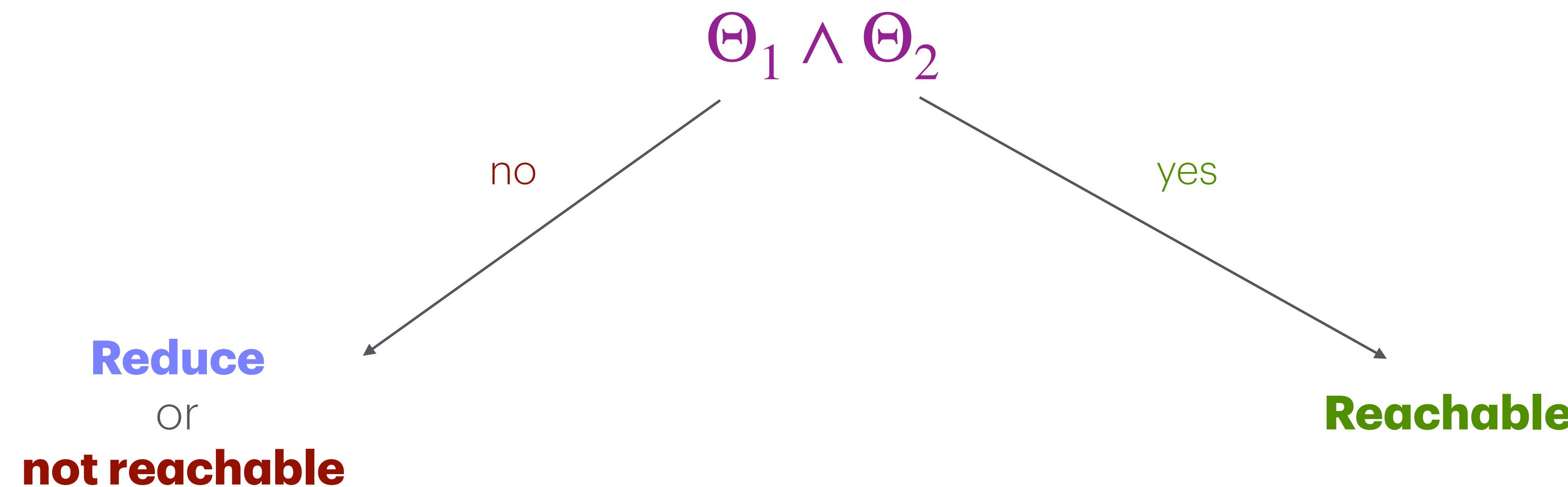
Petri nets

Petri nets with equality data

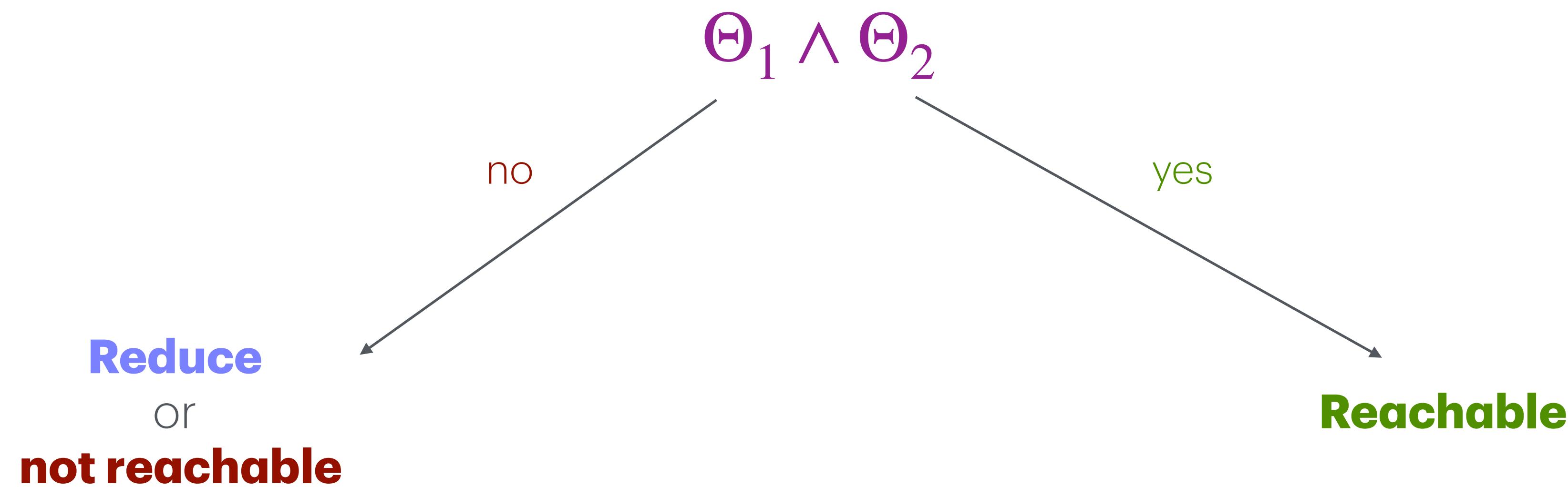
Petri nets with ordered data



Decomposition algorithm



Decomposition algorithm



[Kosaraju, '82]

Sufficient condition

Θ_1 :

For every $m \in \mathbb{N}$ there is a pseudo-run

$$q \dashrightarrow q'$$

that uses every transition at least m times.

Sufficient condition

Θ_1 :

For every $m \in \mathbb{N}$ there is a **pseudo-run**

$$q \rightarrowtail q'$$

that uses every transition at least m times.

We allow negative numbers of tokens

Sufficient condition

We allow negative numbers of tokens

Θ_1 :

For every $m \in \mathbb{N}$ there is a **pseudo-run**

$$q \rightarrowtail q'$$

that uses every transition at least m times.

Θ_2 :

For some vectors $\Delta, \Delta' \gg \mathbf{0}$ there are runs

$$q \rightarrow q + \Delta \quad q' + \Delta' \rightarrow q'$$

Sufficient condition

Θ_1 :

For every $m \in \mathbb{N}$ there is a **pseudo-run**

$$q \rightarrowtail q'$$

that uses every transition at least m times.

We allow negative numbers of tokens

Θ_2 :

For some vectors $\Delta, \Delta' \gg \mathbf{0}$ there are runs

$$q \rightarrow q + \Delta \quad q' + \Delta' \rightarrow q'$$

Sufficient condition

Θ_1 :

For every $m \in \mathbb{N}$ there **are two** pseudo-runs **s**

$$q \rightarrowtail q' \quad q' \rightarrowtail q$$

that uses ~~every~~ transition at least m times.

some transition from every orbit.

Θ_2 :

For some vectors $\Delta, \Delta' \gg \mathbf{0}$ there are runs

$$q \rightarrow q + \Delta \quad q' + \Delta' \rightarrow q'$$

We allow negative numbers of tokens

Sufficient condition

Θ_1 :

For every $m \in \mathbb{N}$ there **are two** pseudo-runs **s**

$$q \rightarrowtail q' \quad q' \rightarrowtail q$$

that uses **every** transition at least m times.

some transition from every orbit.

Θ_2 :

For some vectors $\Delta, \Delta' \gg \mathbf{0}$ there are runs

$$q \rightarrow q + \Delta \quad q' + \Delta' \rightarrow q'$$

and similarly for the second run

We allow negative numbers of tokens

Thank you!

Petri nets

Petri nets with equality data

Petri nets with ordered data

