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Chapter 1

Overview

In the process of doing scientific computations we always rely on some infor-
mation. A typical situation in practice is that this information is contami-
nated by errors. We say that it is noisy. Sources of noise include:

• previous computations,

• inexact measurements,

• transmission errors,

• arithmetic limitations,

• adversary’s lies.

Problems with noisy information have always attracted a considerable
attention of researchers in many different scientific fields: statisticians, engi-
neers, control theorists, economists, applied mathematicians. There is also
a vast literature, especially in statistics, where noisy information is analyzed
from different perspectives.

In this monograph, noisy information is studied in the context of the
computational complexity of solving mathematically posed problems.

The computational complexity focuses on the intrinsic difficulty of prob-
lems as measured by the minimal amount of time, memory, or elementary
operations necessary to solve them. Information–based complexity (IBC) is
a branch of computational complexity that deals with problems for which
the available information is:

• partial,

• noisy,

• priced.
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6 CHAPTER 1. OVERVIEW

Information being partial means that the problem is not uniquely de-
termined by the given information. Information is noisy since it may be
contaminated by some errors. Finally, information is priced since we must
pay for getting it. These assumptions distinguish IBC from combinatorial
complexity, where information is complete, exact, and free.

Since information is partial and noisy, only approximate solutions are
possible. One of the main goals of IBC is finding the complexity of the prob-
lem, i.e., the intrinsic cost of computing an approximation with given accu-
racy. Approximations are obtained by algorithms that use some information.
These solving the problem with minimal cost are of special importance and
called optimal.

Partial, noisy and priced information is typical of many problems arising
in different scientific fields. These include, for instance, signal processing,
control theory, computer vision, and numerical analysis. As a rule, a digital
computer is used to perform scientific computations. A computer can only
make use of a finite set of numbers. Usually, these numbers cannot be exactly
entered into the computer memory. Hence, problems described by infinitely
many parameters can be “solved” using only partial and noisy information.

The theory of optimal algorithms for solving problems with partial in-
formation has a long history. It can be traced back to the late forties when
Kiefer, Sard and Nikolskij wrote pioneering papers. A systematic and uni-
form approach to such kind of problems was first presented by J.F. Traub
and H. Woźniakowski in the monograph A General Theory of Optimal Al-
gorithms, Academic Press, 1980. This was an important stage in the devel-
opment of the theory of IBC.

The monograph was followed then by Information, Uncertainty, Com-
plexity, Addison-Wesley, 1983, and Information-Based Complexity, Academic
Press, 1988, both authored by J.F. Traub, G.W. Wasilkowski, and H. Woźnia-
kowski. Computational complexity of approximately solved problems is also
studied in the books: Deterministic and Stochastic Error Bounds in Numer-
ical Analysis by E. Novak, Springer Verlag, 1988, and The Computational
Complexity of Differential and Integral Equations by A.G. Werschulz, Oxford
University Press, 1991.

Relatively few IBC papers study noisy information. One reason is the
technical difficulty of the analysis of noisy information. A second reason
is that even if we are primarily interested in noisy information, the results
on exact information establish a benchmark. All negative results for exact
information are also applicable for the noisy case. On the other hand, it is
not clear whether positive results for exact information have a counterpart



7

for noisy information.
In the mathematical literature, the word “noise” is used mainly by statis-

ticians and means a random error that occurs for experimental observations.
We also want to study deterministic error. Therefore by noise, we mean
random or deterministic error. Moreover, in our model, the source of the
information is not important. We may say that “information is observed”
or that it is “computed”.

We also stress that the case of exact information is not excluded, neither
in the model nor in most results. Exact information is obtained as a special
case by setting the noise level to zero. This permits us to study the depen-
dence of the results on the noise level, and to compare the noisy and exact
information cases.

In general, optimal algorithms and problem complexity depend on the
setting. The setting is specified by the way the error and cost of an algorithm
are defined. If the error and cost are defined by their worst performance,
we have the worst case setting. The average case setting is obtained when
the average performance of algorithms is considered. In this monograph,
we study the worst and average case settings as well as mixed settings and
asymptotic setting. Other settings such as probabilistic and randomized
settings will be the topic of future research.

Despite the differences, the settings have certain features in common.
For instance, algorithms that are based on smoothing splines are optimal,
independent of the setting. This is a very desirable property, since it shows
that such algorithms are universal and robust.

Most of the research presented in this monograph has been done over the
last 5–6 years by different people, including the author. Some of the results
have not been previously reported. The references to the original results
are given in Notes and Remarks at the end of each section. Clearly, the
author does not pretend to cover the whole subject of noisy information in
one monograph. Only these topics are presented that are typical of IBC, or
are needed for the complexity analysis. Many problems are still open. Some
of these are indicated in the text.

The monograph consists of six chapters. We start with the worst case
setting in Chapter 2. Chapter 3 is devoted to the average case setting. Each
of these two settings is studied following the same scheme. We first look for
the best algorithms that use fixed information. Then we allow the informa-
tion to vary and seek optimal information. Finally, complexity concepts are
introduced and complexity results are presented for some particular prob-
lems. Chapters 4 and 5 are devoted to the mixed settings, while Chapter 6
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to the asymptotic setting.
Each chapter consists of several sections, each followed by Notes and

Remarks, and Exercises. A preview of the results is presented in the intro-
duction of each chapter.



Chapter 2

Worst case setting

2.1 Introduction

In this chapter we study the worst case setting. We shall present already
known results as well as we show some new results. As already mentioned
in the Overview, precise information about what is known and what is new
can be found in Notes and Remarks.

Our major goal is to obtain tight complexity bounds for the approxi-
mate solution of linear continuous problems that are defined on infinite di-
mensional spaces. We first explain what is to be approximated and how an
approximation is obtained. That is, we carefully introduce the fundamental
concepts of solution operator, noisy information and algorithm. A special
attention is devoted to information which is most important in our analysis.
Information is, roughly speaking, what we know about the problem to be
solved. A crucial assumption is that information is noisy, i.e., it is not given
exactly, but with some error.

Since information is usually partial (i.e., many elements share the same
information) and noisy, it is impossible to solve the problem exactly. We
have to be satisfied with only approximate solutions. They are obtained by
algorithms that use information as data. In the worst case setting, the error
of an algorithm is given by its worst performance over all problem elements
and possible information. A sharp lower bound on the error is given by
a quantity called a radius of information. We are obviously interested in
algorithms with the minimal error. Such algorithms are called optimal.

In Sections 2.4 to 2.6 we study optimal algorithms and investigate whether
they can be linear or affine. In many cases the answer is positive. This is

9



10 CHAPTER 2. WORST CASE SETTING

the case for approximation of linear functionals and approximation of opera-
tors that act between spaces endowed by Hilbert seminorms, assuming that
information is linear with noise bounded in a Hilbert seminorm. The opti-
mal linear algorithms are based on the well known smoothing splines. This
confirms a common opinion that smoothing splines are a very good practical
tool for constructing approximations. We show that in some special cases
smoothing splines are closely related to the least squares and regularization
algorithms.

When using smoothing splines or regularization, a good choice of the
smoothing or regularization parameters becomes an important question. Of-
ten special methods, such as cross validation, are developed to find them.
We show how to choose the smoothing and regularization parameters opti-
mally in the worst case setting, and how this choice depends on the noise
level and the domain of the problem. It turns out that in some cases the
regularization parameter is independent of the noise level provided that a
bound on the noise is sufficiently small.

In Sections 2.7 and 2.8 we allow not only algorithms but also information
to vary. We assume that information is obtained by successive noisy obser-
vations (or computations) of some functionals. The choice of functionals and
noise bounds depend on us. We stress that we do not exclude the case when
errors coming from different observations are correlated. This allows us also
to model information where the noise of information is bounded, say, in a
Hilbert norm.

With varying information, it is important to know whether adaption
can lead to better approximations than nonadaption. We give sufficient
conditions under which adaption is not better than nonadaption. These
conditions are satisfied, for instance, if linear information with noise bounded
in a norm is used.

Then we study the optimal choice of observations with given precisions.
This is in general a difficult problem. Therefore we establish complete results
only for two classes of problems. The first class consists of approximating
compact operators acting between Hilbert spaces where the noise is bounded
in the weighted Euclidean norm. In particular, it turns out that in this case
the error of approximation can be arbitrarily reduced by using observations
with fixed precisions. This does not hold for noise bounded in the supremum
norm. When using this norm, to decrease the error of approximation, we
have to perform observations with higher precisions. We stress that observa-
tions with noise bounded in the supremum norm seem to be most often used
in practice. Exact formulas for the minimal errors are in this case obtained
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for approximation of Lipschitz functions based on noisy function values.

In Section 2.9 we present the model of computation and define the ε–
complexity of a problem as the minimal cost needed to obtain an approxima-
tion with the (worst case) error at most ε. In the worst case setting, the cost
of approximation is measured by the worst performance of an algorithm over
all elements of the problem. In general, the cost of successive observations
depends on their precisions. However, the model also covers the case when
observations with a given, fixed precision are only allowed.

The complexity results are obtained using previously established results
on optimal algorithms, adaption and optimal information. We first give tight
general bounds on the ε–complexity. It turns out that if the optimal algo-
rithms are linear then in many cases the cost of combining information is
much less than the cost of gaining it. In such a case, the problem complexity
is roughly equal to the information complexity which is defined as the mini-
mal cost of obtaining information that guarantees approximation within the
error ε. This is the reason why we are so much interested in existence of
optimal linear algorithms.

In the last section we specify the general complexity results to some
special problems. First, we consider approximation of compact operators in
Hilbert spaces where information is linear with noise bounded in the weighted
Euclidean norm. We show sharp upper and lower complexity bounds. We
also investigate how the complexity depends on the cost assigned to each
precision.

Next, we derive the ε–complexity for approximation and integration of
Lipschitz functions. For a fixed positive bound on the noise, the complexity
is infinite for sufficiently small ε. To make the complexity finite for all
positive ε, we have to allow observations with arbitrary precisions. Then
the ε–complexity is roughly attained by information that uses observations
of function values at equidistant points with the same precision which is
proportional to ε.

Finally, we consider approximation of smooth multivariate functions in
a Banach space. We assume that the noise of successive observations is
bounded in the absolute or relative sense. We show that in both cases the
ε–complexity is roughly the same and is achieved by polynomial interpolation
based on data about function values at equispaced points, and with a noise
bound proportional to ε.
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2.2 Information, algorithm, approximation

Let F be a linear space and G a normed space, both over the reals. Let

S : F → G

be a mapping, called a solution operator. We are mainly interested in linear
S. However, for the general presentation of the basic concepts we do not
have to put any restrictions on S. We wish to approximate elements S(f)
for f belonging to a set E ⊂ F . An approximation is constructed based only
on some noisy information about f . We now explain precisely how the noisy
information and the approximation are obtained.

An information operator (or simply information) is a mapping

N : F → 2Y ,

where Y is a set of finite real sequences, Y ⊂ ⋃∞
n=1Rn. That is, N(f) is

a subset of Y . We assume that N(f) is nonempty for all f ∈ F . Any
element y ∈ N(f) will be called information about f . Note that knowing y,
we conclude that f is a member of the set { f1 ∈ F | y ∈ N(f1) }. This yields
some information about the element f and justifies the names for N and y.

If the set N(f) has exactly one element for all f ∈ F , information N is
called exact. In this case, N will be identified with the operator N : F → Y ,
where N(f) is the unique element of N(f). If there exists f for which N(f)
has at least two elements, we say that N is noisy.

Knowing the information y about f , we combine it to get an approxima-
tion. More precisely, the approximation is produced by an algorithm which
is given as a mapping

ϕ : Y → G.

The algorithm takes the obtained information as data. Hence, the approxi-
mation to S(f) is ϕ(y) where y is information about f . The error of approx-
imation is defined by the difference ‖S(f) − ϕ(y)‖ where ‖ · ‖ is the norm
in the space G.

We illustrate the concepts of noisy information and algorithm by three
simple examples.

Example 2.1 Suppose we want to approximate a real number (param-
eter) f based on its perturbed value y, |y − f | ≤ δ. This corresponds to
F = G = R and S(f) = f . The information is of the form

N(f) = { y ∈ R | |y − f | ≤ δ }



2.2. INFORMATION, ALGORITHM, APPROXIMATION 13

with Y = R. For δ = 0, we have exact information, N(f) = f , and for δ > 0
we have noisy information. An algorithm ϕ is a mapping ϕ : R → R. For
instance, it may be given as ϕ(y) = y.

Example 2.2 Suppose we want to approximate a smooth function based
on noisy function values at n points. This can be modeled as follows.

Let F be the space of two-times continuously differentiable real functions
f : [0, 1]→ R. We approximate f ∈ F in the norm of the space G = L2(0, 1).
That is, S(f) = f . For ti ∈ [0, 1], the information operator is given by

N(f) =

{
y ∈ Rn

∣∣∣
n∑

i=1

(yi − f(ti))
2 ≤ δ2

}
.

Knowing y corresponds to n noisy observations of f(ti), 1 ≤ i ≤ n. An
example of the algorithm is provided by the smoothing spline. For a given
parameter γ ≥ 0, it is defined as the function ϕγ(y) which minimizes the
functional

Γγ(f, y) = γ ·
∫ 1

0
(f ′′(t))2 dt +

n∑

i=1

(yi − f(ti))
2

over all f ∈ F .

Example 2.3 Let F be as in Example 2.2 or another “nice” class of
smooth functions. The problem now is to approximate the integral of f
based on noisy function values f(ti) with different precisions. That is, the
solution operator is given as

S(f) =

∫ 1

0
f(t) dt ,

and information is defined as

N(f) = { y ∈ Rn | |yi − f(ti)| ≤ δi, 1 ≤ i ≤ n }.

An example of the algorithm is a quadrature formula ϕ(y) =
∑n
i=1 ai yi.

2

In all the above examples, information operators belong to a common class.
This class is defined in the following way.
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An extended seminorm in a linear space X is a functional ‖ · ‖X : X →
[0,+∞], such that the set X1 = {x ∈ X | ‖x‖X < +∞} is a linear
subspace, and ‖ · ‖X is a seminorm on X1. That is,

(a) ‖αx‖X = |α| ‖x‖X , ∀α ∈ R, ∀x ∈ X1,

(b) ‖x1 + x2‖X ≤ ‖x1‖X + ‖x2‖X , ∀x1, x2 ∈ X1.

We say that an information operator is linear with uniformly bounded noise,
iff it is of the form

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ }, ∀ f ∈ F, (2.1)

where N : F → Y = Rn is a linear operator, ‖ · ‖Y is an extended seminorm
in Rn, and δ ≥ 0.

For instance, in Example 2.2 we have

N(f) = [ f(t1), f(t2), . . . , f(tn) ].

As the extended seminorm ‖ · ‖Y we may take the Euclidean norm, ‖x‖Y =
‖x‖2 = (

∑n
i=1 x

2
i )

1/2. In Example 2.3 the operator N is as above, and

‖x‖Y = max
1≤i≤n

|xi|
δi

(with the convention that a/(+∞) = 0, a/0 = +∞, 0/0 = 0), and δ = 1.
Observe that for any linear information with uniformly bounded noise,

the extended seminorm ‖ · ‖Y and the parameter δ are not determined
uniquely. In particular, replacing ‖ · ‖Y for δ > 0 by ‖x‖′Y = ‖x‖Y /δ,
and for δ = 0 by

‖x‖′Y =

{
0 ‖x‖Y = 0,
+∞ ‖x‖Y > 0,

we can always set δ to be 1. However, we prefer to have a parameter δ (and
the norm independent of δ) since it can be often interpreted as a noise level.
The smaller δ, the smaller the noise. If ‖ · ‖Y is a norm and δ goes to zero,
then noisy information approaches exact information.

We now characterize linear information with uniformly bounded noise.
Suppose that a subset B of a linear space X is convex (i.e., x, y ∈ B implies
αx+ (1− α)y ∈ B for all α ∈ [0, 1]), and balanced (i.e., x ∈ B iff −x ∈ F ).
Let

pB(x) = inf { t > 0 | x/t ∈ B }, x ∈ X.
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Lemma 2.1 The functional pB is an extended seminorm on X.

Proof Indeed, let pB(x), pB(y) < +∞ and α ∈ R. Then, for α = 0 we have
pB(αx) = 0 = αpB(x), and for α 6= 0 we have

pB(αx) = inf { t > 0 | αx/t ∈ B }
= inf { |α|t > 0 | x/t ∈ B } = |α| pB(x).

We now check the triangle inequality. If x/t, y/u ∈ B, then from the con-
vexity of B we obtain

x+ y

t+ u
=

t

t+ u
· x
t

+
u

t+ u
· y
u
∈ B.

Hence,

pB(x) + pB(y) = inf { t > 0 | x/t ∈ B } + inf {u > 0 | y/u ∈ B }
≥ inf { t+ u > 0 | (x+ y)/(t+ u) ∈ B }
= pB(x+ y).

Thus the set X1 = {x ∈ X | pB(x) <∞} is a linear subspace, on which pB
is a seminorm, which means that pB is an extended seminorm on X. 2

We also observe that

{x ∈ X | p(x) < 1 } ⊂ B ⊂ {x ∈ X | p(x) ≤ 1 }.

Moreover, if B is a closed 1 subset of Rn then B = {x ∈ Rn | p(x) ≤ 1 }.
Now, let the set B ⊂ Rn be convex, balanced and closed. Consider the

information operator of the form

N(f) = {N(f) + x | x ∈ B }, (2.2)

where N : F → Rn is a linear mapping. Then, setting ‖x‖Y = δ · p(x) we
have that N is linear with noise bounded uniformly by δ in the extended
seminorm ‖ · ‖Y . On the other hand, if information N is of the form (2.1)
then it can be expressed by (2.2) with B = {x ∈ Rn | ‖x‖Y ≤ δ }. Thus, we
have proved the following fact.

1Recall that in Rn all norms are equivalent. Therefore, if B is closed with respect to
a particular norm then B is also closed with respect to all norms in Rn.
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Corollary 2.1 The classes of information (2.2) and linear information
with uniformly bounded noise are equivalent. 2

Clearly, not all information operators of interest can be expressed by (2.1).

Example 2.4 Suppose we have a vector f = [f1, f2, . . . , fn] ∈ Rn with
|fi| ≤ 1, ∀i, which we store in computer memory using floating point arith-
metic with t mantissa bits. Then the difference between the exact fi and
stored data yi satisfies |yi − fi| ≤ 2−t |fi|. The vector y can be interpreted
as noisy information about f where

N(f) = { y ∈ Rn | |yi − fi| ≤ 2−t|fi|, 1 ≤ i ≤ n }.

In this case, N(0) = {0} is a singleton which is not true for N(f) with f 6= 0.
Hence, the noise of information is not uniformly bounded.

Notes and Remarks

NR 2.1 A more concept of solution operator may be found in Traub et al. [107].

NR 2.2 For the exact information case, the formulation presented here corresponds
to the formulation given in Traub et al. [108]. The concept of noisy information is,
however, slightly different than this given in Traub et al. [108, Chap.12].

NR 2.3 The problem of approximating an operator S : F → G by noisy or exact
information can be formulated in terms of approximating multi–valued operators
by single–valued operators. Indeed, let the multi–valued operator be given as S :
Y0 → 2G with Y0 =

⋃
f∈EN(f) and

S(y) = {S(f) | f ∈ E, y ∈ N(f) }.

Then S(y) is approximated by ϕ(y), where ϕ : Y0 → G is an arbitrary single-valued
operator. This approach is presented in, e.g., Arestov [1] or Magaril–Il’yaev and
Osipenko [52].

NR 2.4 The functional pB(x) is called the Minkowski functional (or gauge func-
tion) corresponding to the set B, see e.g., Wilansky [126].
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2.3 Radius and diameter of information

Let N : F → 2Y be a given information operator. The worst case error (or
simply error) of an algorithm ϕ : Y → G (that uses information N) over the
set E ⊂ F is defined as

ewor(N, ϕ) = sup
f∈E

sup
y∈N(f)

‖S(f)− ϕ(y)‖. (2.3)

Our aim is to minimize the error (2.3) with respect to all algorithms ϕ. An
algorithm ϕopt for which

ewor(N, ϕopt) = inf
ϕ

ewor(N, ϕ),

is called optimal.

It turns out that the problem of optimal algorithm is tightly related to
the concepts of radius and center of a set. We recall that the radius of a set
A ⊂ G is given as

r(A) = inf
g∈G

sup
a∈A
‖a− g‖.

If for some gA ∈ G we have supa∈A ‖a − gA‖ = r(A), then gA is called a
center of A.

Denote Y0 =
⋃
f∈E N(f). For y ∈ Y0, let

E(y) = { f ∈ E | y ∈ N(f) }

be the set of all elements f which are in E and share the same information
y. Finally, let

A(y) = {S(f) | f ∈ E(y) }
be the set of solution elements with information y. A radius of information
N is defined as

radwor(N) = sup
y∈Y0

r(A(y)).

Clearly, the radius radwor(N) depends not only on information N but
also on the solution operator S and the set E. If necessary, we will indicate
this dependence and write, for instance, radwor(N;S,E) or radwor(N;E).

It turns out that the radius of information yields the minimal error of
algorithms. Namely, we have
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Theorem 2.1 For any information operator N,

inf
ϕ

ewor(N, ϕ) = radwor(N).

The optimal algorithm exists if and only if r(A(y)) = radwor(N) implies that
A(y) has a center. In particular, if for any y there exists a center gy of the
set A(y) then the algorithm

ϕctr(y) = gy

is optimal.

Proof For any algorithm ϕ, its error can be rewritten as

ewor(N, ϕ) = sup
y∈Y0

sup
f∈E(y)

‖S(f)− ϕ(y)‖

= sup
y∈Y0

sup
g∈A(y)

‖g − ϕ(y)‖.

Hence, using the definition of the radius of a set, we obtain

ewor(N, ϕ) ≥ sup
y∈Y0

r(A(y)) = radwor(N),

and consequently
inf
ϕ

ewor(N, ϕ) ≥ radwor(N).

To prove the inverse inequality, it suffices to observe that for any δ > 0
it is possible to select elements ϕδ(y), y ∈ Y0, such that

sup
f∈E(y)

‖S(f)− ϕδ(y)‖ ≤ r(A(y)) + δ.

For the algorithm ϕδ we have

ewor(N, ϕδ) ≤ radwor(N) + δ.

Since δ is arbitrary, infϕ ewor(N, ϕ) ≤ radwor(N).

To prove the second part of the theorem, suppose that each set A(y) with
r(A(y)) = radwor(N) has a center gy. Then, for any y ∈ Y0 we can choose
an element g̃y ∈ G such that

sup
a∈A(y)

‖a− g̃y‖ ≤ radwor(N)
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(if r(A(y)) = radwor(N) then g̃y = gy). An optimal algorithm is given as
ϕopt(y) = g̃y.

On the other hand, if for some y0 ∈ Y0 we have r(A(y0)) = radwor(N)
and the set A(y0) has no center, then for any algorithm we have

ewor(N, ϕ) ≥ sup
f∈E(y0)

‖S(f)− ϕ(y0)‖

> r(A(y0)) = radwor(N).

This shows that an optimal algorithm does not exist. 2

The algorithm ϕctr defined in the above theorem is called central. The central
algorithm (if it exists) has even stronger properties than the usual optimal
algorithm. Indeed, ϕctr is optimal not only with respect to the set E, but
also with respect to each E(y). Namely, for any y ∈ Y0 we have

ewor(N, ϕctr;E(y)) = inf
ϕ

ewor(N, ϕ;E(y)) = r(A(y)).

Together with the notion of a radius, it is convenient to introduce the
notion of a diameter of information N. Recall first that the diameter of a
set A is given as

d(A) = sup
a−1,a1∈A

‖a1 − a−1‖.

We also recall that for any set A we have

r(A) ≤ d(A) ≤ 2 · r(A). (2.4)

Example 2.5 Let a set A ⊂ G be centrosymmetric. That is, there exists
an element a∗ ∈ G such that the condition a ∈ A implies 2 a∗ − a ∈ A.
Then a∗ is the center of A and

d(A) = 2 · r(A) = 2 · sup { ‖a − a∗‖ | a ∈ A }
Indeed, using the triangle inequality we obtain

r(A) ≥ inf
g∈G

sup
a∈A

1

2
( ‖g − a‖+ ‖g − (2a∗ − a)‖ )

≥ inf
g∈G

sup
a∈A
‖a− a∗‖ = sup

a∈A
‖a− a∗‖,

which shows that a∗ is a center. To prove the remaining equality, observe
that

d(A) ≥ sup
a∈A
‖a− (2a∗ − a)‖ = 2 sup

a∈A
‖a− a∗‖. 2
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A diameter of information N is defined as

diam(N) = sup
y∈Y0

d(A(y)).

Observe that in view of the equality

d(A(y))

= sup { ‖S(f1)− S(f−1)‖ | f−1, f1 ∈ F0, y ∈ N(f−1) ∩N(f1) },

the diameter of information can be rewritten as

diam(N) = sup ‖S(f1)− S(f−1)‖,

where the supremum is taken over all f−1, f1 ∈ E such that N(f−1) ∩
N(f1) 6= ∅. Thus, roughly speaking, diam(N) measures the largest distance
between two elements in S(E) which cannot be distinguished with respect
to information.

The diameter of information is tightly related to the radius. although its
definition is independent of the notion of an algorithm. Namely, in view of
(2.4), we have the following fact.

Theorem 2.2 For any information N,

diam(N) = c · radwor(N)

where c = c(N) ∈ [1, 2]. 2

In general, c depends on information and the set E. However, in some cases
it turns out to be an absolute constant.

Example 2.6 Let S be a functional, i.e., the range space G = R. Then,
for any set A ⊂ R we have d(A) = 2 r(A) and the center of A is (supA+
inf A)/2. Hence, for any information N the constant c in Theorem 2.2 is
equal to 2. 2

The relation between the radius and diameter of information allows us to
show “almost” optimality of an important class of algorithms. An algorithm
ϕint is called interpolatory iff for all y ∈ Y0

ϕint(y) = S(fy),
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for an element fy ∈ E(y).

Since S(fy) is a member of A(y), for any f ∈ E(y) we have

‖S(f)− ϕint(y)‖ = ‖S(f)− S(fy)‖ ≤ d(A(y)) ≤ diam(N).

This yields the following fact.

Corollary 2.2 For any interpolatory algorithm ϕint we have

ewor(N, ϕint) ≤ 2 · radwor(N). 2

In some important cases, the diameter of information can be expressed in a
simple way. For a set A ⊂ F , let

bal(A) = (A−A)/2 = { (a1 − a−1)/2 | a−1, a1 ∈ A }.

Observe that the set bal(A) is balanced, i.e., it is centrosymmetric with the
center zero. It is also convex for convex A. Obviously, bal(A) = A for convex
and balanced A.

Lemma 2.2 Let the solution operator S be linear. Let N be an informa-
tion operator with Y = Rn satisfying

N(f1) ∩N(f−1) 6= ∅ for f−1, f1 ∈ E =⇒ 0 ∈ N
(
f1 − f−1

2

)
(2.5)

and

h ∈ bal(E), 0 ∈ N(h) =⇒ ∃ f−1, f1 ∈ E, such that N(f1) ∩N(f−1) 6= ∅
and h = (f1 − f−1)/2 . (2.6)

Then

diam(N) = 2 · sup { ‖S(h)‖ | h ∈ bal(E), 0 ∈ N(h) }. (2.7)

If, in addition, the set E is convex and balanced, then

diam(N) = 2 · sup { ‖S(h)‖ | h ∈ E, 0 ∈ N(h) }
= d(A(0)) = 2 · r(A(0)), (2.8)

where A(0) = {S(h) | h ∈ E, 0 ∈ N(h) }.
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Proof The first part of the lemma follows directly from (2.5), (2.6), and
linearity of S. The assumption (2.5) yields the upper bound and (2.6) yields
the lower bound on diam(N) in (2.7). Since for convex and balanced set E
we have bal(E) = E, the first equality in (2.8) is also valid.

To prove the remaining two equalities in (2.8), we first show that the
set A(0) is balanced. Indeed, let h ∈ E, 0 ∈ N(h). Then, from (2.6) we
have h = (f1 − f−1)/2, where f−1, f1 ∈ E and N(f−1) ∩N(f1) 6= ∅. Using
(2.5) we get 0 ∈ N( (f−1 − f1)/2 ) = N(−h). Hence, S(h) ∈ A(0) implies
−S(h) = S(−h) ∈ A(0).

To complete the proof it suffices to observe that the set A(0) is cen-
trosymmetric with the center zero and use the fact proven in Example 2.5.
2

Lemma 2.2 yields the following theorem which is the main result of this
section.

Theorem 2.3 Let S be a linear operator. Let information N be linear
with uniformly bounded noise,

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ }.

If the set E is convex then

diam(N) = 2 · sup { ‖S(h)‖ | h ∈ b(E), ‖N(h)‖ ≤ δ }.

Proof It suffices to check the assumptions of Lemma 2.2. Indeed, if ‖y −
N(fi)‖Y ≤ δ, for i = −1, 1, then also ‖0 − N(f1 − f−1)/2‖Y ≤ δ, which
shows (2.5). To show (2.6), let h = (f1 − f−1) with f1, f−1 ∈ E and 0 ∈
N(h), i.e., ‖N(f1 − f−1)/2‖Y ≤ δ. Then for y = N(f−1 + f1)/2 we have
‖y −N(fi)‖Y ≤ δ, as claimed. 2

A larger class of information for which Lemma 2.2 holds consists of informa-
tion operators N : F → 2Y , such that Y = Rn and the graph

gr(N;E) = { (f, y) ∈ F ×Rn | f ∈ E, y ∈ N(f) }

is a convex and balanced set. This fact is left as E 2.8.

Notes and Remarks

NR 2.5 Abstractly, the concept of an optimal algorithm can be introduced as
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follows. Let R be a relation defined on the Cartesian product of algorithms. For
two algorithms we write ϕ1 ≺ ϕ2 iff (ϕ1, ϕ2) ∈ R and say that ϕ1 is not worse than
ϕ2 (or that ϕ2 is not better than ϕ1). An algorithm ϕopt is optimal iff

ϕopt ≺ ϕ, ∀ϕ.

In this section we use the (worst case) error criterion. It corresponds to the relation

ϕ1 ≺ ϕ2 ⇐⇒ ewor(N, ϕ1) ≤ ewor(N, ϕ2).

If the relation is defined as

ϕ1 ≺ ϕ2 ⇐⇒ ewor(N, ϕ1;E(y)) ≤ ewor(N, ϕ2;E(y)), ∀y ∈ Y0,

then only the central algorithm (if it exists) turns out to be optimal.

NR 2.6 The notions of the radius and diameter of information were introduced
in Traub and Woźniakowski [109]. The formula for diam(N) in the case of linear
information with noise bounded in a seminorm and convex and balanced set E, was
first shown by Micchelli and Rivlin [59]. They used the fact that the radius of noisy
information is equal to the radius of some appropriately chosen exact information;
see also E 2.7.

Exercises

E 2.1 Give an example of information N and a set E for which:
1. Optimal algorithm does not exist.
2. Optimal algorithm does exist, but central algorithm does not.

E 2.2 Show that the set of all optimal algorithms is convex.

E 2.3 Prove the inequalities

r(A) ≤ d(A) ≤ 2 · r(A),

for an arbitrary set A.

E 2.4 Let 1 ≤ c ≤ 2.
1. Find a set A for which d(A) = c · r(A), with r(A) ∈ (0,+∞).
2. Find information N and a set E, such that

diam(N) = c · radwor(N)

and r(N) ∈ (0,+∞).
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E 2.5 Let S : F → G be an arbitrary solution operator. Show that for any
information operator N and any convex set E ⊂ F we have

radwor(N;E) = c · sup
f1,f2∈E

radwor(N; [f1, f2] ),

where c ∈ [1, 2]. Moreover, if S is a functional then c = 1. (Here [f1, f2] =
{αf1 + (1− α)f2 | 0 ≤ α ≤ 1 }.)

E 2.6 Let the solution operator S : F → G be linear. Let E be a balanced and
convex set, and let information N be linear with noise bounded uniformly in a norm
‖ · ‖Y . Suppose there exists an operator A : Y → F such that for any f ∈ E and
y ∈ N(f) we have f − A(y) ∈ {h ∈ E | ‖N(h)‖Y ≤ δ }. Show that then the
algorithm ϕ(y) = S(A(y) ), ∀y, is optimal.

E 2.7 Let the solution operator S : F → G, informationN : F → 2Y with Y = Rn,
and set E be given. Define the space F̃ = F × Y , solution operator S̃ : F̃ → G,
exact information operator Ñ : F̃ → Y , and set Ẽ ⊂ F̃ as

S̃(f, y) = S(f),

Ñ(f, y) = y,

Ẽ = { (f, y) | f ∈ E, y ∈ N(f) }.

Show that for any algorithm ϕ : Y → G we have

ewor(N, ϕ;S,E) = ẽwor(Ñ , ϕ; S̃, Ẽ)

where the second quantity stands for the error of ϕ over Ẽ, for approximating
S̃(f, y) based on exact information y = Ñ(f).

E 2.8 Show that information whose graph gr(N ;E) is convex and balanced satisfies
the conditions (2.5) and (2.6). of Lemma 2.2.

E 2.9 Let
N(f) = { y ∈ Rn | (y −N(f)) ∈ B },

where N : F → Rn is linear and B is a given set of Rn. Show that the graph
gr(N;E) is convex (and balanced) if both sets B and E are convex (and balanced).

2.4 Affine algorithms for linear functionals

In this section we deal with the case when

• the solution operator S is a linear functional.

We are especially interested in finding optimal linear or affine algorithms.
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2.4.1 Existence of optimal affine algorithms

Since now the space G = R, we have

diam(N) = 2 · radwor(N) = sup
y∈Y0

(supA(y)− inf A(y)) ,

where Y0 =
⋃
f∈E N(f), A(y) = {S(f) | f ∈ E, y ∈ N(f) }. The algorithm

ϕ(y) = (supA(y) + inf A(y) )/2 is optimal and also central. We now ask if
there exists an optimal algorithm which is linear or affine. It is easily seen
that, in general, this is not true.

Example 2.7 Let F = R2 and

E = { f = (f1, f2) ∈ R2 | f2 = f3
1 , |f1| ≤ 1 }.

Then the set E is balanced but not convex. Let S(f) = f2 and N(f) = {f1}.
In this case the problem can be solved exactly. However, the only optimal
algorithm, ϕopt(y) = y3, is nonlinear. 2

Restricting properly the class of problems, it is however possible to show the
positive result. In what follows, we assume that Y = Rn and radwor(N) <
+∞.

Theorem 2.4 Let S be a linear functional. If the graph gr(N;E) of the
information operator N is convex then there exists an optimal affine algo-
rithm. If, in addition, gr(N, E) is balanced then any optimal affine algorithm
is linear.

Proof Suppose first that gr(N, E) is a convex set. Let r = radwor(N). If
r = 0 then each set A(y), y ∈ Y0, has exactly one element which we denote
by ay. Let y0 ∈ Y0. The functional ϕ1(y) = ay+y0−ay0 is linear on its convex
domain Y0− y0 and can be extended to a linear functional ϕ2 defined on Y .
Letting ϕ(y) = ϕ2(y − y0) + ay0 we obtain an optimal affine algorithm.

Let r > 0. Consider the set

A = { (y, S(f)) ∈ Rn+1 | f ∈ E, y ∈ N(f) }.

Since gr(N, E) is convex, A is also convex. Then the set A1 = bal(A) =
(A−A)/2 is convex and balanced. Let

p(u) = inf { t > 0 | u/t ∈ A1 }, u ∈ Rn+1.
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We show that for u = (0, g) ∈ A1, g > 0, we have p(u) = g/r. Indeed,
Lemma 2.2 yields

r = sup { |S(h)| | h ∈ bal(E), 0 ∈ N(h) }
= sup {α ∈ R | (0, α) ∈ A1 }.

Hence, the infimum over all t > 0 such that (0, g/t) ∈ A1 is equal to g/r.

Recall that p(u) is a seminorm on the linear space P = {u ∈ Rn+1| p(u) <
+∞}. Let P0 = {u ∈ Rn+1 | p(u) = 0 } and P1 = { (0, g) ∈ Rn+1 | g ∈ R }.
Since P1 ∩ P0 = {0}, the space P can be decomposed as P = P0 ⊕ P⊥0
where P1 ⊂ P⊥0 . Define on P1 the linear functional ξ1 as ξ1(u) = p(u) = g/r
where u = (0, g). Since p(u) is a norm on P⊥0 , from the classical Hahn-
Banach theorem it follows that ξ1 can be extended to a functional ξ2 which
is defined on P⊥0 and satisfies ξ2(u) = ξ1(u) for u ∈ P1, and ξ2(u) ≤ p(u) for
all u ∈ P⊥0 .

For u = u0 + u⊥0 ∈ P with u0 ∈ P0, u⊥0 ∈ P⊥0 , we now define ξ(u) =
ξ2(u⊥0 ). We claim that the functional ξ has two properties:

(i) ξ(u) = p(u), ∀u ∈ P1,

(ii) ξ(u) ≤ p(u), ∀u ∈ P.
As (i) is obvious, it remains to show (ii). Let u = u0 + u⊥0 and t > 0
be such that u/t ∈ A1. Let 0 < α < 1 and β = −α/(1 − α). Since
p(u0) = 0, we have βu0/t ∈ A1, and from convexity of A1 it follows that
αu⊥0 /t = αu/t+(1−α)βu0/t ∈ A1. Since t and α can be arbitrarily close to
p(u) and 1, respectively, we obtain p(u⊥0 ) ≤ p(u). Hence, ξ(u) = ξ2(u⊥0 ) ≤
p(u⊥0 ) ≤ p(u), and (ii) follows.

For (y, g) ∈ P , y ∈ Rn, g ∈ R, the functional ξ can be represented as
ξ(y, g) = ϕ1(y) + γ(g) where ϕ1(y) = ξ(y, 0) and γ(g) = ξ(0, g) = g/r. As
u ∈ A1 yields p(u) ≤ 1, we have A1 ⊂ P . Hence, for any fi ∈ E, yi ∈ N(fi),
i = −1, 1,

ξ

(
y1 − y−1

2
,
S(f1)− S(f−1)

2

)

= ϕ1

(
y1 − y−1

2

)
+

1

2r
(S(f1)− S(f−1) ) ≤ 1.

Setting ϕ2 = −rϕ1 we get from the last inequality that

S(f1)− ϕ2(y1)− r ≤ S(f−1)− ϕ2(y−1) + r.
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It now follows that there exists a number a ∈ R such that for all fi and
yi ∈ N(fi), i = −1, 1, it holds

S(f1)− ϕ2(y1)− r ≤ a ≤ S(f−1)− ϕ2(y−1) + r.

Setting ϕaff (y) = ϕ2(y) + a we finally obtain

|S(f)− ϕaff (y) | ≤ r, f ∈ E, y ∈ N(f).

Thus the affine algorithm ϕaff is optimal.

Suppose now that gr(N, E) is not only convex but also balanced. Then
from Lemma 2.2 we have radwor(N) = r(A(0)). Since in this case the set
A(0) is balanced, its center is equal to zero and for any optimal algorithm ϕ
we have ϕ(0) = 0. Hence, any optimal affine algorithm is linear. 2

The fact that S is a functional together with Theorem 2.4 yields an interest-
ing property of the radius of information. Assume that E is convex and that
the information is linear with noise bounded in a (not necessarily Hilbert)
norm ‖ · ‖Y ,

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ }.
Let r(δ) be the radius of N. Then we have the following fact.

Lemma 2.3 The function K(δ) defined by

K(δ) =
r(δ) − r(0)

δ
, δ > 0,

is nonincreasing and bounded. In particular, the derivative r ′(0+) exists.

Proof We first show that K(δ) is nonincreasing. Let 0 < γ < δ. For
ε > 0, let h0, hδ ∈ bal(E) be such that N(h0) = 0, S(h0) ≥ r(0) − ε, and
‖N(hδ)‖Y ≤ δ, S(hδ) ≥ r(δ) − ε. Let hγ = h0 + (γ/δ)(hδ − h0). Then
hγ ∈ bal(E) and ‖N(hγ)‖Y ≤ γ. Hence,

r(γ) ≥ S(hγ) = S(h0) +
γ

δ
(S(hδ)− S(h0) )

≥ r(0) + γ
r(δ)− r(0)

δ
− ε

(
1 +

γ

δ

)
.

Letting ε→ 0, we obtain the desired inequality K(γ) ≥ K(δ).



28 CHAPTER 2. WORST CASE SETTING

We now prove that K(δ) is bounded. To this end, let ϕaff be the optimal
affine algorithm for δ = 0. Then ϕlin(y) = ϕaff(y) − ϕaff(0) is a linear
functional whose norm

‖ϕlin‖Y = sup
‖x‖Y ≤1

|ϕlin(x)|

is finite. For any f ∈ E and y ∈ N(f) we have

|S(f)− ϕaff(y) | ≤ |S(f)− ϕaff(N(f) ) | + |ϕaff (y)− ϕaff (N(f) ) |
≤ r(0) + δ ‖ϕlin‖Y .

Taking the supremum over f and y we get K(δ) ≤ ‖ϕlin‖Y . 2

Observe now that if r′(0+) = 0 then r(δ) ≡ const. This means that informa-
tion is useless, r(δ) = sup{S(h) | h ∈ bal(E) }, and the optimal algorithm is
constant. This and Lemma 2.3 yield the following theorem.

Theorem 2.5 For an arbitrary linear functional S and the noise bounded
uniformly in a norm by δ, the radius r(δ) of noisy information is either
constant or converges to the radius r(0) of exact information linearly in
δ → 0+, i.e.,

r(δ) = r(0) + δ · r′(0+) + o(δ).

2.4.2 The case of Hilbert noise

We now construct all optimal affine algorithms for an important class of
problems. Namely, we assume that the set E is convex and information is
linear with noise uniformly bounded in a Hilbert norm, i.e.,

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ } (2.9)

where δ > 0 and the norm ‖ · ‖Y is induced by an inner product 〈·, ·〉Y .
Clearly, in this case the graph gr(N, E) is convex and an optimal affine
algorithm exists.

We also assume that the radius r = radwor(N) is finite and is attained.
That is, there exists h∗ = (f∗1 −f∗−1)/2 ∈ bal(E) with f ∗−1, f

∗
1 ∈ E, such that

‖N(h∗)‖Y ≤ δ and r = S(h∗). We shall see later that the latter assumption
is not restrictive.

For two elements f−1, f1 ∈ F , let I = I(f−1, f1) denote the interval
I = {αf−1 + (1 − α)f1 | 0 ≤ α ≤ 1 }. It is clear that if f−1, f1 ∈ E
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then I(f−1, f1) ⊂ E and radwor(N; I) ≤ radwor(N;E). Furthermore, for
I∗ = I(f∗−1, f

∗
1 ) we have

radwor(N;E) = radwor(N; I∗)

(compare with E 2.5). Hence, the problem of approximating S(f) for f
belonging to the one dimensional subset I∗ ⊂ E is as difficult as the original
problem of approximating S(f) for f ∈ E. We shall say, for brevity, that I ∗

is the hardest one–dimensional subproblem contained in the original problem
E. In particular, we have that any algorithm optimal for E is also optimal
for I∗.

The latter observation yields a method of finding all optimal affine algo-
rithms. Namely, it suffices to find all such algorithms for I ∗ and then check
which of them do not increase the error when taken over the whole set E.
In the sequel, we follow this approach.

Observe first that if ‖N(h∗)‖Y < δ then the only optimal affine algorithm
is constant, ϕ(y) = S(f0) where f0 = (f∗1 +f∗−1)/2. Indeed, let y = N(f0)+x
where ‖x‖Y ≤ δ − ‖N(h∗)‖Y . Then y is noisy information for any f ∈ I∗
and therefore ϕaff(y) = S(f0). Hence, ϕaff is constant on a nontrivial ball.
Its unique affine extension on Rn is ϕaff ≡ S(f0).

In what follows, we assume that ‖N(h∗)‖Y = δ.

Lemma 2.4 For the hardest one–dimensional subproblem I ∗ = [f∗−1, f
∗
1 ],

all optimal affine algorithms are given as

ϕaff (y) = S(f0) + d · 〈 y −N(f0), w 〉Y , (2.10)

where w = N(h∗)/‖N(h∗)‖Y and d = c r/δ, for any c ∈ [0, 1].

Proof Let y0 = N(f0) and w∗ = N(h∗). For yα = y0 +αw∗, α ∈ R, the set
of all elements which are in the interval S(I∗) and cannot be distinguished
with respect to information yα is given by S(I∗) ∩ B(S(f0) + αr, r), where
B(a, τ) is the ball with center a and radius τ . From this it follows that for
any optimal affine algorithm ϕaff we have

ϕaff(yα) = S(f0) + c α r (2.11)

where 0 ≤ c ≤ 1. Since α = 〈yα − y0, w〉Y /δ, (2.11) can be rewritten as

ϕaff (yα) = S(f0) + c · r
δ
· 〈 yα − y0, w 〉Y . (2.12)
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We now show that for any c ∈ [0, 1], the formula (2.12) is valid not only
for yα, but for all y ∈ Rn. To this end, it is enough to show that for any
y = y0+x, where ‖x‖Y ≤ δ, 〈x,w〉Y = 0, we have ϕaff(y) = ϕaff(y0) = S(f0).
Indeed, let ϕaff(y) = S(f0) + a, where (without loss of generality) a > 0.
Then ϕaff(y0 + εx) = S(f0) + εa. Since y0 + εx is noisy information for

fε = f0 − h∗
√

1− ε2‖x‖2Y /δ2, we obtain

ewor(N, ϕaff ; I∗) ≥ ϕaff(y0 + εx)− S(fε)

= εa+ r
√

1− ε2‖x‖2Y /δ2.

For small ε > 0, the last expression is greater than r, which contradicts the
assumption that the algorithm ϕaff is optimal. This completes the proof.
2

The question now is as follows: for what values of d the affine algorithm
(2.10) (which is optimal for the hardest one–dimensional subproblem I ∗) is
optimal for the original problem E?

To give an answer, we first evaluate the error ewor(N, ϕaff ;E) of the
algorithm (2.10). For any f ∈ E and y = N(f) + x ∈ N(f), we have

S(f)− ϕaff(y) = S(f) − S(f0) − d 〈N(f)− y0, w 〉Y − d 〈x,w〉Y
= S(f) − ϕaff(N(f)) − d 〈x,w〉Y .

Hence,

sup
‖x‖Y ≤δ

|S(f)− ϕaff(y)| = |S(f)− ϕaff (N(f))| + d δ. (2.13)

We also have

S(f∗1 )− ϕaff (N(f∗1 )) = −(S(f ∗−1)− ϕaff (N(f∗−1) ) = r − dδ. (2.14)

From (2.13) and (2.14) it follows that the necessary and sufficient condition
for the algorithm (2.10) to be optimal for the set E is that for all f ∈ E

S(f∗−1)− ϕaff(N(f∗−1)) ≤ S(f)− ϕaff(N(f)) ≤ S(f ∗1 )− ϕaff (N(f∗1 )).

Using the formula for ϕaff these two inequalities can be rewritten as

S(f∗1 ) − S(f) ≥ d · 〈N(f ∗1 )−N(f), w 〉Y , (2.15)

S(f∗−1) − S(f) ≤ d · 〈N(f ∗−1)−N(f), w 〉Y . (2.16)
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We now show that (2.15) and (2.16) are equivalent to

S(h∗) − S(h) ≥ d · 〈N(h∗)−N(h), w 〉Y , ∀h ∈ bal(E). (2.17)

Indeed, let (2.15) and (2.16) hold. Then, for any h = (f1 − f−1)/2, fi ∈ E,
we have

S(h∗)− S(h) =
1

2

(
(S(f∗1 )− S(f1)) − (S(f ∗−1)− S(f−1))

)

≥ 1

2
d
(〈N(f∗1 − f1), w〉Y − 〈N(f∗−1 − f−1), w〉Y

)

= d 〈N(h∗)−N(h), w 〉Y .

Suppose now that (2.17) holds. Let f ∈ E. Then, for h = (f − f ∗−1)/2 ∈
bal(E) we have

S(f∗1 )− S(f) = 2 (S(h∗)− S(h) ) ≥ 2d 〈N(h∗)−N(h), w〉Y
= d 〈N(f ∗1 )−N(f), w 〉Y

which shows (2.15). Similarly, taking h = (f ∗1 − f)/2 we obtain (2.16).

Thus the number d should be chosen in such a way that (2.17) holds.
This condition has a nice geometrical interpretation. Namely, for γ > 0, let

r(γ) = sup {S(h) | h ∈ bal(E), ‖N(h)‖Y ≤ γ }

be the radius of information N with the noise level δ replaced by γ.

Lemma 2.5 The condition (2.17) holds if and only if the line with the
slope d passing through (δ, r(δ) ) lies above the graph of r(γ), i.e.,

r(γ) ≤ r(δ) + d (γ − δ), ∀ γ > 0. (2.18)

Proof Observe first that (2.18) can be rewritten as

S(h∗)− S(h) ≥ d ( ‖N(h∗)‖Y − ‖N(h)‖Y ), ∀h ∈ bal(E). (2.19)

Indeed, if (2.18) holds then for any h ∈ bal(E), γ = ‖N(h)‖Y , we have

S(h∗)− S(h) ≥ r(δ) − r(γ) ≥ d (δ − γ)

= d (‖N(h∗)‖Y − ‖N(h)‖Y ).
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Let (2.19) holds. Then for any γ > 0 and ε > 0 there is hε ∈ bal(E) such
that ‖N(hε)‖Y ≤ γ and S(hε) ≥ r(γ)− ε. Hence,

r(δ) = S(h∗) ≥ S(hε) + d (‖N(h∗)‖Y − ‖N(hε)‖Y )

≥ r(γ) − ε + d (δ − γ).

Letting ε→ 0+ we get (2.18).

Thus, it suffices to show that (2.17) is equivalent to (2.19). Indeed, since

〈N(h∗)−N(h), w 〉Y = ‖N(h∗)‖Y −
〈N(h), N(h∗)〉Y
‖N(h∗)‖Y

≥ ‖N(h∗)‖Y − ‖N(h)‖Y ,

the condition (2.17) implies (2.19).
We now show that (2.17) follows from (2.19). Let h ∈ bal(E),

S(h∗) − S(h) = d 〈N(h∗)−N(h), w 〉Y + a. (2.20)

For 0 < τ ≤ 1, let hτ = (1− τ)h∗ + τh = h∗ − τ(h∗ − h). Then hτ ∈ bal(E)
and from (2.20) we have

S(h∗)−S(hτ ) = τ (S(h∗)−S(h)) = τ d 〈N(h∗)−N(h), w 〉Y + τ a. (2.21)

We also have

‖N(hτ )‖2Y = ‖N(h∗)− τ(N(h∗)−N(h) )‖2Y
= ( ‖N(h∗)‖Y − τ 〈N(h∗)−N(h), w 〉Y )2 + O(τ2),

as τ → 0+. Hence,

‖N(h∗)‖Y − ‖N(hτ )‖Y = τ 〈N(h∗)−N(h), w 〉Y + O(τ2). (2.22)

Combining (2.21) and (2.22) with (2.19) we now obtain τ a ≥ O(τ 2), which
means that a is nonnegative. This together with (2.20) proves (2.17). 2

We summarize our analysis in the following theorem.

Theorem 2.6 Let N be information (2.9) with the noise level δ > 0. Let
h∗ = (f∗1 − f∗−1)/2, f∗1 , f

∗
−1 ∈ E, be such an element that

S(h∗) = sup {S(h) | h ∈ bal(E), ‖N(h)‖ ≤ δ }.
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Then all optimal affine algorithms are given by

ϕaff(y) = g0 + d · 〈 y − y0, w 〉Y ,

where g0 = S(f∗1 + f∗−1)/2, y0 = N(f∗1 + f∗−1)/2, w = N(h∗)/‖N(h∗)‖Y
(or w = 0 for N(h∗) = 0), and d satisfies

r(γ) ≤ r(δ) + d(γ − δ), ∀ γ ≥ 0. 2

We stress that Theorem 2.6 gives all optimal affine algorithms. In particular,
another choice of h∗ leads to the same optimal affine algorithms. Note also
that if ‖N(h∗)‖Y < δ then d = 0 and ϕaff ≡ S(f0).

We now briefly discuss the case when the hardest one–dimensional sub-
problem does not exist. Then we can extract a sequence {hi} ⊂ bal(E) such
that ‖N(hi)‖Y ≤ δ, ∀i, and limi→∞ S(hi) = r(δ). As {N(hi)} is a bounded
set of Rn, it has an attraction point w∗.

Suppose first that ‖w∗‖Y = δ. In this case we let w = w∗/δ and d as in
Theorem 2.6. Using the technique from the proof of Lemma 2.5 and some
approximation arguments, we can show that for all h ∈ bal(E),

r(δ) − S(h) ≥ d · (δ − 〈N(h), w〉Y ), ∀h ∈ bal(E),

which corresponds to inequality (2.17). Hence, S(h)−d〈N(h), w〉Y ≤ r(δ)−
δd, or equivalently,

S(f−1) − d 〈N(f−1), w〉Y − r(δ) ≤ S(f1) − d 〈N(f1), w〉Y + r(δ),

for all f−1, f1 ∈ E. Letting g = supf∈E S(f) − d〈N(f), w〉Y − r(δ), we
obtain |S(f)−d〈y, w〉Y − g| ≤ r(δ), ∀ f ∈ E, y ∈ N(f). This means that the
algorithm

ϕaff(y) = g + d · 〈y, w〉Y
is optimal.

If ‖w∗‖Y < δ then r(γ) is constant for γ > ‖w∗‖Y . Hence, the optimal
affine algorithm is also a constant, ϕaff ≡ supf∈E S(f)− r(δ).

So far we have not covered the case δ = 0. It turns out, however, that
exact information can be treated as the limiting case. Indeed, let ϕδ =
gδ + dδ〈·, wδ〉Y be the optimal affine algorithm for δ > 0. Let w0 be an
attraction point of {wδ} as δ → 0+. As limδ→0 dδ = r′(0+) and

S(h) − dδ〈N(h), wδ〉Y ≤ r(δ) − δ dδ, ∀h ∈ bal(E),
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letting δ → 0+ we obtain

S(h) − r′(0+)〈N(h), w0〉Y ≤ r(0), ∀h ∈ bal(E).

Hence, for g0 = supf∈E S(f) − r′(0+)〈N(f), w0〉Y − r(0) we have |S(f) −
r′(0+)〈N(f), w0〉Y − g0| ≤ r(0), ∀f ∈ E, and the algorithm

ϕ0(y) = r′(0+) · 〈y, w0〉Y + g0

is optimal. (See also E 2.17 for another construction.)

We end this section by a simple illustration of Theorem 2.6.

Example 2.8 Let F be a linear space of Lipschitz functions f : [0, 1] → R
that satisfy f(0) = f(1). Let

E = { f ∈ F | |f(x1)− f(x2)| ≤ |x1 − x2|, ∀x1, x2 }.
We want to approximate the integral of f , i.e.,

S(f) =

∫ 1

0
f(t) dt.

Noisy information is given by perturbed evaluations of function values at
equidistant points, y = [y1, . . . , yn] ∈ Rn, where yi = f(i/n) + xi, 1 ≤ i ≤
n, and the noise ‖x‖2 = (

∑n
i=1 x

2
i )1/2 ≤ δ.

Since S is a functional and the set E is convex and balanced, Theorem
2.3 yields

radwor(N) = sup

{∫ 1

0
f(t) dt

∣∣∣ f ∈ E,
n∑

i=1

f2(i/n) ≤ δ2

}
.

The last supremum is attained for

h∗(t) =
δ√
n

+
1

2n
−
∣∣∣t− 2i− 1

2n

∣∣∣, i− 1

n
≤ t ≤ i

n
, 1 ≤ i ≤ n,

and

r(δ) =
δ√
n

+
1

4n

(compare also with Theorem 2.5. Hence, w = (1, 1, . . . , 1)/
√
n and d =

n−1/2. The unique optimal linear algorithm is the well known arithmetic
mean

ϕlin(y) =
1

n

n∑

i=1

yi.

Note that in this case optimal linear algorithm is independent of the noise
level δ. However, its error does depend on δ.
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Notes and Remarks

NR 2.7 The problem of existing optimal linear or affine algorithms for approxi-
mating linear functionals has a long history. The first positive result on this subject
is due to Smolyak [96] who considered the exact information case and convex and
balanced set E; see also Bakhvalov [4]. His results was then generalized by Sukharev
[101] to the case of only convex set E. Noisy case was considered by, e.g., Marchuk
and Osipenko [55], Micchelli and Rivlin [59]. The proof of Theorem 2.4 is taken
from Magaril–Il’yaev and Osipenko [52] where even a more general result is given;
see E 2.11.

NR 2.8 We want to stress that Theorem 2.4 does not hold when the solution
operator S is linear but not a functional. Examples (for exact information) are
provided by Micchelli and Rivlin [59], Packel [69], Werschulz and Woźniakowski
[125]; see also Traub et al.[108, Sect.5.5 of Chap.4].

NR 2.9 The dependence of the radius on the noise level δ was studied in Kacewicz
and Kowalski [29] for the solution operator S being a functional, and in Kacewicz
and Kowalski [30] for arbitrary linear S. They showed, in particular, that if E
is the unit ball with respect to a Hilbert seminorm and S is a functional, then
r(δ) = r(0) + δ ‖ϕlin‖Y + o(δ) where ϕlin is as in the proof of Lemma 2.3. The
general result of Theorem 2.5 seems however to be new.

NR 2.10 Optimality of the affine algorithms defined in Theorem 2.6 was shown
by Donoho [12]. The idea of using in the proof the hardest one–dimensional sub-
problems belongs to him. We additionally showed that those are all optimal affine
algorithms. The results in the case when the radius is not attained as well as the
formulas for the optimal affine algorithm in exact information case are new.

NR 2.11 Optimal algorithms for noise bounded in the uniform norm rather than
in the Hilbert norm are in general unknown. We mention one special result which
has been recently obtained by Osipenko [68].

Let F be a separable Hilbert space with a complete orthonormal system {ei}i≥1.
For f ∈ F , let fj = 〈f, ej〉F be the ith Fourier coefficient of f . Consider the problem
of approximating a functional S = 〈·, s〉F for f from the unit ball of F , based on
noisy values of the Fourier coefficients, yi = fi + xi, where |xi| ≤ δi, 1 ≤ i ≤ n.
Osipenko showed, in particular, that the optimal linear algorithm ϕopt is in this
case given as follows. Let λ ∈ (0, ‖s‖F ] be the (existing) solution of

‖s‖2F −
n∑

j=1

(|sj |2 − λ2δ2
j )+ − λ2 = 0.

Then

ϕopt(y) =

n∑

j=1

(1− λδj |sj |−1)+sjyj
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and the radius equals

radwor(N) = λ +

n∑

j=1

δj(|sj | − λδj)+.

Exercises

E 2.10 Show that an optimal affine (linear) algorithm for a functional S exists if
the set

Ã = { (y, S(f) ) | y ∈ N(f), f ∈ E }
is convex (convex and balanced).

E 2.11 (Magaril–Il’yaev and Osipenko) Let c(A) ( cb(A) ) be the smallest convex
(convex and balanced) set which contains A. Show that an optimal affine (linear)
algorithm exists iff

radwor( c(N), c(E) ) = radwor(N;E) ( radwor( cb(N), cb(E) ) = radwor(N;E) ).

E 2.12 Suppose that the radius is attained for two elements h∗1, h
∗
2 ∈ bal(E) such

that N(h∗1) 6= N(h∗2). Show that then the only optimal affine algorithm is constant,
ϕaff ≡ (supf∈E S(f) + inff∈E S(f))/2.

Use this result to show the formula for h∗ in Example 2.8.

E 2.13 Consider the problem of estimating a real parameter f from the interval
I = [−τ, τ ] ⊂ R, based on the data y such that |y − f | ≤ δ. Show that in this case
the radius is equal to min {τ, δ} and the optimal affine algorithm is given as

ϕaff(y) =





y δ < τ,
c y δ = τ ( 0 ≤ c ≤ 1 ),
0 δ > τ.

E 2.14 Let N be linear information with noise bounded uniformly by δ ≥ 0 in a
Hilbert space norm. Let f−1, f1 ∈ F be such that ‖N(f1−f−1)‖Y > 2δ. Show that
for the interval I = [f−1, f1] we have

radwor(N; I) =
|S(f1)− S(f−1)|
‖N(f1)−N(f−1)‖Y

· δ

and the only optimal affine algorithm is given as

ϕaff(y) = S(f0) +
S(f1)− S(f−1)

‖N(f1)−N(f−1)‖Y
· 〈 y −N(f0), w 〉Y ,

where f0 = (f−1 + f1)/2 and w = (N(f1)−N(f−1) )/‖N(f1)−N(f−1)‖Y .
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E 2.15 Let E be a convex set. Show that the radius

r(δ) = sup{S(h) | h ∈ bal(E), ‖N(h)‖Y ≤ δ }

is a concave and subadditive function of δ.

E 2.16 Why does the number d in Theorem 2.6 exist? For 0 ≤ a ≤ b < +∞, give
an example where the set of all such d forms the closed interval [a, b].

E 2.17 (Bakhvalov) Let E be a convex and balanced set. Consider approxima-
tion of a linear functional S for f ∈ E, based on exact linear information y =
[L1(f), . . . , Ln(f)] where the functionals Li are linearly independent on span E.
Let

rk(x) = sup {S(h) | h ∈ E, Lk(h) = x, Lj(h) = 0, i 6= k }.
Assuming that the derivatives r′k(0) exist for all 1 ≤ k ≤ n, show that the algorithm
ϕ(y) =

∑n
j=1 r

′
j(0) yj is a unique optimal linear.

E 2.18 Show that if the solution operator S is linear but not a functional then the
assertion of Thorem 2.5 in no longer true.

E 2.19 Show an example of a balanced but not convex set E such that for some
linear functional S and some linear information N with noise bounded uniformly in
a Hilbert space norm we have radwor(N) = 0, but the error of any affine algorithm
is infinite.

E 2.20 Find an optimal linear algorithm for the integration problem of Example
2.8 when the function values are observed at arbitrary, not necessarily equidistant,
points.

2.5 Optimality of spline algorithms

In this section we assume that:

• S is an arbitrary linear operator.

• E is the unit ball in an extended seminorm ‖ · ‖F ,

E = { f ∈ F | ‖f‖F ≤ 1 }.

• Information is linear with uniformly bounded noise,

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ }, δ > 0.
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As explained in Section 2.2, the second assumption is roughly equivalent to
the fact that E is a convex and balanced set. The assumption δ > 0 is not
restrictive. If δ = 0 then changing the extended seminorm ‖ · ‖Y properly
we can make δ positive.

Due to Theorem 2.3, in this case we have

diam(N) = 2 · sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ δ }. (2.23)

Optimal or almost optimal algorithms can be now constructed using the so–
called splines. We shall see that sometimes spline algorithms turn out to be
not only optimal but also linear.

2.5.1 Splines and smoothing splines

Let ρ ≥ 1. For information y ∈ {N(f)+x | f ∈ F, ‖x‖Y ≤ δ }, an (ordinary)
spline is an element so(y) ∈ F defined by the following two conditions:

1. y ∈ N(so(y) ),

2. ‖so(y)‖F ≤ ρ · inf { ‖f‖F | y ∈ N(f) }.
Hence, so(y) is the element whose extended seminorm does not exceed ρ
times the minimal value of ‖f‖F among all f that share the same information
y. Note that for ρ > 1, the spline so(y) always exists, but it is not determined
uniquely.

An (ordinary) spline algorithm is given as

ϕo(y) = S(so(y) ).

Theorem 2.7 For the spline algorithm ϕo, we have

‖S(f)− ϕo(y)‖ ≤ c(f) · diam(N), ∀f ∈ F, ∀y ∈ N(f),

where c(f) = max { 1, 1+ρ
2 ‖f‖F }. Hence,

ewor(N, ϕo) ≤
1 + ρ

2
· diam(N).

Proof For f ∈ F and information y such that ‖y −N(f)‖Y ≤ δ, we have
‖N(f − so(y))‖Y ≤ ‖N(f) − y‖Y + ‖y − N(so(y))‖Y ≤ 2 δ. Hence, for
‖f − so(y)‖F ≤ 2, we get from (2.23)

‖S(f)− ϕo(y)‖ = ‖S(f − so(y) )‖ ≤ diam(N).
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On the other hand, for ‖f − so(y)‖F > 2, we have

‖S(f)− ϕo(y)‖ = ‖f − so(y)‖F ·
∥∥∥S
(

f − so(y)

‖f − so(y)‖F

)∥∥∥

≤ 1

2
( ‖f‖F + ‖so(y)‖F ) · diam(N)

≤ 1 + ρ

2
‖f‖F · diam(N).

Combining both cases and the fact that f ∈ E implies ‖f‖F ≤ 1, we obtain
the theorem. 2

Thus the error of the spline algorithm with ρ ∼= 1 is, roughly speaking,
at most twice as large as the optimal error. This is not very surprising
since ϕo is close to the interpolatory algorithm. For an arbitrary ρ, an
additional advantage of ϕo is that it is the spline algorithm for any set
E = { f ∈ F | ‖f‖F ≤ b }, b > 0. Indeed, the definition of ϕo is independent
on b. Hence, ϕo preserves almost optimal properties for any such a set.
Unfortunately, as illustrated below, the ordinary spline algorithm is usually
not linear, even when ‖ · ‖F and ‖ · ‖Y are Hilbert space norms.

Example 2.9 Consider the problem of approximating a real parameter f ∈
E = [−a, a] from information y ∈ N(f) = { f + x | |x| ≤ δ }. Then the
ordinary spline algorithm with ρ = 1 is given as

ϕo(y) =





y − δ y > δ,
0 |y| ≤ δ,
y + δ y < −δ.

For δ > 0, this is not a linear algorithm. 2

We now turn to smoothing spline algorithms. The idea is to minimize not
only the norm of f in the definition of a spline element, but also the noise y−
N(f). In general, a smoothing spline algorithm ϕ∗ is given in the following
way.

Let ‖(·, ·)‖∗ be an extended seminorm in the linear space F ×Rn, and
let ρ ≥ 1. A smoothing spline is an element s∗(y) ∈ F satisfying

‖ (s∗(y), y −N(s∗(y)) ) ‖∗ ≤ ρ · inf
f∈F
‖ (f, y −N(f) ) ‖∗.
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Then

ϕ∗(y) = S(s∗(y))

is a smoothing spline algorithm.

Consider first the case when the extended seminorm ‖(·, ·)‖∗ is given as

‖(f, x)‖∗ = max { ‖f‖F , ‖x‖Y /δ }, f ∈ F, x ∈ Rn.

In this case, we write ‖(·, ·)‖∗ = ‖(·, ·)‖∞ and ϕ∗ = ϕ∞.

Theorem 2.8 For the smoothing spline algorithm ϕ∞, we have

‖S(f)− ϕ∞(y)‖ ≤ 1 + ρ

2
·max { ‖f‖F , ‖y −N(f)‖Y /δ } · diam(N),

for all f ∈ F and y ∈ N(f). Hence,

ewor(N, ϕ∞) ≤ 1 + ρ

2
· diam(N).

Proof Let f ∈ F and y ∈ Rn be such that ‖y−N(f)‖Y ≤ δ. Consider first
the case when ‖f−s∞(y)‖F = 0 and ‖N(f−s∞(y) )‖Y = 0. Then for any c
we have fc = c (f − s∞(y) ) ∈ E and zero is noisy information for fc. Since
also ‖S(fc)−ϕ∞(0)‖ = |c|·‖S(f−s∞(y) )‖, we obtain ‖S(f)−ϕ∞(y)‖ = 0,
or diam(N) = +∞. In both cases the theorem holds.

Assume now that max{ ‖f − s∞(y)‖F , ‖N(f − s∞(y) )‖Y } > 0. Then

‖S(f)− ϕ∞(y)‖ = ‖(f − s∞(y), N(f − s∞(y)) )‖∞
·
∥∥∥S
(

f − s∞(y)

‖(f − s∞(y), N(f − s∞(y)) )‖∞

)∥∥∥

≤ (‖(f, y −N(f))‖∞ + ‖(s∞(y), y −N(s∞(y)))‖∞)

· sup
‖(h,N(h) )‖∞≤1

‖S(h)‖

≤ 1 + ρ

2
‖(f, y −N(f) )‖∞ diam(N).

Since for f ∈ E and y ∈ N(f) we have max {‖f‖F , ‖y − N(f)‖Y /δ} ≤ 1,
the smoothing spline algorithm ϕ∞ is almost interpolatory and the upper
bounds on the errors e(N, ϕ∞) and e(N, ϕo) are the same. This completes
the proof. 2
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The advantage of the smoothing spline algorithms is that in some cases the
extended seminorm ‖(·, ·)‖∗ can be chosen in such a way that ϕ∗ becomes
not only (almost) optimal, but also linear. This holds when F and Y are
Hilbert type spaces. Because of its importance, we devote a special attention
to this case.

2.5.2 α–smoothing splines

We now additionally assume that

• ‖ · ‖F and ‖ · ‖Y are Hilbert extended seminorms.

This means that on the linear subspaces F ′ = { f ∈ F | ‖f‖F < +∞} and
Y ′ = { y ∈ Rn | ‖y‖Y < +∞}, the functionals ‖ · ‖F and ‖ · ‖Y are semi-
norms induced by some semi–inner products 〈·, ·〉F and 〈·, ·〉Y , respectively.
Moreover, F ′ and Y ′ are complete with respect to ‖ · ‖F and ‖ · ‖Y .

Let 0 ≤ α ≤ 1. For f ∈ F and y ∈ Rn, define

Γα(f, y) = α · ‖f‖2F + (1− α) · δ−2‖y −N(f)‖2Y .

We use above the convention a · (+∞) = +∞, ∀a ≥ 0. Observe that Γα(f, y)
represents a trade–off between the seminorm of f and fidelity of N(f) to the
data y. This trade–off is controlled by the parameter α. Let

Γα(y) = inf
f∈F

Γα(f, y).

Then the set Y1 of all y for which Γα(y) < +∞ is a linear subspace of Rn,
and

Y1 = {N(f) + x | ‖f‖F < +∞, ‖x‖Y < +∞}.
Also, Γα(y) ≤ 1 if y is noisy information for some f ∈ E, y ∈ N(E).

An α–smoothing spline is an element sα(y) ∈ F for which

Γα(sα(y), y) = Γα(y).

Hence, the α–smoothing spline is a special instance of a smoothing spline
(with ρ = 1) when the extended seminorm ‖(·, ·)‖∗ = ‖(·, ·)‖α in F ×Rn is
induced by the semi–inner product

〈 (f1, x1), (f2, x2) 〉α = α 〈 f1, f2 〉F + (1− α) δ−2〈x1, x2 〉Y .
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An α–smoothing spline algorithm is defined as

ϕα(y) = S(sα(y)).

We first give a sufficent condition for existing and interpretation of the
α–smoothing splines.

Lemma 2.6 Assume that the operator N is closed, i.e., ‖fi‖F → 0 and
‖N(fi)− y‖Y → 0 imply y = 0. Then

(i) An α–smoothing spline exists for any y ∈ Rn.

(ii) Let y ∈ Y1. Then sα(y) is an α–smoothing spline for y if and only if
Γα(sα(y), y) < +∞ and

α 〈sα(y), f〉F + (1− α) δ−2〈N(sα(y) )− y,N(f)〉Y = 0, (2.24)

for all f ∈ F for which Γα(f, 0) < +∞.

(iii) For all y ∈ Y1, the α–smoothing spline is defined uniquely if and only
if

Γα(f,N(f)) > 0, ∀ f 6= 0.

(iv) There exist smoothing splines sα(y), such that the mapping y −→
sα(y), y ∈ Rn, is linear.

Proof In the proof we write, for brevity, fy instead of sα(y).
(i) If Γα(y) = +∞, any element of F is a smoothing spline. Assume
thus that Γα(y) is finite. Then fy ∈ F is an α–smoothing spline if and
only if (fy, N(fy) ) is an element of the subspace V = {(f,N(f) ) | f ∈
F } ⊂ F ×Rn, closest to (0, y) with respect to the extended seminorm ‖ · ‖α.
Hence, for existence of an α–smoothing spline it suffices to show that the
subspace V is closed with respect to ‖(·, ·)‖α. Indeed, if (fi, N(fi) )→ (f, y)
then ‖fi − f‖F → 0 and ‖N(fi) − y‖Y → 0. Since N is closed, we obtain
y = N(f) which means that (f, y) = (f,N(f) ) ∈ V .

(ii) If ‖(·, ·)‖α is a Hilbert norm then the element (fy, N(fy)) − (0, y) is
orthogonal to V . This means that

α 〈 fy, f 〉F + (1− α) δ−2 〈N(fy)− y,N(f) 〉Y = 0,

for all f ∈ F . We can easily convinced ourselves that the same holds for
‖(·, ·)‖α being an extended seminorm. (The prove goes exactly as for the
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Hilbert norm.) We add the condition Γα(f, 0) = ‖(f,N(f) )‖2α < +∞ only
to make the semi–inner product in (2.24) well defined.

Suppose now that Γα(fy, y) < +∞ and (2.24) hold. Let f be such
that Γα(f, y) < +∞. Then ‖(fy, N(fy) − y)‖α < +∞, ‖(f,N(f) − y)‖α <
+∞, which forces that the element (f − fy, N(f − fy) ) = (f,N(f) − y) −
(fy, N(fy) − y) has also finite extended seminorm ‖ · ‖α, or equivalently,
Γα(f − fy, 0) < +∞. Since, in addition, this element is in V , from the
orthogonality condition (2.24) we obtain

Γα(f, y) = ‖(f,N(f)− y)‖2α
= ‖(fy, N(fy)− y) + (f − fy, N(f − fy) )‖2α
= ‖(fy, N(fy)− y)‖2α + ‖(f − fy, N(f − fy)‖2α
≥ Γα(fy, y).

This means that fy is an α–smoothing spline.

(iii) The orthogonal projection on the subspace V is determined uniquely
iff ‖·‖α is an extended norm on V . This in turn is equivalent to Γα(f,N(f)) >
0, for f 6= 0, as claimed.

(iv) From (2.24) it follows that smoothing splines are linear on the subspace
Y1. That is, if sα(y1), sα(y2) are α–smoothing splines for y1, y2 ∈ Y1 then
γ1 sα(y1) +γ2 sα(y2) is an α–smoothing spline for γ1 y1 +γ2 y2. Hence, sα(y)
can be chosen in such a way that the mapping y → sα(y), y ∈ Rn, is linear.
2

We now turn to the error of the α–smoothing spline algorithm.

Lemma 2.7 For any f ∈ E and y ∈ N(f)

‖S(f)− ϕα(y)‖ ≤
√

1− Γα(y) (2.25)

sup { ‖S(h)‖ | α ‖h‖2F + (1− α) δ−2‖N(h)‖2Y ≤ 1 }.

In particular, if α ∈ (0, 1) then

ewor(N, ϕα) ≤ c(α) · radwor(N)

where c(α) = max {α−1/2, (1 − α)−1/2 }.
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Proof Lemma 2.6(ii) yields

‖(f,N(f))− (0, y)‖2α
= ‖(f,N(f))− (sα(y), N(sα(y)) )‖2α

+ ‖(sα(y), N(sα(y)) )− (0, y) ‖2α
= α ‖f − sα(y)‖2F + (1− α) δ−2‖N(f − sα(y))‖2Y + Γα(y).

We also have

‖(f,N(f))− (0, y)‖2α = α‖f‖2F + (1− α)δ−2‖y −N(f)‖2Y ≤ 1.

Hence, setting h = f − sα(y), we obtain

α ‖h‖2F + (1− α) δ−2‖N(h)‖2Y ≤ 1 − Γα(y)

and (2.25) follows.

To show the second inequality of the lemma, observe that the condition
α‖h‖2F + (1 − α)δ−2‖N(h)‖2Y ≤ 1 implies ‖h‖F ≤ α−1/2 and ‖N(h)‖Y ≤
δ (1− α)−1/2. Hence,

sup { ‖S(h)‖ | α‖h‖2F + (1− α)δ−2‖N(h)‖2Y ≤ 1}
≤ c(α) · sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ δ }.

The last supremum is equal to the half of diameter of information N on the
set E. The lemma now follows from the fact that (1/2 diam(N) ≤ radwor(N).
2

Thus the error of the α-apline algorithms is at most c(α) larger than the
minimal error. In particular, one can take minα c(α) = c(1/2) =

√
2. Then

ewor(N, ϕ1/2) ≤
√

2 · radwor(N).

In some cases, the parameter α can be chosen is such a way that the
α–smoothing spline algorithm is strictly optimal. Clearly, this is true if
radwor(N) = +∞. For radwor(N) = 0, it follows from Lemma 2.7 that the
algorithm ϕα is optimal for any 0 < α < 1.

Assume that radwor(N) ∈ (0,+∞). Let conv(A) be the convex hull of A.
For a = (a1, a2, . . . , am) ∈ Rm, let ‖a‖∞ = max1≤i≤m |ai|. Then we have
the following theorem.
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Theorem 2.9 Let radwor(N) ∈ (0,+∞). Let the set

A =
{(
‖h‖2F , ‖N(h)‖2Y /δ2

)
∈ R2

∣∣∣ h ∈ F, ‖S(h)‖ ≥ 1
}

satisfy
inf
a∈A
‖a‖∞ = inf

a∈conv(A)
‖a‖∞. (2.26)

Then

radwor(N) =
1

2
diam(N)

= sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ δ }

and there exists 0 ≤ α∗ ≤ 1 such that the α∗–smoothing spline algorithm is
optimal. Furthermore,

‖S(f)− ϕα∗(y)‖ ≤
√

1− Γα∗(y) · radwor(N), ∀f ∈ E, ∀y ∈ N(f).

Proof For r = sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ 1 } we have r ∈
(0,+∞). Since r = 0.5 · diam(N) ≤ radwor(N), it follows from (2.25) that
the sufficient condition for the α–smoothing spline algorithm to be optimal
is that

r ≥ sup { ‖S(h)‖ | α‖h‖2F + (1− α)δ−2‖N(h)‖2Y ≤ 1 },

or equivalently

inf
‖S(h)‖≥r

max { ‖h‖2F , ‖N(h)‖2Y /δ2 }

≤ inf
‖S(h)‖≥r

α ‖h‖2F + (1− α) δ−2‖N(h)‖2Y . (2.27)

For a = (a1, a2), b = (b1, b2) ∈ R2, let 〈a, b〉2 = a1b1 + a2b2 be the ordinary
inner product in R2. Then (2.27) can be rewritten as

inf
a∈A
‖a‖∞ ≤ inf

a∈A
〈β, a〉2 (2.28)

where β = β(α) = (α, 1 − α ).

We now show that there exists α = α∗ for which (2.28) holds. Assume
first that the set A is convex. Let γ = infa∈A ‖a‖∞ and a∗ = (a∗1, a

∗
2) ∈ A

be a point, for which ‖a∗‖∞ = γ. Clearly, a∗ is a boundary point of A.
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It follows from convex analysis that there exists a line 〈β, a〉2 = c passing
through a∗ and separating A from the convex (and disjoint with the interior
of A) set { a ∈ R2 | ‖a‖∞ ≤ γ }. That is, 〈β, a∗〉 = c and 〈β, a〉2 ≥ c for
a ∈ A, 〈β, a〉2 ≤ c for ‖a‖∞ ≤ γ. Observe that β1, β2 and c can be chosen
all nonnegative. Let β be normalized in such a way that β1 + β2 = 1. Then
c = γ. Indeed, this is clear if a∗1 = a∗2 = γ. For a∗1 < a∗2 = γ (or a∗2 < a∗1 = γ)
it is enough to note that then β = (0, 1) (or β = (1, 0)). Hence, we have
obtained that infa∈A〈β, a〉2 ≥ γ and (2.28) follows with α∗ = β1.

If the set A is not convex, we take β constructed as above for the convex
set conv(A). From the condition (2.26) we obtain

inf
a∈A
‖a‖∞ = inf

a∈c(A)
‖a‖∞

≤ inf
a∈c(A)

〈β, a〉2 ≤ inf
a∈A
〈β, a〉2,

as claimed. The proof of the theorem is complete. 2

Theorem 2.9 applies in the case when the range space G of the solution
operator S is a Hilbert space. Indeed, this follows from the following lemma.

Lemma 2.8 Let ‖ · ‖i, i = 0, 1, 2, be three extended Hilbert space semi-
norms on the same linear space X. Then the set

A =
{ (
‖x‖21, ‖x‖22

)
∈ R2

∣∣∣ 1 ≤ ‖x‖20 < +∞
}

satisfies

inf
a∈A
‖a‖∞ = inf

a∈c(A)
‖a‖∞.

Proof For x ∈ X, we denote a(x) = (‖x‖2
1, ‖x‖22). Let γ = infa∈A ‖a‖∞.

Suppose that the lemma is not true. Then there exist two different points
a(x), a(y) ∈ A such that ‖x‖0 = ‖y‖0 = 1, and for some u from the interval
[a(x), a(y)] we have ‖u‖∞ < γ. We show that this is impossible. More
precisely, we show that there exists a continuous curve C ⊂ A joining a(x)
with a(y) and passing through the interval [0, u] at some u′. Then u′ ∈ A
and ‖u′‖∞ ≤ ‖u‖∞ < infa∈A ‖a‖∞, which is a contradiction.

Since a(x) = a(−x), we can assume that 〈x, y〉0 ≥ 0. Let L = { a ∈
R2 | 〈w, a〉 = c } be the line passing through a(x) and a(y). (〈·, ·〉 is here the
ordinary inner product in R2.) Since ‖u‖∞ < min{‖a(x)‖∞, ‖a(y)‖∞}, L
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passes through the half-lines {(t, 0) | t ≥ 0} and {(0, t) | t ≥ 0}. We consider
two cases.

1. ‖x− y‖0 > 0.

Denote x(t) = t x+ (1−t) y and u(t) = a(x(t)/‖x(t)‖0 ). Since 〈x, y〉0 ≥ 0,
the 0-seminorm of x(t) is positive. Then {u(t) | − ∞ < t < +∞} is
a continuous curve in A with limt→±∞ u(t) = a( (x − y)/‖x − y‖0) ∈ A.
Since the quadratic polynomial Q(t) = ‖x(t)‖2

0( 〈w, u(t) 〉2 − c ) vanishes for
t = 0, 1, L divides the curve into two curves which lay on the opposite sides
of L and join a(x) with a(y). One of them passes through [0, u].

2. ‖x− y‖0 = 0.

In this case ‖x(t)‖0 = 1, for all t ∈ R. Hence, limt→±∞ u(t)/t2 = a(x−y) 6=
0. Using this and the argument about zeros of the polynomial Q(t), we
conclude that the curve {u(t) | 0 ≤ t ≤ 1 } passes through [0, u]. 2

We have shown that there exists an optimal linear smoothing spline algo-
rithm provided that ‖·‖F , ‖·‖Y and ‖·‖ are all Hilbert extended seminorms.
This was a consequence of the fact that for some α = α∗ we have the equality

sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ δ }
= sup { ‖S(h)‖ | α ‖h‖2F + (1− α)δ−2‖N(h)‖2Y ≤ 1 }.

In particular, α∗ should be chosen in such a way that the right hand side of
this equality is minimal. Hence, we have the following corollary.

Corollary 2.3 The optimal value of α is given as

α∗ = arg min
0≤α≤1

sup { ‖S(h)‖ | α‖h‖2F + (1− α)δ−2‖N(h)‖2Y ≤ 1 }. 2

The same ideas can be used to prove optimality of smoothing spline algo-
rithms in another case. As before, we assume that ‖ · ‖F is a Hilbert space
seminorm, but relax this requirement for the seminorm ‖ · ‖Y . That is, we
let

N(f) = { y = [y1, . . . , yn] ∈ Rn | |yi − Li(f)| ≤ δi, 1 ≤ i ≤ n },

where Li are linear functionals and 0 ≤ δi ≤ +∞, 1 ≤ i ≤ n. We also
assume that the solution operator S is a linear functional.
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For β = (β1, . . . , βn, βn+1) ∈ Rn+1 such that βi ≥ 0 and
∑n+1
i=1 βi = 1,

we define an extended seminorm on F ×Rn as

Γβ(f, y) = βn+1 ‖f‖2F +
n∑

i=1

βi δ
−2
i |yi − Li(f)|2.

A β–smoothing spline algorithm is then ϕβ(y) = S(sβ(y) ) where sβ(y)
minimizes Γβ(f, y) over all f ∈ F .

Due to Theorem 2.4, an optimal linear algorithm exists. It turns out,
that it can be interpreted as a β–smoothing spline algorithm.

Theorem 2.10 If S is a linear functional then

radwor(N) = sup {S(h) | ‖h‖ ≤ 1, |Li(h)| ≤ δi, 1 ≤ i ≤ n }

and there exists β∗ such that the β∗–smoothing spline algorithm is optimal.
Furthermore, for any f ∈ F and y ∈ N(f)

|S(f)− ϕβ∗(y) | ≤
√

1− Γβ∗(y) · radwor(N).

Proof As in the proof of Lemma 2.7 we can show that

|S(f)− ϕβ(y) | ≤
√

1− Γβ(y)

sup {S(h) | βn+1‖h‖2F +
n∑

i=1

βi δ
−2
i |Li(h)|2 ≤ 1 }.

Repeating a corresponding part of the proof of Theorem 2.9 we obtain a suffi-
cient condition for the β–smoothing spline algorithm to be optimal. Namely,
the set

B =
{ (
‖x‖21, . . . , ‖x‖2n+1

)
∈ Rn+1 | S(x) ≥ 1

}
,

where ‖x‖i = |Li(x)|/δi, 1 ≤ i ≤ n, ‖x‖n+1 = ‖x‖F , must satisfy

inf
b∈B
‖b‖∞ = inf

b∈c(B)
‖b‖∞. (2.29)

But, (2.29) follows from the fact, that for any b ∈ c(B) there exists b̃ ∈ B
with all n + 1 components not greater than the corresponding components
of b. Indeed, if b =

∑m
j=1 cj bj , where bj = (‖xj‖2i , 1 ≤ i ≤ n + 1 ) ∈ B,
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∑m
j=1 cj = 1, cj ≥ 0, then one can take b̃ = (‖∑m

j=1 cjxj‖2i , 1 ≤ i ≤ n+ 1 ).
Direct calculations show that

∥∥∥∥∥∥

m∑

j=1

cj xj

∥∥∥∥∥∥

2

i

≤
m∑

j=1

cj ‖xj‖2i , 1 ≤ i ≤ n+ 1.

Notes and Remarks

NR 2.12 The theory of splines traces back to the end of fifties when researchers
found out many interesting things about polynomial splines (see the next section).
We cite only Golomb and Weinberger [17], Schoenberg [91] [90], and Schoenberg and
Greville [92]. Since that time splines have been well known and studied from differ-
ent viewpoints in approximation theory,numerical analysis and statistics. A general
approach to spline algorithms in the worst case setting with exact information and
most relations between splines and optimal error algorithms were presented in Traub
and Woźniakowski [109, Chap.4]. The general definition of smoothing splines and
Theorem 2.8 seem to be new.

NR 2.13 Optimality of ordinary splines in the worst case setting was shown by
Kacewicz and Plaskota [33], while optimality of α–smoothing splines by Melkman
and Micchelli [57]. The proof of Theorem 2.10 is based on the latter paper (see also
Micchelli [58]). Lemma 2.6 and Theorem 2.10 seem however to be new.

NR 2.14 For optimality of the α–smoothing spline algorithm, it is essential that
G is a Hilbert space; see Melkmann and Micchelli [57] for a counterexample.

Exercises

E 2.21 Give an example showing that the estimate ewor(N, ϕo) ≤ (1 + ρ)/2 ·
diam(N) in Theorem 2.7 is sharp.

E 2.22 Show that the definitions of the ordinary spline so(y) for ρ = 1 and α–
smoothing spline sα(y) with 0 < α < 1 coincide, if information N is exact and
linear.

E 2.23 Let ‖(·, ·)‖∗ be an extended seminorm on the space F ×Rn, such that for
some 0 < d1 ≤ d2 < +∞ we have

d1 ‖(f, x)‖∞ ≤ ‖(f, x)‖∗ ≤ d2 ‖(f, x)‖∞, ∀ f ∈ F, x ∈ Rn.

Show that then for the smoothing spline algorithm ϕ∗ we have

ewor(N, ϕ∗) ≤
1 + ρ

2

d2

d1
diam(N).
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E 2.24 Let radwor(N) < +∞ and 0 < α < 1. Show that then S(f1) = S(f2), for
any α–smoothing splines f1, f2 corresponding to information y such that Γα(y) <
+∞. That is, the α–smoothing spline algorithm is defined uniquely on the subspace
{ y ∈ Rn | Γα(y) < +∞}.

E 2.25 Let ‖ · ‖0 and ‖ · ‖1 be two extended seminorms on a linear space, and let
0 < r0, r1 < +∞. Show that

sup
‖h‖1≤r1

‖h‖0 = r0 ⇐⇒ inf
‖h‖0≥r0

‖h‖1 = r1.

E 2.26 Prove that the set A in Lemma 2.8 is convex.

E 2.27 Let ‖ · ‖F and ‖ · ‖Y be Hilbert extended seminorms, and let 0 < α < 1.
Define the set

E = { f ∈ F | ‖f‖2F ≤ 1/α },

and the information operator

N(f) =

{
y ∈ Rn

∣∣∣ ‖y −N(f)‖2Y ≤
1− α ‖f‖2F

1− α

}

where N : F → Rn is a linear operator. Show that in this case the α–smoothing
spline algorithm is optimal for any linear solution operator S and

radwor(N) = sup { ‖S(h)‖ | α ‖h‖2F + (1− α) ‖N(h)‖2Y ≤ 1 }.

E 2.28 Suppose that the solution operator S in Theorem 2.10 is not a functional.
Show that then there exists a linear algorithm with error not larger than

√
n+ 1 ·

radwor(N), where n is the number of functionals in N.

E 2.29 Give an example of a problem for which the smoothing spline element does
not exist.

2.6 Special splines

In this section we consider several special cases. We first show explicit for-
mulas for the α–smoothing spline and optimal choice of α in the case when
F is a Hilbert space. Then we prove that regularization and classical poly-
nomial splines lead to algorithms that are optimal in the worst case setting.
Finally, we consider splines in reproducing kernel Hilbert spaces.
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2.6.1 The Hilbert case with optimal α

Let F and G be separable Hilbert spaces and let S : F → G be a linear
and continuous operator. Let E be the unit ball in F . Suppose that for an
(unknown) element f ∈ E we observe data

y = N(f) + x,

where N : F → Y = Rn is a continuous linear operator,

N = [ 〈·, f1〉F , 〈·, f2〉F , . . . , 〈·, fn〉F ],

and fi ∈ F , 1 ≤ i ≤ n. The noise x is bounded in an extended Hilbert norm
of Rn, ‖x‖Y ≤ δ with δ > 0. That is, ‖ · ‖Y is given by ‖x‖Y =

√
〈x, x〉Y ,

〈x1, x2〉Y =

{
〈Σ−1x1, x2〉2 x1, x2 ∈ Σ(Rn),
+∞ otherwise,

where the operator (matrix) Σ : Rn → Rn is symmetric and nonnegative
definite, Σ = Σ∗ ≥ 0. Note that 〈·, ·〉Y is a well defined inner product on
Σ(Rn) since Σy1 = Σy2 = x1 implies 〈y1, x2〉2 = 〈y2, x2〉2, for all x1, x2 ∈
Σ(Rn).

We first show formulas for the α–smoothing spline. For α = 1 we obvi-
ously have sα ≡ 0.

Lemma 2.9 Let 0 ≤ α < 1. The quantity Γα(y) = inff∈F Γα(f, y) is
finite if and only if y ∈ Y1 = N(F ) + Σ(Rn). For y ∈ Y1, the smoothing
spline is given as

sα(y) =
n∑

j=1

zj fj,

where z ∈ Y1 is the solution of the linear system

( γ Σ + GN ) z = y,

with the matrix

GN = { 〈 fi, fj 〉F}ni,j=1

and γ = α(1− α)−1δ2. Moreover, Γα(y) = Γα(sα(y), y) = 〈y, z〉2.
For α > 0 and y ∈ Y1, the α–smoothing spline is defined uniquely.
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Proof If y /∈ Y1 then for all f ∈ F we have y − N(f) /∈ Σ(Rn) and ‖y −
N(f)‖Y = +∞. Hence, Γα(f, y) = +∞.

Assume that y ∈ Y1. Then any f ∈ F can be decomposed as f =∑n
j=1 βjfj +f⊥, where f⊥ is orthogonal to span{f1, . . . , fn}. (Note that this

decomposition need not be unique.) We have ‖f‖2
F = 〈GNβ, β〉2 + ‖f⊥‖2F

and ‖y −N(f)‖2Y = 〈Σ−1(y −GNβ), (y −GNβ) 〉2. Hence,

Γα(y) = inf
β

γ 〈GNβ, β〉2 + 〈Σ−1(y −GNβ), (y −GNβ)〉2.

Denoting by P the orthogonal projection in Rn onto the subspace Σ(Rn)
with respect to 〈·, ·〉2, we obtain

γ 〈GNβ, β〉2 + 〈Σ−1(y −GNβ), (y −GNβ)〉2
= γ 〈GNβ, β〉2 + 〈Σ−1P (y −GNβ), (y −GNβ)〉2
= 〈Aβ, β〉2 − 2 〈b, β〉2 + c,

where

A = GN
(
γI + Σ−1PGN

)
, b = GNΣ−1Py, c = 〈Σ−1Py, y〉2.

Clearly, A = A∗ > 0. It is well known that 〈Aβ, β〉2 − 2〈b, β〉2 is minimized
for any β satisfying Aβ = b, i.e.,

GN
(
γI + Σ−1PGN

)
β = GNΣ−1Py. (2.30)

In particular, (2.30) holds for β = z. Furthermore, for fy =
∑n
j=1 zjfj we

have Γα(fy, y) = 〈z, y〉2.

To prove the uniqueness of sα in the case α 6= 0, it suffices to show
that if (2.30) holds for two different β(1) and β(2), then f (1) = f (2) where

f (1) =
∑n
j=1 β

(1)
j fj and f (2) =

∑n
j=1 β

(2)
j fj. Indeed, let β = β(1)−β(2). Then

Aβ = 0 and

〈Aβ, β〉2 = γ 〈GNβ, β〉2 + 〈GNΣ−1PGNβ, β〉2 = 0.

Since GNΣ−1PGN is nonnegative definite, we obtain 〈GNβ, β〉2 = ‖f (1) −
f (2)‖2F = 0 which means that f (1) = f (2), as claimed. 2

We note that Lemma 2.9 says, in particular, that the smoothing spline is in
the space spanned by the elements fi which form information N . To find sα,
it suffices to solve a linear system of equations with the Gram matrix GN .
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Corollary 2.4 For 0 ≤ α < 1, the α–smoothing spline algorithm is given
as

ϕα(y) =
n∑

j=1

zjS(fj), y ∈ Y1,

where z ∈ Y1 satisfies (γΣ +GN )z = y and γ = α(1 − α)−1δ2. 2

We pass to the optimal choice of α. Recall that the algorithm ϕα with
α = 1/2 gives error at most

√
2 times larger than the minimal error, and

that there exists α∗ for which ϕα∗ is optimal.

Consider first the case when Σ is positive definite, Σ > 0. Then ‖ · ‖Y is
a Hilbert norm and there exists the operator N ∗ adjoint to N with respect
to the inner product 〈·, ·〉Y in Rn. That is,

〈N(f), y〉Y = 〈f,N∗(y)〉F , ∀f ∈ F, y ∈ Rn.

Lemma 2.10 Let Σ > 0. Then

α∗ = arg min
0≤α≤1

max
{
λ
∣∣∣ λ ∈ Sp(SA−1

α S∗ )
}
,

where

Aα = α I +
1− α
δ2

N∗N

and Sp(·) is the spectrum of an operator. Furthermore,

ewor(N, ϕα∗) = radwor(N)

= max
{√

λ
∣∣∣ λ ∈ Sp(SA−1

α∗ S
∗)
}
.

Note that for α = 0, the operator Aα = δ−2N∗N may be not one-to-one. In
this case, if kerN 6⊂ kerS then we formally set max{λ | λ ∈ Sp(SA−1

0 S∗) } =
+∞. If kerN ⊂ kerS then we treat A0 = δ−2N∗N as an operator acting in
the space V = (kerN)⊥. Since S(kerN) = {0}, we have S∗(V ) ⊂ V . Hence,
SA−1

0 S∗ : V → V is a well defined self–adjoint and nonnegative definite
operator.

Proof Due to Corollary 2.3, the optimal α = α∗ minimizes

sup { ‖Sh‖ | α‖h‖2F + (1− α)δ−2‖Nh‖2Y ≤ 1 }, (2.31)
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and radwor(N) is equal to the minimal value of (2.31). In our case, (2.31)
can be rewritten as

sup { ‖SA−1/2
α (A1/2

α h)‖ | ‖A1/2
α h‖F ≤ 1 }

= sup { ‖SA−1/2
α h‖ | ‖h‖F ≤ 1 }

= max {
√
λ | λ ∈ Sp(SA−1

α S∗) }

(this holds also for α = 0). This completes the proof. 2

From Lemma 2.10 we can derive the following more specific theorem about
α∗.

Theorem 2.11 Let {ξj}j≥1 be a complete orthonormal basis of eigenele-
ments of the operator N ∗N . Let ηj be the corresponding eigenvalues,

N∗Nξj = ηjξj, j ≥ 1.

Then the optimal α∗ is the minimizer of

ψ(α) = sup
‖g‖=1

∑

j≥1

〈S(ξj), g〉2
α+ δ−2ηj(1− α)

, 0 ≤ α ≤ 1,

and radwor(N) =
√
ψ(α∗). In particular, if S is a functional then

ψ(α) =
∑

j≥1

S2(ξj)

α+ δ−2ηj(1− α)
.

Proof Due to Lemma 2.27, the optimal α∗ minimizes the inner product
〈SA−1

α S∗g, g〉 over all g with ‖g‖ = 1. Observe that

A−1
α ξj = (α+ (1− α)ηjδ

−2)−1ξj

and S∗g =
∑
j≥1〈Sξj , g〉ξj . This and orthonormality of {ξj} yield

〈SA−1
α S∗g, g〉 = 〈A−1

α S∗g, S∗g〉F =
∑

j≥1

〈Sξj, g〉2
α+ δ−2ηj(1− α)

.

If S is a functional then g ∈ {−1, 1} and 〈Sξj , g〉2 = S2ξj, which completes
the proof. 2
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For singular Σ, Lemma 2.10 and Theorem 2.11 should be modified as follows.
Let F1 = { f ∈ F | N(f) ∈ Σ(Rn) }. Let S1 : F1 → G and N1 : F1 → Σ(Rn)
be defined by S1(f) = f and N1(f) = N(f), f ∈ F1. Since ‖ · ‖Y is a Hilbert
norm in Σ(Rn), the adjoint operator N ∗1 : Σ(Rn)→ F1 exists. Lemma 2.10
and Theorem 2.11 hold with S and N replaced by S1 and N1. For instance,
if information is exact then Σ ≡ 0, F1 = kerN , N ∗1N1 ≡ 0, and Aα = αI.
The optimal α is then α∗ = 1. That is, sα∗(y) is the element of the set
{ f ∈ F | N(f) = y } with the minimal norm, and

radwor(N) = ewor(N, ϕα∗) = sup{ ‖S(h)‖ | h ∈ kerN , ‖h‖ ≤ 1 }.

We now specialize the formulas for the optimal α∗, γ∗ = α∗(1−α∗)−1δ2,
and for radwor(N) assuming that S is a compact operator and S∗S and N∗N
possess a common orthonormal basis of eigenvectors. That is, we assume
that there exists in F an orthonormal basis {ξi}di=1 (d = dimF ≤ +∞), such
that

S∗Sξi = λiξi and N∗Nξi = ηiξi,

where λ1 ≥ λ2 ≥ . . . ≥ 0 are the dominating eigenvalues of S∗S and ηi are
eigenvalues of N ∗N . (If d < +∞ then we formally set λi = ηi = 0 for i > d.)

In this case, {Sξi/‖Sξi‖}, ξi /∈ kerS, is an orthonormal basis in S(F ) of
eigenelements of the operator SA−1

α S∗, and the corresponding eigenvalues
are

λ̃i(α) =
λi

α+ δ−2ηi(1− α)
, i ≥ 1.

Hence, to find the optimal α and the radius of N we have to minimize
maxi≥1 λ̃i(α) over all α ∈ [0, 1].

Let 1 = p1 < p2 < · · · < pk be the finite sequence of integers defined
(uniquely) by the following condition. For any i, pi+1 is the smallest integer
such that pi+1 > pi and λpi/ηpi < λpi+1/ηpi+1 (here a/0 = +∞ for a > 0
and 0/0 = 0). If such an pi+1 does not exist then k = i. It is easy to see
that then for any α

max
i≥1

λ̃i(α) = max
1≤i≤k

λ̃pi(α).

Next, let

P1 = { pi | 1 ≤ i ≤ k, δ2 < ηpi }, (2.32)

P2 = { pi | 1 ≤ i ≤ k, δ2 ≥ ηpi }. (2.33)

Observe that for any i ∈ P1, λ̃i(α) is an increasing function of α, while
for j ∈ P2 it is nonincreasing. Hence, in the case P1 = ∅ we have α∗ = 1
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and radwor(N) =
√
λ1, while for P2 = ∅ we have α∗ = 0 and radwor(N) =

δ
√

maxi λi/ηi.
Suppose that both sets P1 and P2 are nonempty. Then

min
0≤α≤1

max
1≤j≤k

λ̃ij (α) = max
i∈P1,j∈P2

βij ,

where βij = λ̃i(αij) and αij are such that λ̃i(αij) = λ̃j(αij). The optimal
α∗ = αst where s, t are chosen in such a way that βst minimizes βij over
i ∈ P1 and j ∈ P2. Furthermore, radwor(N) =

√
βst.

Noting that

αij =
λjηi − λiηj

λi(δ2 − ηj) + λj(ηi − δ2)

and

βij = λj +

(
δ2 − ηj
ηi − ηj

)
(λi − λj),

we obtain the following corollary.

Corollary 2.5 Suppose that the operators S∗S and N∗N have a common
basis of eigenelements with the corresponding eigenvalues λi and ηi. Let the
sets P1 and P2 be defined by (2.32) and (2.33).

(i) If P1 = ∅ then α∗ = 1 and radwor(N) =
√
λ1.

(ii) If P2 = ∅ then α∗ = 0 and

radwor(N) = δ ·
√

max
i≥1

λi
ηi
.

(iii) If both P1 and P2 are nonempty then

α∗ =
λtηs − λsηt

λs(δ2 − ηt) + λt(ηs − δ2)

and

radwor(N) =

√
λt +

(
δ2 − ηt
ηs − ηt

)
(λs − λt),

where

(s, t) = arg max
(i,j)∈P1×P2

λj +

(
δ2 − ηj
ηi − ηj

)
(λi − λj). 2
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Suppose now that δ2 is small,

0 < δ2 ≤ max
1≤i≤t

ηi

where t = min{ i ≥ 1 | ηi = 0 }. Let s = arg max1≤i≤t−1(λi − λt)/ηi. Then
Corollary 2.5 yields the following formulas:

α∗ =
λt

λt + δ2

ηs
(λs − λt)

and

radwor(N) =

√
λt +

δ2

ηs
(λs − λt).

Observe that α∗ → 1 as δ2 → 0+. For α∗ 6= 1 (which holds when λs > λt)
the parameter

γ∗ =
ηsλt

λs − λt
is constant. This means that the optimal algorithm is independent of the
noise level, provided that δ is small (Actually, the same algorithm is optimal
also for exact information, see E 2.32.) This nice property is however not
preserved in general, as shown in E 2.33.

2.6.2 Least squares and regularization

Consider the Hilbert case of Section 2.6.1 with ‖ · ‖Y being a Hilbert norm.
In this case, as an approximation to S(f) one can take

ϕls(y) = S(uls(y) ),

where uls(y) is the solution of the least squares problem. It is defined by the
equation

‖y −N(uls(y) )‖Y = min
f∈F
‖y −N(f)‖Y ,

or equivalently, by N(uls(y)) = PNy where PN : Rn → Rn is the orthogonal
projection of y onto YN = N(F ) (with respect to the inner product 〈·, ·〉Y ).
This is in turn equivalent to the fact that uls(y) is the solution of the normal
equations

N∗N f = N∗y. (2.34)

Indeed, if (2.34) holds then 〈y−Nf,Nf〉Y = 〈N∗y−N∗Nf, f〉F = 0, which
means that Nf = PNy. On the other hand, since N ∗(Y ⊥N ) = {0}, for any
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solution h of the least squares problem we have N ∗Nh = N∗PNy = N∗y,
as claimed.

The algorithm ϕls is called the (generalized) least squares algorithm. For
finite dimensional problems with small noise level, the least squares turn out
to be optimal. Namely, we have the following theorem. dimF = dimN(F ) =
d < +∞.

Theorem 2.12 Let dimF = dimN(F ) = d < +∞. Let g ∈ G be such
that ‖g‖ = 1 and

‖S(N∗N)−1S∗g ‖ = ‖S(N ∗N)−1S∗‖ .

Then for sufficiently small noise level δ,

δ2 ·
〈
S(N∗N)−2S∗g, g

〉
≤ ‖S(N∗N)−1S∗ ‖, (2.35)

the (generalized) least squares ϕls is an optimal algorithm. Furthermore,

radwor(N) = ewor(N, ϕls) = δ ·
√
‖S(N∗N)−1S∗‖ .

Proof We can assume that ‖S(N ∗N)−1S∗‖ > 0 since otherwise S ≡ 0
and the theorem is trivially true. Let h = (N ∗N)−1S∗g and h = h/‖h‖F .
Observe that then ‖S(h)‖ = ‖S(N ∗N)−1S∗‖ and

‖N(h)‖Y = 〈N(N∗N)−1S∗g,N(N∗N)−1S∗g〉1/2Y

= 〈S(N∗N)−1S∗g, g〉1/2 = ‖S(N∗N)−1S∗‖1/2.

Hence, the condition (2.35) gives δ ≤ ‖N(h)‖Y and consequently

radwor(N;E) ≥ radwor(N, [−h, h])

= sup { ‖S(f)‖ | f ∈ [−h, h], ‖N(f)‖Y ≤ δ }

= δ
‖S(h)‖
‖N(h)‖ = δ ‖S(N ∗N)−1S∗‖1/2.

On the other hand, for any f the least squares algorithm gives

sup
‖x‖Y ≤δ

‖S(f)− ϕls(N(f) + x) ‖ = sup
‖x‖Y ≤δ

‖SN−1PNx‖

= δ ‖SN−1PN‖ = δ ‖S(N ∗N)−1S∗‖1/2,

and the theorem follows.
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Example 2.10 Consider the case where F = G and S is the identity
operator, S = I. That is, we want to approximate f from the unit ball of

F . In this case, the condition (2.35) takes the form δ ≤ λ
1/2
min where λmin is

the minimal eigenvalue of N ∗N . For such δ we have radwor(N) = δ λ
−1/2
min .

On the other hand, for δ ≥ λ
1/2
min we have radwor(N) ≥ δ and the error δ is

achieved by the zero algorithm. Hence,

radwor(N) = min

{
1,

δ√
λmin

}
.

For small noise level, δ ≤ λ1/2
min, the least squares algorithm is optimal. Oth-

erwise information is useless – zero is the best approximation.
We also note that if the unit ball E is replaced by the whole space F ,

then ϕls is optimal unconditionally. 2

Unfortunately, in general, the least squares algorithm can be arbitrarily bad.
For instance, for the simple one–dimensional problem of Example 2.9 we
have ϕls(y) = y. Hence, the error of ϕls equals ewor(N, ϕls) = δ , while
radwor(N) = min{a, δ}. Consequently,

ewor(N, ϕls)

radwor(N)
→ +∞, as

a

δ
→ 0.

Observe also that the solution of (2.34) is in general not unique and therefore
the least squares algorithm ϕls is not uniquely determined.

A simple modification of the least squares relies on regularization of the
normal equations (2.34). That is, instead of (2.34) we solve “perturbed”
linear equations

(ω I + N∗N ) f = N∗ y, (2.36)

where I : F → F is the identity operator and ω > 0 is a regularization
parameter. Then the solution uω(y) of (2.36) exists and is unique for any
y. Moreover, it turns out that for a properly chosen parameter ω the reg-
ularization algorithm S(uω(y) ) is optimal. Indeed, we have the following
fact.

Lemma 2.11 For 0 < α < 1, the α–smoothing spline is the regularized
solution, i.e.,

sα(y) = uω(y) = (ω I + N ∗N )−1 N∗ y
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where ω = α (1 − α)−1δ2. Or, equivalently, uω is the α–smoothing spline
with α = ω(ω + δ2)−1.

Proof Let α ∈ (0, 1). Define the Hilbert space F̃ = F × Rn with the
extended norm

‖(f, y)‖2 = ω ‖f‖2F + ‖y‖2Y ,

where ω = α(1 − α)−1δ2. We know from Lemma 2.6 that sα(y) is the α–
smoothing spline iff

‖(0, y) − (sα(y) )‖ = min
f∈F
‖(0, y) − (f,N(f) )‖.

As in (2.34) we can show that sα(y) is the solution of

Ñ∗Ñf = Ñ∗ỹ,

where the information operator Ñ : F → F̃ is defined as Ñ(f) = (f,N(f) ),
and ỹ = (0, y). Since Ñ∗ỹ = N∗y and Ñ∗Ñ = ω I+N ∗N, the lemma follows.
2

Thus, the well known regularization leads to the smoothing spline algo-
rithms. It is interesting that the optimal value of the regularization param-
eter ω is the same as optimal γ in Theorem 2.9.

Example 2.11 Let F = G with the complete orthonormal basis {ξi}i≥1.
Let

S(f) =
∞∑

i=1

βi〈f, ξi〉F ξi,

β1 ≥ β2 ≥ · · · ≥ 0, and let information consist of noisy evaluations of the
Fourier coefficients, i.e.,

N(f) = [ 〈f, ξ1〉F , . . . , 〈f, ξn〉F ]

and N(f) = {N(f) + x | ‖x‖2 ≤ δ } (‖ · ‖2 stands for the Euclidean norm)
We also assume, for simplicity, that δ ≤ 1. Due to Corollary 2.5, in this case
the optimal α is

α∗ =
β2
n+1

β2
n+1 + δ2(β2

1 − β2
n+1)

.
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Hence, for β1 = βn+1 the zero algorithm is optimal, while for βn+1 = 0 we
obtain optimality of the least squares algorithm. Let β1 > βn+1 > 0. Then
the regularization algorithm with the parameter

ω∗ =
βn+1

β1 − βn+1

is an optimal algorithm.
Observe that for δ → 0+ we have α∗ → 1. However, the regularization

parameter ω∗ is constant. This seems to contradict the intuition that the
smaller δ2, the smaller ω∗.

Clearly, we can always apply the algorithm ϕω(y) = S(uω(y)) with ω =
δ2. Then ω → 0+ as δ2 → 0+ and ewor(N, ϕω) ≤

√
2 radwor(N).

2.6.3 Polynomial splines

In this section we recall the classical result that polynomial splines are also
α–smoothing splines.

Let a < b and let knots a ≤ t1 < t2 < · · · ≤ tm ≤ b be given. A
polynomial spline of order r (r ≥ 1) corresponding to the knots ti is a function
p : [a, b]→ R satisfying the following conditions:

(a) p ∈ Π2r−1 on each interval [a, t1], [tm, b], [ti, ti+1], 1 ≤ i ≤ m− 1,

(b) p has continuous (2r − 2)nd derivative on [a, b],

Here Πk is the space of polynomials of degree at most k. A polynomial spline
is called natural if additionally

(c) p(i)(a) = 0 = p(i)(b), r ≤ i ≤ 2r − 2, and also p2r−1(a) = 0 if
a < t1, and p2r−1(b) = 0 if tm < b.

If instead of (c) we have

(c’) p(i)(a) = p(i)(b), 1 ≤ i ≤ 2r − 2, and in the case a < t1, tm < b
also p(2r−1)(a) = p(2r−1)(b),

then the polynomial spline is called periodic.

Let Wr(a, b) be the Sobolev space of functions f defined on [a, b] that
have absolutely continuous (r − 1)st derivative and rth derivative is square
integrable,

Wr(a, b) = { f : [a, b]→ R | f (r−1) is abs. cont., f (r) ∈ L2(a, b) }.
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Similarly, let W̃r(a, b) be the space of functions from Wr(a, b) that can be
extended to (b−a)–periodic functions on R with r−1 continuous derivative,

W̃r(a, b) = { f ∈Wr(a, b) | f (i)(a) = f (i)(b), 0 ≤ i ≤ r − 1 }.
Note that natural and periodic polynomial splines belong to Wr(a, b) and
W̃r(a, b), respectively. They are also α–smoothing splines in these spaces,
provided that information is given by noisy function values at ti’s. This fact
follows from the following two well known lemmas. For completeness, we
add the proofs.

Lemma 2.12 Let a function f ∈Wr(a, b) (or f ∈ W̃r(a, b)) vanish at ti,

f(ti) = 0, 1 ≤ i ≤ m.
Then for any natural (periodic) polynomial spline p of order r we have

∫ b

a
f (r)(x)p(r)(x) dx = 0.

Proof Integrating by parts we get
∫ b

a
f (r)(x)p(r)(x) dx = f (r−1)(x)p(r)(x)

∣∣∣
b

a
−
∫ b

a
f (r−1)(x)p(r+1)(x) dx.

Observe that f (r−1)(x)p(r)(x)|ba = 0, no matter if we have periodic or non-
periodic case. Proceeding in this way we obtain
∫ b

a
f (r)(x)p(r)(x) dx = −

∫ b

a
f (r−1)(x)p(r+1)(x) dx

= f (r−2)(x)p(r+1)(x)
∣∣∣
b

a
−
∫ b

a
f (r−2)(x)p(r+2)(x) dx

= · · · = (−1)i
∫ b

a
f (r−i)(x)p(r+i)(x) dx

=

∫ b

a
f ′(x)p(2r−1)(x) dx. (2.37)

The function p(2r−1) is piecewise constant. Denote t0 = a, tm+1 = b, and by
pi the value of p(2r−1) on the interval (ti, ti+1), 0 ≤ i ≤ m (for a = t1 we set
p0 = p1, and for tm = b we set pm = pm−1). Then (2.37) equals

m∑

i=0

pi ( f(ti+1)− f(ti) ) = pmf(b)− p0f(a) = 0,

as claimed.
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Lemma 2.13 Let f ∈ Wr(a, b) (or f ∈ W̃r(a, b)). Then there exists a
natural (periodic) polynomial spline pf of order r such that

pf (ti) = f(ti), 1 ≤ i ≤ m.

The spline pf is determined uniquely for all m ≥ r (for all m ≥ 1). More-
over, ∫ b

a
(p

(r)
f (x) )2 dx ≤

∫ b

a
(f (r)(x) )2 dx.

Proof In the nonperiodic case and m < r we can take as pf any polynomial
p of degree at most r−1 satisfying p(ti) = f(ti), ∀i. Therefore we can assume
in the nonperiodic case that m ≥ r.

We first show that p ≡ 0 is the unique spline that vanishes at ti, 1 ≤
i ≤ m. Indeed, if for a natural (periodic) spline is p(ti) = 0, ∀ i, then by
Lemma 2.12 with f = p we have

∫ b
a ( p(r)(x) )2 dx = 0. Thus, p(r) ≡ 0,

and p is a polynomial of degree at most r − 1 that vanishes at m different
points. In the nonperiodic case we have m ≥ r which means that p ≡ 0. In
the periodic case, p satisfies p(i)(a) = p(i)(b), 0 ≤ i ≤ r − 1. Then, it must
be of the form

p(x) =
r−1∑

i=0

βi(x− a)i =
r−1∑

i=0

βi(x− b)i.

This in turn means that p is a constant polynomial, that vanishes at at least
one point. Hence p ≡ 0, as claimed.

Observe now that to find all the coefficients of the (natural or periodic)
spline that interpolates f , we have to solve a quadratic system of linear
equations. The necessary and sufficient condition for the system to have a
unique solution is that zero is the only solution of the homogeneous system.
This is however the case since the homogeneous system corresponds to f ≡ 0.

To show the second part of the lemma, observe that by Lemma 2.12

(with f replaced by f − pf ) we have
∫ b
a p

(r)
f (x)( f (r)(x)− p

(r)
f (x) ) dx = 0.

Hence,

∫ b

a
(f (r)(x) )2 dx =

∫ b

a
(p

(r)
f (x) )2 dx +

∫ b

a
( f (r)(x)− p

(r)
f (x) )2 dx

≥
∫ b

a
(p

(r)
f (x) )2 dx,

which completes the proof. 2
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Now, let F = Wr(a, b) (or F = W̃r(a, b)) with the seminorm ‖ · ‖F which is
generated by the semi–inner product

〈f1, f2〉F =

∫ b

a
f

(r)
1 (x) f

(r)
2 (x) dx.

We consider the problem with an arbitrary linear solution operator S : F →
G, and with information of the form

N(f) = { y ∈ Rn | ‖y −N(f)‖Y ≤ δ },

where

N(f) = [ f(t1), . . . , f(t1)︸ ︷︷ ︸
k1

, . . . , f(tm), . . . , f(tm)︸ ︷︷ ︸
km

],

∑m
i=1 ki = n, and ‖ · ‖Y is a Hilbert norm in Rn.

Theorem 2.13 Let py be the natural (periodic) polynomial spline of order
r minimizing

Γα(p, y) = α

∫ b

a
(p(r)(x) )2 dx +

1− α
δ2
‖y −N(p)‖2Y .

Then py is the α–smoothing spline.

Proof It follows from Lemma 2.6 (i) that the α–smoothing spline sα(y)
exists. We choose p to be the natural (periodic) polynomial spline of or-
der r satisfying p(ti) = sα(y)(ti), 1 ≤ i ≤ m. By Lemma 2.13 we have
‖p‖F ≤ ‖sα(y)‖F . This means that Γα(p, y) ≤ Γα(sα(y), y) and p is the
α–smoothing spline. 2

Thus the search for the α–smoothing spline can be restricted to the (finite
dimensional) subspace of polynomial splines.

We conclude that for α = 1/2 the algorithm ϕ1/2(y) = S(py) is at most√
2 times worse than optimal. If G is a Hilbert space then

radwor(N) = sup

{
‖S(f)‖

∣∣∣
∫ b

a
(f (r)(x) )2 ≤ 1, ‖y −N(f)‖Y ≤ δ

}
.

However, the optimal value of α is in this case not known, even for such a
problem as integration.
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2.6.4 Splines in r.k.h.s.

In this section we consider smoothing splines in function spaces where func-
tion evaluations are continuous functionals. Such spaces have a nice charac-
terization which we briefly recall.

Let T be a given set of indices, e.g., T = [0, 1], and let R : T ×T → R be
a given symmetric and nonnegative definite function 2. It is known that then
there exists a uniquely determined Hilbert space HR of functions f : T → R,
such that for any t ∈ T , f → f(t) is a continuous linear functional whose
representer is Lt = R(·, t). That is,

f(t) = 〈f, Lt〉R, f ∈ HR,

where 〈·, ·〉R is the inner product in HR.
The space HR is called a reproducing kernel Hilbert space with reproduc-

ing kernel R, or r.k.h.s. with r.k. R, for brevity. It consists of all linear
combinations of the functions Lt, t ∈ T , and their limits with respect to the
norm ‖ · ‖R =

√
〈·, ·〉R where

〈
n∑

i=1

αiLti ,
k∑

j=1

βjLsj

〉

R

=
n∑

i=1

k∑

j=1

αiβjR(ti, sj).

On the other hand, with any Hilbert space H of functions f : T → R
possessing the property that the functionals f → f(t) are continuous, we
can associate a uniquely determined r.k. R, so that H = HR is an r.k.h.s.
Namely,

R(s, t) = 〈Ls, Lt〉H , s, t ∈ T ,
where Lt ∈ H is the representer of function evaluation at t. Hence, there ex-
ists a one–to–one correspondence between symmetric and nonnegative func-
tions and Hilbert spaces in which function evaluations are continuous func-
tionals.

Example 2.12 Let a < b and r ≥ 1. Define the separable Hilbert space
W 0
r (a, b) as

W 0
r (a, b) = { f : [a, b]→ R | f (r−1)–absolutely continuous,

f (i)(a) = 0, 0 ≤ i ≤ r − 1, f (r) ∈ L2(a, b) },
2This means that for any n ≥ 1 and ti ∈ T , 1 ≤ i ≤ n, the matrix {R(ti, tj)}ni,j=1 is

symmetric and nonnegative definite.
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with the inner product 〈f1, f2〉Wr =
∫ b
a f

(r)
1 (u)f

(r)
2 (u) du. Then W 0

r (a, b) is
an r.k.h.s. with r.k.

R(s, t) = Rr−1(s, t) =

∫ b

a
Gr−1(s, u)Gr−1(t, u) du,

where

Gr−1(t, u) =
(t− u)r−1

+

(r − 1)!

and x+ = max{x, 0}.
Indeed, applying r times the formula f(t) =

∫ t
a f
′(u) du we obtain

f(t) =

∫ b

a

(t− u)r−1
+

(r − 1)!
f (r)(u) du =

∫ b

a
Gr−1(t, u) f (r)(u) du, f ∈W 0

r .

(2.38)
Hence, f → f(t) is a continuous functional,

|f(t)| ≤
√∫ b

a
|Gr−1(t, u)|2du · ‖f‖Wr .

Letting in (2.38) f = Lt (the representer of evaluation at t), we get that

L
(r)
t (u) = Gr−1(t, u) and

R(s, t) = 〈Ls, Lt〉Wr =

∫ b

a
Gr−1(t, u)Gr−1(s, u) du,

as claimed.
In particular, for r = 1 we have R0(s, t) = min{s, t}. 2

The fact that any r.k.h.s. is determined by its r.k. R allows to write the
formulas for the α–smoothing spline in terms of R. Namely, using Lemma
2.9 we immediately obtain the following theorem.

Theorem 2.14 Let F = H be an r.k.h.s. with r.k. R : T × T → R. Let
information y = N(f) + x where

N(f) = [ f(t1), f(t2), . . . , f(tn) ],

ti ∈ T , 1 ≤ i ≤ n, and ‖x‖2 ≤ δ. Let the matrix

Rt1...tn = {R(ti, tj) }ni,j=1.
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Then the α–smoothing spline is given as

sα(y) =
n∑

j=1

zjR(tj , ·),

where (γI +Rt1...tn)z = y and γ = α(1− α)−1δ2. 2

Observe that the values of sα(y) at ti, 1 ≤ i ≤ n, are equal to N(sα(y) ) =
Rt1...tnz = y − γz. Hence, the spline is the function from span{R(ti, ·) | 1 ≤
i ≤ n} that interpolates data {ti, wi}ni=1, where wi = yi − γzi are obtained
by smoothing the original data y.

In the end, we discuss the case when H = W 0
r = W 0

r (0, 1) is the r.k.h.s.

of Example 2.12. Since in this case L
(r)
t (s) = Gr−1(t, s), the representer of

evaluation at t,

Lt(s) = (−1)r
(t− s)2r−1

+

(2r − 1)!
+

r−1∑

j=0

(−1)j
tr+jsr−j−1

(r + j)!(r − j − 1)!
,

is a polynomial spline. We have that sα(y) is the unique polynomial spline
of order r corresponding to the knots ti, 1 ≤ i ≤ n, that satisfies the linear

boundary conditions s
(i)
α (0) = 0, 0 ≤ i ≤ r − 1, and s

(r)
α (1) = 0, and

interpolates data {ti, wi}ni,j=1.

Notes and Remarks

NR 2.15 The formulas for sα(y) and the optimal choice of the smoothing param-
eter of Section 2.6.1 seem to be new.

NR 2.16 Regularization was originally proposed by Tikhonov as a method of
“solving” problems that are ill–posed, see e.g. Tikhonov [105] and Tikhonov and
Arsenin [106].

Ill–posed problems in the worst case setting were studied by Werschulz [123]
(see also Werschulz [124]). He proved, in particular, that if the solution operator S
is unbounded then it cannot be approximated with finite error.

NR 2.17 The worst case optimality of the least squares algorithm in the case when
F = G = Rn, S = I and E is the whole space, E = Rn, was shown by Kacewicz et
al. [31].

NR 2.18 The minimal norm properties of polynomial splines presented in Section
2.6.3 were first noticed by Schoenberg [90], see also e.g. Greville [21]. To polynomial
splines is devoted the monograph of Steckin and Subbotin [99].
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NR 2.19 The smoothing splines and, in particular, polynomial splines are com-
monly studied in numerical analysis and statistics in the context of smoothing ex-
perimental data. Continuous as well as discrete problems are considered. The main
question there is how to choose the smoothing (regularization) parameter. To this
end, special methods are developed. They include discrepancy principle, ordinary
and generalized cross–validation, or methods based on so–called L–curve, see e.g.,
Golub et al. [18], Hansen [22], Lawson and Hanson [45], Morozow [60], Wahba [116]
and references there.

We note that in most of those methods the choice of smoothing (regularization)
parameter depends also on the data y. Hence, the resulting algorithms for approx-
imating S(f) are usually nonlinear in y. Moreover, in the sense of the worst case
setting they can be far away from optimal; see E 2.36.

NR 2.20 Reproducing kernel Hilbert spaces are studied in Aronszajn [2], Parzen
[72] [73], Vakhania et al. [113], Wahba [116].

NR 2.21 In the multivariate case, r.k.h.s. may be defined as tensor products of
r.k.h.s.’s in the univariate case. More precisely, let Hi be the r.h.h.s. of functions
f : [ai, bi] → R, and let Ri be its r.k., 1 ≤ i ≤ d. Then the tensor product H

of Hi’s, H =
⊗d

i=1Hi, is the r.k.h.s. of functions f : ×di=1[ai, bi] → R with r.k.

R(s, t) =
∏d
i=1 Ri(si, ti), where s = (s1, . . . , sd), t = (t1, . . . , td) ∈ [0, 1]d.

For instance, if Hi is the space W 0
ri = W 0

ri(0, 1) of Example 2.12, the tensor
product space H is given as follows. Let

Di1...idf =
∂i1+···+id

∂xi11 . . . ∂xidd
f.

Then

H = W 0...0
r1...rd

= { f : [0, 1]d → R | Dr1−1...rd−1f–abs. cont., Dr1...rdf ∈ L2((0, 1)d),

Di1...idf(t) = 0, 0 ≤ ij ≤ rj − 1, 1 ≤ j ≤ d,
when one of the components of t is zero }

with the inner product

〈f1, f2〉Wr1...rd
=

∫

[0,1]d
(Dr1...rdf1)(t)(Dr1 ...rdf2)(t) dt.

Exercises

E 2.30 Suppose one approximates a vector f ∈ E ⊂ Rn based on information
y = f + x, where x ∈ B and B ⊂ Rn is a convex, balanced and bounded set. Let
h ∈ Rn be such that h ∈ B and
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‖h‖2 = r(B) = sup
x∈B

‖x‖2.

Show that if the interval [−h, h] is a subset of E then the identity algorithm, ϕ(y) =
y, is optimal and its error equals r(B).

E 2.31 One may modify the least–squares algorithm as ϕmod(y) = S(smod(y) ),
where smod(y) ∈ E and

‖y −N(smod(y) )‖Y = inf
f∈E
‖y −N(f)‖Y ,

i.e., the minimization is taken over the set E instead of the whole space F . Show
that

ewor(N, ϕmod) ≤ 2 · radwor(N),

but this algorithm is in general not linear.

E 2.32 Consider the problem of Corollary 2.5 with λs > λt. Show that if informa-
tion is exact, δ = 0, then the algorithm ϕγ(y) =

∑n
j=1 zjS(fj) where (γΣ+GN)z =

y, is optimal for any

γ ∈
[

0, ,
ηs λt
λs − λt

]
.

E 2.33 Let S and N be linear functionals on F = R2, i.e., S = 〈·, s〉2 and N =
〈·, v〉2 for some s, v ∈ R2. Consider approximation of S(f) for f from the unit ball
based on information y = N(f) + x where |x| ≤ δ. What is the optimal value of
the regularization parameter γ∗ in this case? In particular, show that if s and v are
linearly independent and not orthogonal, then γ∗ is positive, but it tends to zero
linearly with δ → 0+.

E 2.34 Let F be a Hilbert space with an inner product 〈·, ·〉F . Let the set E be
the ellipsoid

E = { f ∈ F | 〈Bf, f〉F ≤ 1 },
where B : F → F is a self–adjoint and positive definite operator. Let the informa-
tion operator be defined as

N(f) = {N(f) + x | ‖Dx‖2 ≤ δ },

where N : F → Rn and D : Rn → Rn are linear and continuous. Show that then
the α–smoothing spline (if it exists) is the solution of the linear system

(ωB + N∗D∗DN ) f = N∗D∗ y

where ω = α(1− α)−1δ2.
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E 2.35 Show that if the operator B in the previous exercise is compact then the
α–smoothing spline does not necessarily exist.

E 2.36 The smoothing parameter αocv given by the ordinary cross validation (ocv)
is determined by the following condition:

αocv = αocv(y) = arg min
0≤α≤1

‖y −N(sα(y) )‖Y .

Show that the algorithm ϕocv(y) = S(sαocv)(y) is in general not optimal and the
ratio ewor(N, ϕocv)/radwor(N) can be arbitrarily large.

E 2.37 Show that natural (periodic) polynomial splines are also ordinary splines
for the problem of Theorem 2.13.

E 2.38 Find the natural (periodic) polynomial spline of order 1 that minimizes
Γα(p, y) in the case when α = 1/2 and ‖ · ‖Y is the Euclidean norm.

E 2.39 Let T ⊂ R. Find the r.k.h.s. HR for R(s, t) = δst, s, t ∈ T .

E 2.40 Show that in an r.k.h.s. the functionals f → f(ti), 1 ≤ i ≤ n, are linearly
dependent iff det {R(ti, tj) }ni,j=1 = 0.

E 2.41 Let H be an r.k.h.s. with positive r.k. R. Show that then the interpolation
problem: find f ∈ span{R(t1, ·), . . . , R(tn, ·) } such that f(ti) = yi, 1 ≤ i ≤ n, has
unique solution.

E 2.42 Show that the following functions are reproducing kernels:

R(s, t) = 1− |s− t|, s, t ∈ [0, 1],

R(s, t) = exp{−|s− t|}, s, t ∈ [0, 1],

R(s, t) = ( ‖s‖2 + ‖t‖2 − ‖s− t‖2 )/2, s, t ∈ [0, 1]d.

E 2.43 Let the functions Ri : [0, 1] × [0, 1] → R, 1 ≤ i ≤ d, be symmetric and
nonnegative definite. Show that then the function R : [0, 1]d× [0, 1]d → R, R(s, t) =∏d
i=1 Ri(si, ti) also is symmetric and nonnegative definite.

E 2.44 Let 0 < t1 < t2 < · · · < tn and let M = {min{ti, tj} }ni,j=1. Show that

M = M∗ > 0, and that the inverse M−1 is given as



1
t1

+ 1
t2−t1 ,

−1
t2−t1 ,−1

t2−t1 ,
1

t2−t1 + 1
t3−t2 ,

−1
t3−t2 , 0

−1
t3−t2 ,

1
t3−t2 + 1

t4−t3 ,
. . .

. . .
. . . −1

tn−tn−1

0 −1
tn−tn−1

, 1
tn−tn−1



.
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2.7 Varying information

So far the information operator N was regarded as given and we had been
looking for the optimal algorithm. In this section, we assume that not only
the algorithm but also the information operator can vary.

2.7.1 Nonadaptive and adaptive information

Let Λ be a given class of functionals over the space F . We assume that we
can collect information about f only by noisy observations of functionals Li
at f , where Li belong to Λ. Each such an observation is performed with
some precision δi which also can vary.

More specifically, a (noisy) nonadaptive information operator N is deter-
mined by an exact information operator N : F → Rn of the form

N(f) = [L1(f), L2(f), . . . , Ln(f) ], ∀ f ∈ F,

where the functionals Li : F → R belong to Λ, and by a precision vector

∆ = [ δ1, δ2, . . . , δn ],

where δi ≥ 0, 1 ≤ i ≤ n. When using N and ∆ we obtain information
y = N(f) + x, where the noise x is known to belong to a given set B =
B(∆, N(f)) of Rn. That is, the nonadaptive information operator N is
identified with the pair N , ∆, i.e., N = {N,∆}, and it is formally given as
N : F → 2Y , where Y = Rn and

N(f) = { y ∈ Rn | x = (y −N(f) ) ∈ B(∆, N(f) ) }. (2.39)

We may consider, for instance,

B(∆, N(f) ) = B(∆) = {x ∈ Rn | |xi| ≤ δi, 1 ≤ i ≤ n }, (2.40)

which means that for each i the value of Li(f) is observed with absolute
error δi, |yi − Li(f)| ≤ δi. This definition of B(∆, N(f)) seems to be most
natural. However, we can also have a more complicated dependence of the
noise on the precision vector. Namely,

B(∆, N(f) ) = B(∆) =

{
x ∈ Rn

∣∣∣
n∑

i=1

x2
i

δ2
i

≤ 1

}
, (2.41)
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which corresponds to noise bounded in the weighted Euclidean norm, or
more generally,

B(∆, N(f)) ) = B(∆) =

{
x ∈ Rn

∣∣∣
n∑

i=1

|xi|p
δpi
≤ 1

}
, p ≥ 1. (2.42)

Contrary to (2.40), the bound on noise xi coming from the ith observation
now depends on x1, . . . , xi−1. Namely, |xi| ≤ (1 − ∑i−1

j=1 |xj |p/δpi )1/p. In
particular, if |x1| = δ1 then the next observations are performed exactly,
x2 = · · · = xn = 0.

In (2.40) to (2.42) the noise is independent of the exact information
N(f). The noise depends on N(f) when, for instance, the relative error is
considered. In this case,

B(∆, N(f) ) = {x ∈ R∞ | |xi| ≤ δi |Li(f)|, 1 ≤ i ≤ n }. (2.43)

In general, we assume that the sets B(∆, z ), for ∆, z ∈ Rn and n ≥ 1,
satisfy the following conditions.

1.

B(0, z) = {0}.

2. If 0 ≤ δi ≤ δ′i, 1 ≤ i ≤ n, then

B ([δ1, . . . , δn], z) ⊂ B ([δ′1, . . . , δ′n], z
)
.

3. Let zn = [z1, . . . , zn], ∆n = [δ1, . . . , δn], and zn+1 = [z1, . . . , zn, zn+1],
∆n+1 = [δ1, . . . , δn, δn+1]. Then

B(∆n, zn ) = {x ∈ Rn | ∃a ∈ R, [x, a] ∈ B(∆n+1, zn+1 ) }. (2.44)

The first condition means that the zero precision vector corresponds to
the exact information. The second condition says that we decrease the
noise by decreasing the precisions δi. The third condition indicates a re-
lation between the noise of successive observations. It states that from
the nth observation we can pass to the (n + 1)st observation. Indeed,
suppose that there is a noise vector xn = (yn − Nn(f)) ∈ B(∆n, Nn(f) )
that cannot be extended to [xn, a] ∈ B(∆n+1, Nn+1(f) ). This means that
then the noisy observation of Ln+1(f) is impossible. Similarly, suppose
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that for some xn+1 = (yn+1 − Nn+1(f) ) ∈ B(∆n+1, Nn+1(f) ) we have
xn = (yn − Nn(f)) /∈ B(∆n, Nn(f) ). Then yn is not information about f ,
although this vector comes from the first n observations.

We left as an exercise to show that all the three conditions are satisfied
by the noise defined by (2.40) to (2.43).

We also admit a more general class of adaptive information where deci-
sions about successive observations are made based on previously obtained
values yi. The effect of adaption can be obtained by adaptive choice of:

• information functionals Li, or

• precisions δi, or

• the number n of observations.

Formally, a (noisy) adaptive information operator N : F → 2Y is determined
by a family N = {Ny}y∈Y of exact information operators of the form

Ny = [L1(·), L2(·; y1), . . . , Ln(y)(·; y1, . . . , yn(y)−1) ],

where for all 1 ≤ i ≤ n and y1, . . . , yi−1 the functionals Li(·; y1, . . . , yi−1) ∈
Λ, and by a family ∆ = {∆y}y∈Y of precision vectors,

∆y = [ δ1, δ2(y1), . . . , δn(y)(y1, . . . , yn(y)−1) ].

(n(y) denotes here the length of y.) We also assume that the set Y (the
range of N) satisfies the following condition:

for any [y1, y2, . . .] ∈ R∞ there exists exactly one index n

such that [y1, . . . , yn] ∈ Y. (2.45)

For the noisy adaptive information operator N = {N,∆} we have

N(f) = { y ∈ Y | x = (y −Ny(f) ) ∈ B(∆y, Ny(f) ) }.

The essence of the above definition is as follows. At the ith step of gaining
information, we observe a noisy value yi of Li(f ; y1, . . . , yi−1) with precision
δi(y1, . . . , yi−1). Then we check whether the condition [y1, . . . , yi] ∈ Y 3

is satisfied. If the answer is “yes”, the observations are terminated and
[y1, . . . , yi] is noisy information about f . Otherwise we proceed to the (i+1)st

3This is what in practical computations is often called the termination criterion or
stopping rule.
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step. Note that (2.45) assures that the observations will be terminated
after a finite number of steps. The resulting information y about f satisfies
(y − Ny(f) ) ∈ B(∆y, Ny(f) ), as though we used nonadaptive information
{Ny,∆y}.

Clearly, any nonadaptive information N = {N,∆} of the form (2.39)
can be considered as adaptive since then Y = Rn, Ny = N , and ∆y = ∆,
∀y ∈ Y .

To stress what kind of information we deal with, we sometimes add the
superscripts “ad” and “non”, and write Nad and Nnon for adaptive and
nonadaptive information, respectively.

2.7.2 When does adaption not help?

It is clear that adaptive information has a much richer structure than non-
adaptive information and therefore should usually lead to better approxima-
tions. This is however not always true. We shall give a sufficient condition
under which adaption does not help much.

For an (in general adaptive) information operator N : F → 2Y , let Y0 =⋃
f∈E N(f) ⊂ Y be the set of all possible information values. For y ∈ Y0, let

AN(y) = {S(f) | f ∈ E, y ∈ N(f) }.

We shall say that f ∗ ∈ E is a κ–hard element iff for any nonadaptive infor-
mation operator N = {N,∆} of the form (2.39) we have

radwor(N) ≤ κ · r(AN(N(f∗) ) ).

(Recall that r(B) is the usual radius of the set B, see Section 2.3.)

Suppose that the κ–hard element f ∗ exists. Let Nad be an arbitrary
adaptive information operator corresponding to a set Y , family

Ny = [L1(·), L2(·; y1), . . . , Ln(y)(·; y1, . . . , yn(y)−1) ]

and precisions ∆y, y ∈ Y . Let y∗ ∈ Y be given as y∗1 = L1(f∗) and y∗i =
Li(f

∗; y∗1 , . . . , y
∗
i−1) for 2 ≤ i ≤ n∗, where n∗ is the length of y∗, i.e., the

minimal n for which [y∗1, . . . , y
∗
n] ∈ Y . Define a nonadaptive information

operator Nnon = {Nnon,∆non} where

Nnon = Ny∗ = [L1(·), L2(·; y∗1), . . . , Ln∗(·; y∗1 , y∗2, . . . , y∗n∗−1) ]
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and
∆non = ∆y∗ = [ δ1, δ2(y∗1), . . . , δn∗(y

∗
1 , . . . , y

∗
n∗−1)].

It turns out that nonadaptive information Nnon is almost as good as adaptive
information Nad.

Theorem 2.15

radwor(Nnon) ≤ κ · radwor(Nad).

Proof Observe that ANnon(y∗) = ANad(y∗). Hence,

radwor(Nnon) ≤ κ · r(ANnon(y∗) )

= κ · r(ANad(y∗) ) ≤ κ · radwor(Nad),

as claimed. 2

The meaning of Theorem 2.15 is evident when information uses only adap-
tive choice of functionals, and the precision vector ∆ and the number n of
functionals are fixed. Then the existence of the κ–hard element suffices for
the adaptive information to be no more than κ times better than some non-
adaptive information that uses the same number n of functionals with the
same precision ∆.

The κ–hard element exists for some important problems. Consider first
the case of linear solution operator S with convex and balanced set E ⊂ F .
We assume that the class Λ consists of some linear functionals, and that
the set B(∆, z) is the unit ball in an extended seminorm ‖ · ‖∆ (which can
depend on ∆),

B(∆, z) = B(∆) = {x ∈ Rn | ‖x‖∆ ≤ 1 }, ∆, z ∈ Rn, n ≥ 1. (2.46)

Observe that then any nonadaptive information is linear with noise bounded
uniformly in an extended seminorm. Lemma 2.2 and Theorem 2.3 yield that
for any nonadaptive information N using n observations we have

radwor(N) ≤ 2 · r(AN(0, . . . , 0︸ ︷︷ ︸
n

) ).

Hence, the zero element of F is the κ–hard element with κ = 2. If S is a
functional, or if E is a ball in a Hilbert extended seminorm, ‖·‖∆ is a Hilbert
extended seminorm, and G is a Hilbert space, then we can even take κ = 1
since in these cases diam(N) = 2 radwor(N).
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Corollary 2.6 Suppose that the set E is convex and balanced, the solution
operator S is linear, the class Λ consists of some linear functionals, and
B(∆, z) is of the form (2.46). Then for any adaptive information Nad =
{Ny,∆y}y∈Y we have

radwor(Nnon) ≤ 2 · radwor(Nad),

where Nnon is the nonadaptive information constructed as in Theorem 2.15
for f∗ = 0. If, additionally, S is a linear functional or if we have the Hilbert
case, then radwor(Nad) ≤ radwor(Nnon). 2

We now show an example in which f ∗ exists and is not zero, although E is
a convex and balanced set. Let F be a normed space and let E be the unit
ball in F . Consider a nonadaptive linear information operator with noise
bounded in the relative sense,

N(f) = { y ∈ Rn | |yi − Li(f)| ≤ δi · |Li(f)|, 1 ≤ i ≤ n }, (2.47)

where 0 ≤ δi < 1 and ‖Li‖F ≤ 1, 1 ≤ i ≤ n. Then for any linear solution
operator S and for any f with ‖f‖F ≤ 1, we have

r(AN(N(f) ) ) ≥ 1

2
d(AN(N(f) ) )

≥ 1

2
sup { ‖S(f + h)− S(f − h)‖ | ‖h‖F ≤ 1− ‖f‖F ,
|Li(h)| ≤ δi|Li(f ± h)|, 1 ≤ i ≤ n }

≥ sup { ‖S(h)‖ | ‖h‖ ≤ 1− ‖f‖,

|Li(h)| ≤ δi
1 + δi

|Li(f)|, 1 ≤ i ≤ n
}

≥ min {1 − ‖f‖F , a(f)/2}
sup { ‖S(h)‖ | ‖h‖F ≤ 1, |Li(h)| ≤ δi, 1 ≤ i ≤ n },

where a(f) = min1≤i≤n |Li(f)|. The last supremum is equal to the half of
the diameter of the same linear information, but with noise bounded in the
absolute sense. Since ‖Li‖F ≤ 1, the inequality |yi − Li(f1)| ≤ δi|Li(f1)|
implies |yi − Li(f1)| ≤ δi. Hence, the diameter of information with noise
bounded in the absolute sense is not smaller than diameter of information
bounded in the relative sense. We obtain

r(AN(N(f) ) ) ≥ 1

2
min

{
1− ‖f‖F ,

1

2
a(f)

}
· radwor(N).
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Suppose now that F is the space of functions f : [0, 1] → R with rth
continuous derivative. Let

‖f‖F = max
1≤i≤r

sup
0≤t≤1

|f (i)(t)|. (2.48)

The class Λ consists of functionals of the form L(f) = f(t), for some t ∈ [0, 1].
Then, taking f ∗ ≡ 2/3 we have 1/2 · min{1 − ‖f ∗‖F , a(f∗)/2} = 1/6.
Hence, f ∗ is the 6–hard element and adaption cannot be much better than
nonadaption. That is,

radwor(Nnon) ≤ 6 · radwor(Nad)

with Nnon = {N2/3,∆2/3}.
We left to the reader to verify that in this case zero is not the κ–hard

element (see E 2.47).

Notes and Remarks

NR 2.22 A similar general model with varying noisy information, but with fixed
noise level is considered in Traub et al. [107, Chap.4]. The method of showing when
adaption does not help is adopted from that book.

NR 2.23 We have shown that for convex and balanced set E, and for linear in-
formation with noise bounded in an extended seminorm, adaptive information can
be at most twice better than nonadaptive information. It has long been an open
problem whether adaption helps at all. An example of a problem (with exact infor-
mation) where adaption helps a little was given by Kon and Novak [39] [40].

NR 2.24 Korneichuk [41], Novak [64] [65] [62] considered the problem of adaption
(and n-widths) for convex but nonbalanced sets. For such sets adaptive information
can be significantly better than nonadaptive information. An example is given in
E 2.48.

NR 2.25 The fact that adaption may be not much better than nonadaption in the
case of relative perturbations was noticed by Kacewicz and Plaskota [32].

NR 2.26 Adaptive and nonadaptive information are also frequently called sequen-
tial and parallel, or active and passive, respectively.

Exercises

E 2.45 Show that if B(∆, N(f) ) = B(∆) is the unit ball in an extended seminorm
‖ · ‖∆ then (2.44) is equivalent to the following condition. Let ∆ = [δ1, . . . , δn] and
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∆′ = [δ1, . . . , δn, δn+1]. Then

‖x‖∆ = min
a∈R
‖[x, a]‖∆′ , ∀x ∈ Rn.

E 2.46 Show that for any information operators Nn, Nn+1 = [Nn, Ln+1], and
precision vectors ∆n, ∆n+1 = [∆n, δn+1], we have

radwor(Nn,∆n) ≤ radwor(Nn+1,∆n+1).

E 2.47 Let F be the space of functions f : [0, 1]→ R with continuous rth derivative
and with the norm (2.48). Let E be the unit ball in F . Show an example of a
solution operator that the following holds. For any κ < +∞ there is an information
operator N of the form (2.47) such that radwor(N) > κ · r(AN(0)).

E 2.48 (Novak) Let

E =

{
f ∈ R∞

∣∣∣ fi ≥ 0,

∞∑

i=1

fi ≤ 1, fk ≥ max{f2k, f2k+1}
}
.

Consider approximation of f ∈ E in the l∞-norm from exact information of the
form N(f) = [fj1 , . . . , fjn ].
1. Show that the radius of nonadaptive information using n observations is minimal
for Nn(f) = [f1, . . . , fn], and

radwor(Nn) ≈ 1

log2(n+ 1)
, as n→∞.

2. Find adaptive information Nad
n that uses exactly n observations of fj for which

radwor(Nad
n ) ≤ 1

n+ 3
.

2.8 Optimal information

Suppose that n and the precision vector ∆ = [δ1, δ2, . . . , δn] are given. Then
it makes sense to ask for the minimal error that can be achieved when noisy
observations of n functionals from the class Λ with precisions δi are used.
We formalize this issue in the following way.

Let Nn be the class of exact information operators consisting of n func-
tionals, i.e., N ∈ Nn iff

N = [L1, L2, . . . , Ln ],

for some Li ∈ Λ, 1 ≤ i ≤ n. Let radwor(N,∆) denote the radius of noisy
information N corresponding to N and precision vector ∆.
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The minimal radius corresponding to the precision vector ∆ is given as

rwor
n (∆) = inf

N∈Nn
radwor(N,∆).

If for some N∆ ∈ Nn is

rwor
n (∆) = radwor(N∆,∆)

then N∆ is called an optimal information.

We shall find the minimal radius and optimal information in two special
cases: for linear problems defined in Hilbert spaces, and for approximation
and integration of Lipschitz functions.

2.8.1 Linear problems in Hilbert spaces

We assume that F and G are separable Hilbert spaces and that the solution
operator S : F → G is compact. The set E is the unit ball in F . The class Λ
of permissible information functionals consists of all linear functionals with
norm bounded by 1,

Λ =

{
L–linear functional

∣∣∣ ‖L‖F = sup
‖f‖F=1

|L(f)| ≤ 1

}
.

We also assume that the observation noise is bounded in the weighted Eu-

clidean norm, ‖x‖Y =
(∑∞

i=1 x
2
i /δ

2
i

)1/2
. Hence, for given ∆ = [δ1, . . . , δn]

and N = [L1, . . . , Ln ] ∈ Nn, a vector y ∈ Rn is noisy information about
f ∈ F iff

n∑

i=1

1

δ2
i

( yi − Li(f) )2 ≤ 1.

To cover the exact information case, we also allow δi = 0. In this case, we
formally set xi/δi = 0 for xi = 0, and xi/δi = +∞ otherwise. Note that
if all δi’s are equal, δi = δ, then

∑n
i=1(yi − Li(f) )2 ≤ δ2, i.e., the noise is

bounded by δ in the Euclidean norm.

Before stating a theorem about optimal information, we first introduce a
necessary notation. Let d = dim F . Let {ξi}di=1 be a complete orthonormal
in F system of eigenelements of the operator S∗S. Let λi be the correspond-
ing eigenvalues,

S∗S ξ = λi ξi.
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Since S is compact, we can assume without loss of generality that λi’s are
ordered, λ1 ≥ λ2 ≥ . . . ≥ 0. We consider the sequence {λi} to be infinite
by setting, if necessary, λi = 0 for i > d. Similarly, ξi = 0 for i > d. For
d = +∞ or d < +∞ we have limi→∞ λi = 0.

We also need the following important lemma.

Lemma 2.14 Let the nonincreasing sequences β1 ≥ β2 ≥ · · · ≥ βn ≥ 0
and η1 ≥ η2 ≥ · · · ≥ ηn ≥ 0 be such that

n∑

i=r

ηi ≤
n∑

i=r

βi, 1 ≤ r ≤ n ,

and
∑n
i=1 ηi =

∑n
i=1 βi. Then there exists a real matrix W = {wij}ni,j=1

for which
n∑

s=1

w2
is = βi and

n∑

s=1

wsiwsj = ηiδij ,

for all 1 ≤ i, j ≤ n (δij stands for the Kronecker delta).

Proof We shall construct the matrix W using induction on n. For n = 1
we obviously have η1 = β1 and w11 =

√
η1. Let n ≥ 2. If ηi = βi, 1 ≤ i ≤ n,

then W = diag{√η1, . . . ,
√
ηn}. Otherwise there is an index s, 1 ≤ s ≤ n−1,

such that ηs > βs ≥ ηs+1. Set η̄ = ηs + ηs+1− βs > 0. Let U ∈ R(n−1)×(n−1)

be the required matrix for the sequences β1 ≥ · · · ≥ βs−1 ≥ βs+1 ≥ · · · ≥ βn
and η1 ≥ · · · ≥ ηs−1 ≥ η̄ ≥ ηs+2 ≥ · · · ≥ ηn. Let ui ∈ Rn−1 be the columns
of U, 1 ≤ i ≤ n− 1. Let

a =

(
ηs+1(ηs − βs)
η̄(ηs − ηs+1)

)1/2

, b = (1− a2)1/2 ,

c =

(
ηs(βs − ηs+1)

(ηs − ηs+1)

)1/2

, d = −(1− c2)1/2 .

Elementary calculations show that the desired matrix is W = {w1, . . . , wn},
wi ∈ Rn, 1 ≤ i ≤ n, where

wi = (uTi , 0 )T , for i 6= s, s+ 1,

ws = ( auTs , c )T ,

ws+1 = ( buTs , d )T

(the superscript “T” denotes transposition). 2
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For the precision vector ∆ = [δ1, . . . , δn], we assume without loss of generality
that

0 = δ1 = · · · = δn0 < δn0+1 ≤ · · · ≤ δn.

(If all δi’s are positive then n0 = 0.) It turns out that the following min-
imization problem plays a crucial role in finding the optimal information
N∆.

Problem (MP) Minimize

Ω(α; ηn0+1, . . . , ηn) = max
n0+1≤i≤n+1

λi
α+ (1− α) ηi

over all 0 ≤ α ≤ 1 and ηn0+1 ≥ · · · ≥ ηn+1 = 0 satisfying

n∑

i=r

ηi ≤
n∑

i=r

1

δ2
i

, n0 + 1 ≤ r ≤ n , (2.49)

and
∑n
i=n0+1 ηi =

∑n
i=n0+1 δ

−2
i (as before, a/0 = +∞ for a > 0 and

0/0 = 0, by convention).

Theorem 2.16 Let α∗ and η∗n0+1 ≥ · · · ≥ η∗n be the solution of (MP).
Then the minimal radius

rwor
n (∆) =

√
Ω(α∗; η∗n0+1, . . . , η

∗
n).

Furthermore, the optimal information is given as

N∆ = [ 〈 · , ξ1〉F , . . . , 〈 · , ξn0〉F , 〈 · , ξ∗n0+1〉F , . . . , 〈 ·, ξ∗n〉F ],

where

ξ∗n0+i = δn0+i

n−n0∑

j=1

wijξn0+j,

and W = {wij}n−n0
i,j=1 is the matrix from Lemma 2.14 applied for

ηi = η∗n0+i and βi =
1

δ2
n0+i

,

1 ≤ i ≤ n− n0 .
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Proof Consider first the case when all δi’s are positive, n0 = 0. Let

N = [ 〈 · , f1〉F , 〈 · , f2〉F , . . . , 〈 · , fn〉F ]

with ‖fi‖F ≤ 1, be an arbitrary information operator. In fact, we can assume
that ‖fi‖F = 1, 1 ≤ i ≤ n, since multiplying fi by a constant larger than
one we can only increase the accuracy of noisy information. Due to Lemma

2.10, the radius of N is the minimal norm of the operator SA
−1/2
α with

respect to all α ∈ [0, 1]. In our case,

Aα = α I + (1− α)N ∗N,

where N ∗ : Y → F , N ∗(y) =
∑n
i=1 yifi/δ

2
i . Then

‖SA−1/2
α ‖2F = sup

h6=0

‖SA−1/2
α h‖2F
‖h‖2F

= sup
h6=0

〈S∗Sh, h〉F
〈Aαh, h〉F

.

Taking h = ξi, 1 ≤ i ≤ n, we obtain

‖SA−1/2
α ‖2F ≥ max

1≤i≤n
λi

〈Aαξi, ξi〉F
. (2.50)

For d > n, we get an additional lower bound. Namely, since the oper-
ator N is at most n–dimensional, there exists a nonzero element h0 ∈
span{ξ1, . . . , ξn+1} such that N(h0) = 0. Hence,

‖SA1/2
α ‖2F ≥

〈S∗Sh0, h0〉F
〈Aαh0, h0〉F

≥ λn+1

α
. (2.51)

Let η1 ≥ η2 ≥ . . . ≥ ηn ≥ 0 = ηn+1 be the eigenvalues of N ∗N . Then
ηi’s are also eigenvalues of the operator NN ∗ : Y → Y whose matrix (in the
versor basis {ei}) is

M =
{
δ−2
j 〈fi, fj〉F

}n
i,j=1

.

Since ẽi = δiei, 1 ≤ i ≤ n, is an orthonormal basis in Y , for 1 ≤ r ≤ n we
have

n∑

i=r

ηi ≤
n∑

i=r

〈Mẽi, ẽi〉Y =
n∑

i=r

1

δ2
i

, (2.52)

and
∑n
i=1 ηi =

∑n
i=1 δ

−2
i .
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Taking together (2.50), (2.51) and (2.52), we obtain the following lower
bound on rwor

n (∆),

(rwor
n (∆))2 ≥ min max

1≤i≤n+1

λi
α+ (1− α) ηi

, (2.53)

where the minimum is taken over all α ∈ [0, 1] and over all ηi’s satisfying
(2.49). To complete the proof of the lower bound, observe that the minimum
in (2.53) is attained for some η∗i ’s satisfying η∗1 ≥ · · · ≥ η∗n.

We now show that the lower bound (2.53) is attained for the information
operator N∆. To this end, it suffices to show that all ξi’s are the eigenele-
ments of the operator N ∗∆N∆ and that the corresponding eigenvalues are η∗i .
Indeed, we have

N∗∆N∆ ξi =
n∑

s=1

δ−2
s 〈ξi, ξ∗s 〉F ξ∗s =

n∑

s=1

〈
ξi,

n∑

t=1

wstξt

〉

F




n∑

j=1

wsjξj




=
n∑

s=1

n∑

j=1

wsiwsjξj =
n∑

j=1

(
n∑

s=1

wsiwsj

)
ξj

=
n∑

j=1

η∗i δijξj = η∗i ξi .

Since

‖〈 · , ξ∗i 〉‖F = ‖ξ∗i ‖2F = δ2
i

n∑

j=1

w2
ij = 1,

N∆ is also a permissible information operator, N∆ ∈ Nn. This completes
the proof of the case n0 = 0.

Suppose now that not all δi’s are positive, n0 ≥ 1. Then for any N =
[L1, . . . , Ln] ∈ Nn we have

radwor(N,∆) = sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖N(h)‖Y ≤ 1 }
= sup { ‖S1(h)‖ | ‖h‖F ≤ 1, ‖N1(h)‖Y1 ≤ 1 },

where F1 = { f ∈ F |Li(f) = 0, 1 ≤ i ≤ n0 }, S1 : F1 → G is the restriction
of S to the space F1, S1 = S|F1

, information operator N1 = [Ln0+1, . . . , Ln],
and ‖ · ‖Y1 is the extended seminorm on Rn−n0 defined as ‖x‖Y1 = ‖[0, x]‖Y .
It is known that the dominating eigenvalues λ′1 ≥ λ′2 ≥ . . . of the operator
S∗1S1 : F1 → F1 satisfy λ′i ≥ λn0+i, ∀i ≥ 1. Moreover, for Lj = 〈 · , ξj〉F ,
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1 ≤ i ≤ n0, we have λ′i = λn0+i, ∀i ≥ 1. Thus, we obtain the desired
result by reducing our problem to that of finding optimal N1 ∈ Nn−n0 for
approximation of S1 from data y ∈ Rn−n0 satisfying ‖y−N1(f)‖Y1 ≤ 1. 2

Thus, to construct the optimal information N∆, we first have to solve the
minimization problem (MP) and then find the matrix W . Solution of (MP)
will be given below. The matrix W can be found following the construction
from the proof of Lemma 2.14. Note that the optimal approximation ϕ∆

is given by the α∗–smoothing spline where α∗ comes from the solution of
(MP).

We now show how to solve the problem (MP). For 0 ≤ α ≤ 1 and
n0 ≤ q ≤ r ≤ n, define the following two auxiliary problems:

Problem Pα(q, r) Minimize

Ωα
qr(ηq+1, . . . , ηr) = max

q+1≤i≤r
λi

α+ (1 − α)ηi

over all ηq+1 ≥ · · · ≥ ηr ≥ 0 satisfying
∑r
i=q+1 ηi =

∑r
i=q+1 δ

−2
i .

Problem P(q) Minimize

Ωq(α; ηq+1, . . . , ηn) = max
q+1≤i≤n+1

λi
α+ (1− α)ηi

over all 0 ≤ α ≤ 1 and ηq+1 ≥ · · · ≥ ηn+1 = 0 satisfying
∑n
i=q+1 ηi =∑n

i=q+1 δ
−2
i .

Consider first the problem Pα(q, r). If α = 1 then Ωα ≡ λ1. Let 0 ≤
α < 1. Then the solution η∗ = (η∗q+1, . . . , η

∗
r ) of Pα(q, r) can be obtained as

follows. Let γ = γ(α) = α/(1 − α). Let k = k(α; q, r) be the largest integer
satisfying q + 1 ≤ k ≤ r and

λk ≥
γ
∑k
j=q+1 λj

γ (k − q) +
∑r
j=q+1 δ

−2
j

. (2.54)

Then

η∗i =
γ (k − q) +

∑r
j=q+1 δ

−2
j∑k

j=q+1 λj
λi − γ, q + 1 ≤ i ≤ k, (2.55)
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and η∗i = 0 for k + 1 ≤ i ≤ r. Furthermore,

Ωα
qr(η

∗) =

∑k
j=q+1 λj

α (k − q) + (1− α)
∑r
j=q+1 δ

−2
j

. (2.56)

We now pass to the solution of P(q). Let αi, i ≥ q+1, be defined in such
a way that we have equality in (2.54) when k and γ are replaced by i and
γi = αi/(1 − αi), respectively. Such αi exists only for i ≥ s = min{ j | λj <
λq+1 }. Then αi = γi/(1 + γi), where

γi =
λi
∑n
j=q+1 δ

−2
j∑i−1

j=q+1(λj − λi)
.

Setting αi = 1 for i < s, we have 1 = αq+1 ≥ αq+2 ≥ · · · and the solution
ηi of the problem Pα(q, r) with r = n satisfies ηiq+1 ≥ · · · ≥ ηii = 0. Since in
addition the right hand side of (2.56) is a monotone function of α, we obtain
that

min
α,η

Ωq(α; η) = min
q+1≤i≤n+1

Ωq(αi, η
i).

Providing some further calculations we finally arrive at the following formu-
las for the solution (α∗, η∗) of P(q). Let

k = k(q) = min



n, q +


n∑

j=q+1

δ−2
j




 . (2.57)

If λq+1 = λk+1 then α∗ = 1 and Ωq(α
∗; ·) ≡ λq+1. If λq+1 > λk+1 then

α∗ = γ∗/(1 + γ∗), where

γ∗ =
λk+1

∑n
j=q+1 δ

−2
j∑k

j=q+1(λj − λk+1)

and η∗ is given by (2.55) with γ = γ∗. Furthermore,

Ωq(α
∗; η∗) = λk+1 +

∑k
j=q+1(λj − λk)∑n

j=q+1 δ
−2
j

.

We shall say that the solution η∗ = (η∗q+1, . . . , η
∗
r ) of Pα(q, r) is acceptable

iff
r∑

j=s

η∗j ≤
r∑

j=s

1

δ2
j

, for all q + 1 ≤ s ≤ r. (2.58)
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Similarly, the solution (α∗, η∗) of P(q) is acceptable iff (2.58) holds with
r = n.

Let the number p, 0 ≤ p < n, and the sequence n = np+1 > np > · · · >
n0 ≥ 0 be defined (uniquely) by the conditions:

np = min { s ≥ n0 | solution of (P(s)) is acceptable }, (2.59)

ni = min { s ≥ n0 | solution of (Pα∗(s,ni+1)) is acceptable },(2.60)

0 ≤ i ≤ p− 1, where α∗ comes from the solution of (P(np)).

Theorem 2.17 Let p, the sequence n0 < n1 < · · · < np+1 = n and α∗

be defined by (2.59) and (2.60). Then the solution of the problem (MP) is
given by α∗ and

η∗ = ( η(0), η(1), . . . , η(p) ),

where η(p) and η(i) are solutions of (P(np)) and (Pα∗(ni,ni+1)), 0 ≤ i ≤ p−1,
respectively.

Proof Let k = k(np). Due to the definition of ni we have η∗1 ≥ · · · ≥ η∗k ≥
η∗k+1 = 0 and the maximal value of λj/(α

∗ + (1 − α∗)η∗j ), n0 + 1 ≤ j ≤ n,

is attained for j = np + 1. The definition of np yields in turn that η(p) are
the last (n−np) components of the solution of (MP) and that α∗ is optimal.
This completes the proof. 2

As a consequence of this theorem we obtain the following corollary.

Corollary 2.7 Let np and k = k(np) be defined by (2.59) and (2.57),
respectively. Then

rwor
n (∆) =

√√√√λk+1 +

∑k
j=np+1(λj − λk+1)
∑n
j=np+1 δ

−2
j

. 2

Observe that we always have
√
λn+1 ≤ rwor

n (∆) ≤
√
λ1. The lower bound is

achieved if for instance δi’s are zero, i.e., if we deal with exact information.
The upper bound is achieved, rwor

n (∆) =
√
λ1, if for instance

∑n
i=1 δ

−2
i ≤ 1,

see also E 2.52. In this case, information is useless.
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Let us now consider the case when all δi’s are constant, δi = δ, and
0 < δ ≤ 1. That is, noisy information satisfies

√√√√
n∑

i=1

( yi − Li(f) )2 ≤ δ.

Then the solution of (P (0)) is acceptable and k = k(0) = n. Hence, the
formula for the radius reduces to

rwor
n (∆) = rwor

n (δ) =

√√√√λn+1 +
δ2

n

n∑

j=1

(λj − λn+1) . (2.61)

If λ1 = · · · = λn+1 then rwor
n (∆) =

√
λ1 and the zero approximation is

optimal. For λ1 > λn+1 we have γ∗ = δ−2γ∗∗ where

γ∗∗ =
nλn+1∑n

j=1(λj − λn+1)
,

and the optimal η∗i are η∗i = δ−2η∗∗i with

η∗∗i =
n(λi − λn+1)∑n
j=1(λj − λn+1)

, 1 ≤ i ≤ n.

The optimal information Nn = [〈·, ξ∗1〉F , . . . , 〈·, ξ∗n〉F ] is given by Theorem
2.16 with the matrix W constructed for ηi = η∗∗i and βi = 1, 1 ≤ i ≤ n.
The optimal algorithm is ϕn(y) =

∑n
j=1 zjS(fj) where (γnI + GNn) z = y

and the parameter γn = γ∗∗. We stress that neither optimal information nor
optimal algorithm depend on the noise level δ.

We now comment on the minimal radius rwor
n (δ). If we fix n and tend

with the noise level δ to zero then rwor
n (δ) approaches the minimal radius of

exact information, rwor
n (0) =

√
λn+1 > 0. For rwor

n (0) > 0 we have

rwor
n (δ) − rwor

n (0) ≈ δ2

2n
√
λn+1

n∑

j=1

(λj − λn+1), 4

while for rwor
n (0) = 0 we have

rwor
n (δ) − rwor

n (0) = rwor
n (δ) = δ

√√√√ 1

n

n∑

j=1

λj .

4The symbol ”≈” denotes here the strong equivalence of functions. We write ψ1(δ) ≈
ψ2(δ) iff limδ→0+ ψ1(δ)/ψ2(δ) = 1, as δ → 0+.
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Hence, for rwor
n (0) > 0 the convergence is quadratic, and for rwor

n (0) = 0 it is
linear in δ.

Consider now the case where the noise level δ is fixed and n→ +∞. The
formula (2.61) can be rewritten as

rwor
n (δ) =

√√√√λn+1(1− δ2) +
δ2

n

n∑

j=1

λj .

The compactness of S∗S implies limj λj = 0. Hence, λn+1 as well as
n−1∑n

j=1 λj converge to zero with n, and consequently,

lim
n→+∞

rwor
n (δ) = 0.

This result should not be a surprise since for noise bounded in the Euclidean
norm we can obtain the value of any functional L at f with arbitrarily small
error. Indeed, repeating k times observations of L(f) we obtain information
y1, . . . , yk such that

∑k
i=1(yi − L(f))2 ≤ δ2. Hence, for large k most of the

yi’s are very close to L(f), and for ‖f‖F ≤ 1 the least squares approximation,
k−1∑k

i=1 yi, converges uniformly to L(f).
Observe also that rwor

n ≥ δλ1/
√
n. Thus, for S 6≡ 0 the radius cannot

tend to zero faster than δ/
√
n.

To see more precisely how rn(δ) depends on the eigenvalues λj, suppose
that

λj �
(

lns j

j

)p
, as j → +∞,

where p > 0 and s ≥ 0. Such a behavior of the eigenvalues is typical of some
multivariate problems defined in a tensor product spaces; see NR 2.30. In
this case, for δ > 0 we have

rwor
n (δ) �





δ
(

lns n
n

)p/2
0 < p < 1,

δ
(

lns+1 n
n

)1/2
p = 1,

δ 1√
n

p > 1,

(2.62)

where the constants in the “�” 5 notation do not depend on δ. Since

rwor
n (0) =

(
lns(n+ 1)

n+ 1

)p/2
,

5For two sequences, we write an � bn iff there exist constants 0 < c1 ≤ c2 < +∞ such
that for all n, c1 an ≤ bn ≤ c2an. Such sequences are said to be weakly equivalent.
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we conclude that for p < 1 the radius of noisy information essentially be-
haves as the radius of exact information, while for p > 1 the radius of noisy
information essentially behaves as δ/

√
n. Hence, in the presence of noise,

the best speed of convergence is δ/
√
n.

2.8.2 Approximation and integration of Lipschitz functions

In this section we deal with noise bounded in the sup–norm. We assume
that F is the space of Lipschitz functions f : [0, 1] → R, and consider the
following two solution operators on F :

• Function approximation.

It is defined by the solution operator App : F → C([0, 1]),

App(f) = f, f ∈ F,

where C([0, 1]) is the space of continuous functions f : [0, 1] → R with the
norm

‖f‖ = ‖f‖∞ = max
0≤t≤1

|f(t)|.

• Integration

The solution operator is given by Int : F → R,

Int(f) =

∫ 1

0
f(t) dt.

The set E ⊂ F is assumed to be the set of functions for which the
Lipschitz constant is 1,

E = { f : [0, 1]→ R | |f(t1)− f(t2)| ≤ |t1 − t2|, 0 ≤ t1, t2 ≤ 1 }.

Observe that E is the unit ball of F with respect to the seminorm

‖f‖F = sup
0≤t1<t2≤1

|f(t1)− f(t2)|
|t1 − t2|

.

Information y ∈ Rn about f ∈ F is obtained by noisy observations of the
function values at some points ti ∈ [0, 1] where

|yi − f(ti)| ≤ δi, 1 ≤ i ≤ n.
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That is, exact information is now of the form

N(f) = [ f(t1), f(t2), . . . , f(tn) ], f ∈ F, (2.63)

and the noise x = y − N(f) belongs to the set B(∆, z) = B(∆) = {x ∈
Rn | |xi| ≤ δi, 1 ≤ i ≤ n }. Hence, the noise is bounded uniformly in the
“weighted” sup–norm.

For a given precision vector ∆ = [δ1, . . . , δn] ∈ Rn, we want to choose ti’s
in such a way as to minimize the radius rwor

n (S;N,∆), for S ∈ {App, Int}.
We assume without loss of generality that

0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δn.

We have the following theorem.

Theorem 2.18 Let k be the largest integer such that 1 ≤ k ≤ n and

δk ≤
1

k


1

2
+

k∑

j=1

δj


 .

Then the minimal radius

rwor
n (App; ∆) =

1

k


1

2
+

k∑

j=1

δj




and

rwor
n (Int; ∆) =

1

k


1

2
+

k∑

j=1

δj




2

−
k∑

j=1

δ2
j .

Furthermore, the optimal points t∗i are for both problems given as

t∗i =
2i− 1

k


1

2
+

k∑

j=1

δj


 − 2



i−1∑

j=1

δj


 − δi, for 1 ≤ i ≤ k,

and t∗i –arbitrary for k + 1 ≤ i ≤ n.

Proof Consider first the approximation problem, S = App. Let an exact
information operator N of the form (2.63) be given. Then we have

radwor(App;N,∆) =
1

2
· diam(App;N,∆) (2.64)

= sup { ‖f‖∞ | |f(ti)| ≤ δi, 1 ≤ i ≤ n }.
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Indeed, for y ∈ ⋃f∈E N(f), define the functions

f+
y (t) = sup { f(t) | f ∈ E, |yi − f(ti)| ≤ δi, 1 ≤ i ≤ n }

= min
1≤i≤n

( yi + δi + |t− ti| ),

f−y (t) = inf { f(t) | f ∈ E, |yi − f(ti)| ≤ δi, 1 ≤ i ≤ n }
= max

1≤i≤n
( yi − δi − |t− ti| ).

Then f+
y , f

−
y ∈ E and for any t ∈ [0, 1] and f1, f2 ∈ E such that y ∈ N(f1)∩

N(f2), we have |f1(t)−f2(t)| ≤ f+
y (t)−f−y (t). Hence, fy = (f+

y +f−y )/2 ∈ E
is the center of the set AN(y) of functions from E that share information
y, and r(AN(y)) = 1/2 · d(AN(y)). Consequently, radwor(App;N,∆) =
0.5 diam(App;N,∆). The second equality in (2.64) follows from the defi-
nition of the diameter.

The formula for f+
y with y = 0 yields

radwor(App;N,∆) = ‖f+
0 ‖∞ = max

0≤t≤1
min

1≤i≤n
( δi + |t− ti| ).

Thus radwor(App;N,∆) is a continuous function of t1, . . . , tn defined on a
compact set [0, 1]n. Therefore the minimal radius rwor

n (App; ∆) is attained.
Using some geometrical arguments we get that rwor

n (App; ∆) is attained for
ti’s satisfying the following system of equations:





A = t1 + δ1,

A = ti−ti−1

2 + δi−1+δi
2 , 2 ≤ i ≤ m,

A = δm + (1− tm),

where A = radwor(App;N,∆) and m is the largest integer such that 1 ≤
m ≤ n and δm ≤ A. Solving this system we obtain the desired result.

We now turn to the integration problem, S = Int. Since Int is a func-
tional, we have

radwor(Int;N,∆) = sup

{∫ 1

0
f(t) dt

∣∣∣ f ∈ E, |f(ti)| ≤ δi, 1 ≤ i ≤ n
}
.

Using again some geometrical arguments we obtain that the optimal ti’s are
the same as for function approximation. Hence, the formulas for integration
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can be obtained by integrating the function f+
0 constructed for ti = t∗i . It is

given as

f+
0 (t) = δi + |t− t∗i |, |t− t∗i | ≤ A− δi, 1 ≤ i ≤ k.

This completes the proof. 2

Assume now that all observations are performed with the same precision,
∆ = [δ, . . . , δ︸ ︷︷ ︸

n

]. Then the formulas of Theorem 2.18 take the following form:

rwor
n (App; ∆) = rwor

n (App; δ) =
1

2n
+ δ (2.65)

and

rwor
n (Int; ∆) = rwor

n (Int; δ) =
1

4n
+ δ. (2.66)

The optimal points are t∗i = (2i − 1)/(2n), 1 ≤ i ≤ n. The reader can also
check that for S ∈ {App, Int}, the optimal algorithm is in this case given
by ϕ(y) = S(p(y)), where p(y) in the natural spline of degree 1 such that
p(t∗i ) = yi, 1 ≤ i ≤ n.

For both problems we have rwor
n (δ) = rwor

n (0) + δ. Thus the error of any
algorithm is always greater than δ, no matter how many observations have
been performed. Actually, this is not a coincidence, but a common property
of problems with noise bounded in the sup–norm. Namely, consider a general
problem with linear S, the set E being the unit ball in a seminorm ‖ · ‖F ,
and the noise satisfying |xi| ≤ δ, ∀i.

Lemma 2.15 Suppose there exists an element h∗ ∈ F such that h∗ /∈
kerS and

|L(h∗)| ≤ 1 for all L ∈ Λ.

Then for any n ≥ 1 we have

rwor
n (δ) ≥ min { δ, 1/‖h∗‖F } · ‖S(h∗)‖

(1/0 = +∞).

Proof For

hδ =

{
δ h∗ δ ≤ 1/‖h∗‖F ,
h∗/‖h∗‖F δ > 1/‖h∗‖F ,
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we have ‖hδ‖F ≤ 1 and |L(hδ)| ≤ δ, ∀L ∈ Λ. Hence, for any exact informa-
tion N = [L1, . . . , Ln] with Li ∈ Λ, 1 ≤ i ≤ n,

radwor(N, [δ, . . . , δ︸ ︷︷ ︸
n

]) ≥ 1

2
diam(N, [δ, . . . , δ︸ ︷︷ ︸

n

])

= sup { ‖S(h)‖ | h ∈ E, |Li(h)‖ ≤ δ, 1 ≤ i ≤ n }
≥ ‖S(hδ)‖ = min{δ, 1/‖h∗‖F } ‖S(h∗)‖,

as claimed. 2

For the problems App and Int, the lemma holds with h∗ ≡ 1. Then ‖h∗‖F =
0 and rwor

n (δ, ) ≥ δ. The formulas (2.65) and (2.66) show that this is the
“worst” possible choice of h∗. (Actually, we have rwor

n (δ) > δ, see also E
2.59.)

Lemma 2.15 also applies for the problem considered in Section 2.8.1, i.e.,
when F and G are Hilbert spaces, E is the unit ball in E, the solution opera-
tor S : F → G is compact, and Λ is the class of continuous linear functionals
with norm bounded by 1. Taking h∗ as the eigenvector corresponding to the
largest eigenvalue of the operator S∗S, we obtain

rwor
n (δ) ≥ min{1, δ} · ‖S‖F .

(Here also the inequality “≤” can ce replaced by “<”.) This observation
should be contrasted to the case of noise bounded by δ in the Euclidean
norm where the radius always converges to zero as n→ +∞, see (2.61).

Notes and Remarks

NR 2.27 Some parts of Section 2.8.1 (e.g. Lemma 2.14) have been taken from
Plaskota [81] where the corresponding problem in the average case setting was
solved, see also Section 3.8.1. The other results of Section 2.8 are new.

NR 2.28 In the case of exact linear information, the minimal radius rwor
n = rwor

n (0)
is closely related to the Gelfand n–widths and s–numbers of the classical approx-
imation theory. If one allows only linear algorithms, there are relations to the
Kolmogorow n–widths. These relations are discussed in Mathe [56], Novak[63],
Traub and Woźniakowski [109, Sect.6 of Chap.2 and Sect.5 of Chap.3], Traub et
al. [108, Sect.5 of Chap.4], and Kowalski et al. [43]. The survey of the theory of
n–widths and many other references are presented in Pinkus [75].

We note that for noisy information such closed relations do not hold any longer.
Indeed, as we convinced ourselves, the minimal radius rwor

n (δ) may for δ > 0 tend do
zero arbitrarily slower than rwor

n (0) (or it may not converge at all), and consequently
the ratio of the n–width and rwor

n (δ) may be arbitrary.
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NR 2.29 For exact data, optimal nonadaptive information that uses n observa-
tions is usually called the nth optimal information and its radius the nth minimal
radius, see e.g. Traub et al.[108, Sect.5.3 of Chap.4]. If observations are always
performed with the same precision δ, the notion of nth minimal radius and nth
optimal information can be in a natural way carried over to the noisy case.

NR 2.30 We now present an example of a problem for which the results of Section
2.8.1 can be applied.

Let d ≥ 1 and ri ≥ 1, 1 ≤ i ≤ d. Let F = W 0...0
r1...rd

be the r.k.h.s. defined in

NR 2.21. That is, F is the r.k.h.s. of multivariate functions f : [0, 1]d → R with
r.k. R =

⊗n
i=1Rri where Rri is the r.k. of the ri–fold Wiener measure. Define

the solution operator as S : F → G = L2([0, 1]d), S(f) = f . That is, we want to
approximate functions in the L2–norm.

It is known (see e.g. Papageorgiou and Wasilkowski [70]) that in this case the
eigenvalues of the operator S∗S satisfy

λj �
(

lnk−1 j

j

)2r

where r = min{r1, . . . , rd} and k is the number of indices i for which ri = r. Observe
that the exponent 2r ≥ 2. Hence, due to (2.62) we have rwor

n (δ) � δ/
√
n for δ > 0,

and rwor
n (0) � (lnk−1 n/n)r.

NR 2.31 It would be interesting to know the radius and optimal information in
the Hilbert case for restricted class Λ of permissible functionals. For instance, for
the problem of NR 2.30 it is natural to assume that only noisy function values
can be observed. Much is known in the exact information case, see e.g., Lee and
Wasilkowski [48], Woźniakowski [127] [128], Wasilkowski and Woźniakowski [122].
Unfortunately, finding optimal noisy information turns out to be a very difficult
problem. Some results can be obtained from the average case analysis of Chapter
3, see NR 3.22.

Optimal information in the Hilbert case and for noise bounded in the sup–norm
is also unknown, even when δi = δ, ∀i.

Exercises

E 2.49 Let F and G be normed spaces and let the solution operator S : F → G
be continuous and linear. Let ‖ · ‖Y be a norm in Rn. Consider the problem of ap-
proximating S(f) for f ∈ E (E–arbitrary), based on information y ∈ Rn such that
‖y −N(f)‖Y ≤ δ, where N = [L1, . . . , Ln] consists of continuous linear functionals
from a class Λ. Let rwor

n (δ) be the minimal radius of information consisting of n
functionals. Show that if Λ satisfies

L ∈ Λ =⇒ c L ∈ Λ, ∀c ∈ R,
then rwor

n (δ) = rwor
n (0).
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E 2.50 Show that at least (n−2)(n−1)/2 elements of the matrix W from Lemma
2.14 are zero.

E 2.51 How will the formula for rwor
n (∆) in the Hilbert case change if E is the ball

of radius b and the class Λ consists of functionals whose norm is bounded by M?

E 2.52 Consider the minimal radius in the Hilbert case. Let n0 = max { 1 ≤ i ≤
n | δi = 0 }. Let

s = min{ 1 ≤ i ≤ n+ 1 | λi = λn+1 }
t = max{ 1 ≤ i ≤ n+ 1 | λi = λ1 }.

Show that rwor
n (∆) =

√
λn+1 iff s ≤ n0 +1, and rwor

n (∆) =
√
λ1 iff

∑n
j=n0+1 δ

−2
j ≤

n− t.

E 2.53 Let δ be such that

1

δ2
≤ 1

n

n∑

i=1

1

δ2
i

.

Show that then in the Hilbert case rwor
n (δ, . . . , δ︸ ︷︷ ︸

n

) ≤ rwor
n (δ1, . . . , δn).

E 2.54 Let η′i, n0 + 1 ≤ i ≤ n, minimize

Ω′(ηn0+1, . . . , ηn) = max
n0+1≤i≤n+1

λi
1 + ηi

over all ηn0+1 ≥ · · · ≥ ηn ≥ 0 satisfying (2.49). Let N ′∆ be the information operator
constructed as in Theorem 2.16 with η∗i replaced by η′i. Show that in the Hilbert
case radwor(N ′∆,∆) ≤

√
2 · rwor

n (∆).

E 2.55 Show that if in the Hilbert case the solution operator S is not compact
then the radius rwor

n (δ) does not converge to zero with n. Moreover, the optimal
information does not necessarily exist.

E 2.56 Discuss the existence of optimal linear algorithms for the problems App
and Int, for an arbitrary precision vector ∆.

E 2.57 When are the optimal points t∗i in Theorem 2.18 determined uniquely?

E 2.58 Let ∆ = [δ1, . . . , δn] and δ = (
∑n
i=1 δi) /n. Show that for S ∈ {App, Int}

we have rwor
n (S; δ) ≥ rwor

n (S; ∆).
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E 2.59 Suppose that the element h∗ in Lemma 2.15 satisfies

max { ‖S(h∗) + g‖, ‖S(h∗)− g‖ } > ‖S(h∗)‖, ∀ g 6= 0.

Show that if, in addition, rwor
n (0) > 0, ∀n ≥ 1, then

rwor
n (δ) > δ ‖S(h∗)‖, ∀δ < 1/‖h∗‖F .

Apply this result to the concrete problems considered in this section.

E 2.60 Let F be the class of functions f : [0, 1]→ R for which the rth derivatives
exist and are Lipschitz functions. Let

E = { f ∈ E | |f (r)(t1)− f (r)(t2)| ≤ |t1 − t2| }.

Consider the solution operator S : F → C([0, 1]) given as S(f) = f (k) where
0 ≤ k ≤ r. Show that if information consists of noisy function values with noise
bounded in the sup–norm, then

rwor
n (δ) ≥ 2 δ

r!

(r − k)!
, 1 ≤ k ≤ r,

and rwor
n (δ) ≥ δ for k = 0.

2.9 Complexity

Up to now we have analyzed only the error of algorithms. It is clear that in
practical computations we are interested not only in the error but also in the
cost of obtaining approximations. In this section, we explain what we mean
by the cost of approximation and discuss the concept of complexity. Then
we derive some general bounds on complexity of a problem. We assume that
we are given:

• The solution operator S : F → G where F is a linear space and G is a
normed space.

• The set E ⊂ F of elements f for which we want to construct approxi-
mations of S(f).

• The class Λ of permissible information functionals.

• The sets B(∆, z) of all possible values of noise corresponding to the
precision vector ∆ and exact information z.
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2.9.1 Computations over the space G

In order to be able to analyze the cost of obtaining approximations, we
first present our model of computation. Roughly speaking, this model is
based on the following two postulates. Namely, we assume that we can gain
information about f by noisy observations of functionals at f . Then, using
some primitive permissible operations, the information can be combined to
get an approximation. These primitive operations are: arithmetic operations
and comparisons over the reals, linear operations over the space G, and
logical operations over the Boolean values.

To describe the computational process leading to obtaining an approx-
imation, we shall use the concept of a program. To define the program
precisely, we adopt notation from the programming language Pascal.

Any program consists of two main parts:

• description of objects that are to be used, and

• description of actions that are to be performed.

The objects used in programs are called constants and variables. A
constant is a fixed real number, an element of the space G, or a Boolean
value (‘true’ or ‘false’). A variable can assume an arbitrary value from a
given nonempty set T . This set determines the type of the variable. We
have three basic types: real (i.e., T = R), G–type (T = G), and Boolean
(T = {‘true’,‘false’}). We also allow T to be a subset of one from the basic
types. The description of constants and variables is called a declaration.

The actions are described by statements. We have two simple state-
ments: information statement, assignment statement, and three structured
statements: compouned statement, conditional statement, repetitive state-
ment. We now define all the statements in turn.

• The information statement

I ( y; L, δ )

where y is a real variable, L ∈ Λ, and δ ≥ 0. This statement describes the
action which allows to gain data – the noisy value of L(f) where f ∈ F is the
(unknown) element for which we want to compute an approximation. We
“ask” for this noisy value. The “answer” is a real number y which is then
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assigned to the variable y. We assume that by the ith question we obtain a
value yi such that

[y1, . . . , yi] ∈ B( [δ1, . . . , δi], [L1(f), . . . , Li(f)] ).

• The assignment statement

v := E

where v is a variable and E is an expression. This is the second fundamental
statement. It specifies that the value of the expression E be evaluated for the
current values of variables, and that this value be assigned to the variable
v.

Expressions are constructs denoting rules of computation for evaluating
values of functions of some variables using only permissible primitive opera-
tions over the reals, elements of the space G, and Boolean values, which are
represented by the constants and current values of variables. The primitive
operations are as follows:

arithmetic operations over the reals R: sign inversion (x 7→ −x),
addition ((x, y) 7→ x + y), subtraction ((x, y) 7→ x − y), multiplication
((x, y) 7→ x ∗ y), division ((x, y) 7→ x/y, y 6= 0),

comparisons over R: equality ((x, y) 7→ x = y), inequality ((x, y) 7→ x 6=
y), ordering ((x, y) 7→ x < y, (x, y) 7→ x ≤ y),

linear operations over the space G: sign inversion (g 7→ −g), addition
((g1, g2) 7→ g1 + g2), subtraction (g1, g2) 7→ g1 − g2), multiplication by a
scalar ((x, g) 7→ x ∗ g),
Boolean operations: negation (b 7→ not b), union ((b1, b2) 7→ b1 or b2),
conjunction ((b1, b2) 7→ b1 and b2).

To be more precise, an expression is a single constant or variable, or it is the
construct of the form f(w) or f(w, z), where f stands for a primitive opera-
tion (of one or two arguments), and w, z are already defined expressions. In
the following three examples, a, b ∈ R and h ∈ G are constants, x,y are real
variables, and g is a variable of the type G.

(x− a)(b− x)/(b − a) (real expression),

g + yh (G–type expression),

(y < a) or (y ≤ 3) (Boolean expression).
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Those were the simple statements. The structured statements contain
other statements in their definitions.

• The compound statement

begin S1; S2; . . . ;Sn end

where S1,S2, . . . ,Sn are statements. It specifies the successive execution of
S1,S2, . . . ,Sn.

• The conditional statement

if E then S1 else S2

where E is a Boolean expression and S1,S2 are statements or ‘empty’ (i.e.,
do nothing). This corresponds to the following action. First the value of E
is evaluated. If this value is ‘true’, the action S1 is executed. If ‘false’, we
perform S2.

• The repetitive statement

while E do S

where E is a Boolean expression and S is a statement. The action described
by this statement relies on repetitive execution of S until the value of E is
‘false’. If E is ‘false’ at the beginning, S is not executed at all.

Summarizing, the program consists of one declaration and one compound
statement. We make an additional assumption that the set of variables
contains a special variable g of the G–type. An approximation is obtained
by executing the program. The result of computation – approximation to
S(f) – is the value of the variable g. The initial values of all variables are
undefined. In order that the result be always well defined, we assume that
for any data y a finite number of simple statements is executed including at
least one assignment to g.

2.9.2 Cost and complexity, general bounds

We now present our notion of cost and complexity. The basic assumption is
that we must charge for gaining information and performing any primitive
operation.
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1. Obtaining noisy value of L(f) with precision δ costs c(δ) where c :
[0,+∞)→ [0,+∞) is a given cost function. It is nonnegative, nonincreasing,
and positive for sufficiently small but positive δ.

Observe that the cost of obtaining a single datum d depends on the
precision δ. The smaller δ, the larger the cost. Theoretically, c can assume
even infinite values. However, c(δ) = +∞ will mean that the precision δ
cannot be used. Examples of cost functions include c(δ) = δ−2 or c(δ) =
max{0, log2 1/δ}. The function

c(δ) =

{
+∞ 0 ≤ δ < δ0,
c0 δ ≥ δ0,

(2.67)

corresponds to the case when any observation is performed with fixed preci-
sion δ0. In particular, taking δ0 = 0 we obtain the exact information case.

2. We assign the following costs to the primitive operations:

arithmetic operations over R – 1,
comparisons over R – 1,
linear operations over G – g (g ≥ 1),
Boolean operations – 0.

Let P be a program. The total cost of executing P is given by the sum of
costs of gaining information (information cost) and performing all primitive
operations (combinatory cost). Observe that the total cost depends only on
the obtained information (data) y. We denote this cost by cost(P; y). The
(worst case) cost of computing an approximation using the program P is
given as

costwor(P) = sup



 cost(P; y)

∣∣∣ y ∈
⋃

f∈E
N(f)



 .

We now define the complexity of an algorithm. Observe first that for any
program P there exist a unique (in general adaptive) information operator
N = {N,∆} and algorithm ϕ with the following property. For any f ∈ E,
the possible information obtained by executing P is in the set N(f), and
for information y ∈ N(f) the program gives the approximation ϕ(y). We
say that P is a realization of the algorithm ϕ using information N. It is
clear that not all algorithms ϕ using some information N can be realized.
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On the other hand, if an algorithm has at least one realization then it has
also many other realizations. We are interested in such realizations P that
have minimal costwor(P). This minimal cost will be called an algorithm
complexity and denoted by compwor(N, ϕ). That is,

compwor(N, ϕ) = inf { costwor(P) | P is a realization of ϕ using N }.

(If ϕ and N cannot be realized then compwor(N, ϕ) = +∞.) Observe that
compwor(N, ϕ) is independent of any realization, i.e., this is the property of
the operators N and ϕ only.

We are now ready to define the problem complexity. Let ε ≥ 0. Suppose
that we want to compute approximations to S(f) for f ∈ E with the (worst
case) error not exceeding ε. An ε–complexity of this problem, Compwor(ε),
is defined as the minimal costwor(P) over all programs P which allow to
compute approximations with error at most ε. Clearly, such approximations
can be computed only when the corresponding information and algorithm
satisfy ewor(N, ϕ) ≤ ε. Hence,

Compwor(ε) = inf { compwor(N, ϕ) | N, ϕ such that ewor(N, ϕ) ≤ ε }.

Information Nε and an algorithm ϕε with compwor(Nε, ϕε) = Compwor(ε)
and ewor(Nε, ϕε) ≤ ε, will be called ε–complexity optimal, or simply optimal
if it is known from the context which optimality concept is considered.

Clearly, the ε–complexity depends not only on ε but also on the other pa-
rameters of the problem. Therefore we shall sometimes write Compwor(S; ε),
Compwor(S, c; ε), etc. To make the notation shorter, the superscript “wor”
in compwor and Compwor will be usually omitted.

We now give some useful general bounds on the ε–complexity that will
be used in the next section. To this end, we first define several auxiliary
concepts.

For an information operator N = {Ny,∆y}y∈Y where

∆y = [δ1, δ2(y1), . . . , δn(y1, . . . , yn(y)−1)],

the complexity of N is given as

comp(N) = sup
y∈Y

n(y)∑

i=1

c(δi(y1, . . . , yi−1) ).
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(n(y) denotes the length of y.) Note that for nonadaptive N we obviously
have comp(N) =

∑n
i=1 c(δi). An ε–information complexity is defined as

IComp(ε) = inf { comp(N) | N–adaptive, and there exists ϕ

such that ewor(N, ϕ) ≤ ε }.

Hence, IComp(ε) is the minimal complexity of information from which it is
possible (at least theoretically) to obtain approximation with error at most
ε. We also define a corresponding quantity for nonadaptive information as

ICompnon(ε) = inf { comp(N) | N–nonadaptive, and there exists ϕ

such that ewor(N, ϕ) ≤ ε }.

We introduced in Section 2.7 the concept of a κ–hard element. We shall
say that f ∗ ∈ F is a κ–strongly hard element iff for any nonadaptive infor-
mation N = {N,∆} there exists an algorithm ϕ such that

ewor(N, ϕ) ≤ κ · r(AN(N(f∗) ).

Note that if f ∗ is a κ1–hard element then it is a κ–strongly hard element
for any κ > κ1. If for any nonadaptive information there exists an optimal
algorithm, then f ∗ is also the κ1–strongly hard element.

We have the following bounds on the ε-complexity.

Theorem 2.19 (i) If the κ–strongly hard element exists then

Comp(ε) ≥ ICompnon(κ ε).

(ii) Let ρ ≥ 1. Suppose that there exists a nonadaptive information Nε

using n(ε) observations, and a linear algorithm ϕε such that

comp(Nε) ≤ ρ · ICompnon(ε) and ewor(Nε, ϕε) ≤ ε.

Then

Comp(ε) ≤ ρ · ICompnon(ε) + (2 n(ε)− 1) g.

Proof (i) Let Nad be an arbitrary, in general adaptive, information with
radius radwor(Nad) ≤ ε. Let Nnon be the nonadaptive information from
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Theorem 2.15 corresponding to Nad. Then comp(Nnon) ≤ comp(Nad) and
there is an algorithm ϕ such that

ewor(Nnon, ϕ) ≤ κ · radwor(Nad) ≤ κ ε.

Hence, Comp(ε) ≥ ICompnon(κ ε).

(ii) The algorithm ϕε is of the form ϕε(y) =
∑n(ε)
i=1 yi gi. Hence, it requires at

most 2n(ε)−1 linear operations in the space G to compute ϕε(y). Therefore,

comp(Nε, ϕε) ≤ comp(Nε) + (2n(ε) − 1) g

≤ ρ · ICompnon(ε) + (2n(ε)− 1) g,

as claimed. 2

As a consequence of this theorem we obtain the following corollary.

Corollary 2.8 If the assumptions of Theorem 2.19 are fulfilled and, ad-
ditionally,

ICompnon(ε) = O( ICompnon(κ ε) ) and n(ε) = O( ICompnon(ε) ),

then
Comp(ε) � ICompnon(ε), as ε→ 0+. 6 2

Hence, for problems satisfying the assumptions of Corollary 2.8, the ε–
complexity, Comp(ε), is essentially equal to ICompnon(ε). Note that the
condition ICompnon(ε) = O(ICompnon(κ ε)) means that ICompnon(ε) does
not increase too fast as ε → 0. It is satisfied if, for instance, ICompnon(ε)
behaves polynomially in 1/ε. The condition n(ε) = O(ICompnon(ε)) holds
if the information operators Nε use observations with costs bounded uni-
formly from below by a positive constant. Obviously, this is the case for
c(δ) ≥ c0 > 0, ∀ δ ≥ 0, since then n(ε) ≤ ICompnon(ε)/c0.

It turns out that ICompnon(ε) is closely related to the minimal radius of
information. To see this, let

R(T ) = inf

{
rwor
n (δ1, . . . , δn)

∣∣∣ n ≥ 1,
n∑

i=1

c(δi) ≤ T
}

6For two functions, a(ε) � b(ε) as ε → 0+ means the weak equivalence of functions.
That is, there exist ε0 > 0 and 0 < K1 ≤ K2 < +∞ such that K1 ≤ a(ε)/b(ε) ≤ K2 for
all ε ≤ ε0.
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be the T th minimal radius. Let

IComp
non

(ε) = inf {T | R(T ) ≤ ε }.

Lemma 2.16 We have

lim
α→0+

IComp
non

(ε− α) ≥ ICompnon(ε) ≥ IComp
non

(ε).

Proof Let 0 < α < ε and β > 0. Then R(IComp
non

(ε − α) + β) ≤ ε − α
and there are information Nβ and an algorithm ϕβ such that comp(Nβ) ≤
IComp

non
(ε−α)+β and ewor(Nβ, ϕβ) ≤ ε. Then ICompnon(ε) ≤ comp(Nβ).

Letting β → 0+ we get ICompnon(ε) ≤ IComp
non

(ε−α). The first inequality
in the lemma now follows from the fact that the function IComp

non
(ε) is

nonincreasing and therefore the limit exists.
To show the second inequality, for β > 0 we take information Nβ and

algorithm ϕβ such that ewor(Nβ , ϕβ) ≤ ε and comp(Nβ) ≤ ICompnon(ε) +β.
Hence, IComp

non
(ε) ≤ ICompnon(ε)+β. Since this holds for arbitrary β, we

obtain IComp
non

(ε) ≤ ICompnon(ε). 2

Thus, ICompnon is, roughly speaking, the inverse function to the T th min-
imal radius R(T ). Note that the minimal radii rwor

n (δ1, . . . , δn) have al-
ready been known for some problems, see Section 2.8. For those problems,
ICompnon(ε) can be evaluated using Lemma 2.16.

For fixed precision (2.67), the complexity of information Nε from The-
orem 2.19 equals comp(Nε) = c0 n(ε). Hence, in this case the bounds in
Theorem 2.19 can be rewritten as

c0 n(κ ε) ≤ Comp(ε) ≤ n(ε)(c0 + 2 g) − 2 g.

Observe also that the ε–information complexity of a problem with a given
cost function c can be bounded from above by IComp(ε) of the same problem,
but with fixed precision. Indeed, it suffices to set δ0 in (2.67) to be such that
c(δ0) > 0, and c0 = c(δ0). On the other hand, if only the cost function c is
bounded from below by a positive constant c0, the ε–information complexity
is not smaller than IComp(ε) of the same problem with exact information
and with the cost function c ≡ c0.

Notes and Remarks

NR 2.32 In the case of exact information or information with fixed noise level, our
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model of computation corresponds to that of Traub et al. [107, Chap.5] and [108,
Chap.3]. As far as we know, the model with cost dependent on the noise level was
first studied by Kacewicz and Plaskota [32].

NR 2.33 Some researchers define a model of computation using the concept of a
machine. The most known is the Universal Turing Machine which can be used
to study discrete problems. Another example is the Unlimited Register Machine
(URM) discussed in Cutland [10]. Machines and complexity over the reals (without
oracle) are presented in Blum, Shub, and Smale [6]. Recently, Novak [66] introduced
the real number URM and showed how it can be used to study complexity of prob-
lems with partial information. For related models, see also Ko [38] and Schönhage
[93].

NR 2.34 We use a rather simple version of the model of computation. It is based
on the following conviction: if the solution element is in a space G then operations
which define this space should be permitted. In our case G is a linear space over
the reals. As the real ring is an ordered set in which addition and multiplication are
defined, and a linear space in a set in which addition and multiplication by scalars
are defined, we assume that arithmetic operations and comparisons of real numbers
as well as linear operations in G are permitted.

Sometimes useful generalizations of the model are possible. We now give one
example. Suppose that G is a Cartesian product of some other linear spaces over
R, G = G1 × G2 × · · · × Gs. For instance, G = Rs = R× · · · ×R︸ ︷︷ ︸

s

. Or, if G is

a space of functions g : Rd → Rs then any element g ∈ G can be represented
as g(x) = (g1(x), . . . , gs(x)) with gi : Rd → R. In these cases it is natural to
assume that we can perform linear operations over each “coordinate” Gi. Clearly,
we would also be able to perform linear operations over G (via the identification
g = (g1, . . . , gs) ∈ G, gi ∈ Gi) with the cost g =

∑s
i=1 gi, where gi is the cost of

linear operations over Gi.

However, for our purpose any such a “generalization” is not necessary. As it
will turn out, for problems considered in this book the complexity essentially equals
the information complexity. Hence, using a “more powerful” model leads to similar
results.

NR 2.35 The assumption that we can use arbitrary elements of R or G corre-
sponds in practice to the fact that precomputation is possible. This may be some-
times too idealized assumption. For instance, even if we know theoretically that the
optimal algorithm is linear, ϕopt(y) =

∑n
i=1 yigi, the elements gi can be sometimes

not known exactly, or can be very difficult to precompute. We believe however that
such examples are exceptional.
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We also stress that the “precomputed” elements can depend on ε. One may
assume that precomputing is independent of ε. This leads to another, also inter-
esting model, in which one wants to have a “good” single program which allows to
produce an ε–approximation to S(f) for any ε > 0. Some examples on this can be
found in Kowalski [42], Novak [66], and Paskov [74].

NR 2.36 Clearly, our model assumes also other idealizations. One of them is that
the cost of observing noisy value of a functional depends on the noise level only.
That is, we neglect the dependence on the element for which information is obtained.
Errors that may occur when the value of ϕ(y) is computed, are also neglected.

NR 2.37 One can argue that the assumption that linear operations over G are
allowed is not much realistic when dimG = +∞. In practice usually digital com-
puters are used to perform calculations, and they can only manipulate with bits.
This is certainly true. On the other hand, the computers have been successfully
used for solving some very complicated problems including, in particular, continu-
ous problems which require at least computations over the reals. This paradox is
possible only because the computer arithmetic (which is in fact discrete) can very
well imitate the computations in the real number model. Similarly, by using an ap-
propriate discrete model, we can make computations over an arbitrary linear space
G possible.

This point can also be expressed in the following way. Even if it is true that the
real world is discrete in nature, it is often more convenient (and simpler!) to use
a continuous model to describe, study, and to understand some phenomena. We
believe that the same applies to scientific computations.

NR 2.38 We consider a sequential model of computation, where only one instruc-
tion can be performed at each step. It would also be interesting to study a parallel
model, see, e.g., Heinrich and Kern [23], Kacewicz [28], Nemirowski [61].

NR 2.39 We note that Theorem 2.19 is not always true, even if the problem is
linear and linear information is used. That is, there are problems, for which the
ε–complexity is much larger (or even infinite) than ε–information complexity, see
e.g. Wasilkowski and Woźniakowski [120].

NR 2.40 Information about the programming language Pascal can be found, e.g.,
in Jensen and Wirth [26].

Exercises

E 2.61 Show that if the conditional and repetitive statements were not allowed
then only algorithms using nonadaptive information would be realizable and the
cost of computing ϕ(y) would be independent of y.
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E 2.62 Give an example of an algorithm ϕ and information N that cannot be
realized.

E 2.63 Let N be an information operator with Y = Rn, and let ϕ be an algorithm
of the form

ϕ(y) =

n∑

i=1

qi(y) gi,

where gi ∈ G and qi are some real rational functions of n variables y1, . . . , yn. Show
that then there exists a realization of ϕ using N.

E 2.64 Let ϕ1 and ϕ2 be two algorithms that use the same information N. Show
that if ϕ2 = Aϕ1 where A : G → G is a linear transformation then comp(N, ϕ2) ≤
comp(N, ϕ1). If, in addition, A is one-to-one then comp(N, ϕ1) = comp(N, ϕ2).

E 2.65 Give an example of a problem for which optimal information is nonadaptive
and the upper bound in Theorem 2.19 is not sharp, i.e., Comp(ε) < ICompnon(ε) +
(2n(ε)− 1)g.

E 2.66 Show that Lemma 2.16 will hold if we replace IComp
non

by

IComp
non

(ε) = inf

{
n∑

i=1

c(δi)
∣∣∣ n ≥ 1, rwor

n (δ1, . . . , δn) ≤ ε
}
.

2.10 Complexity of special problems

In this section, we derive the ε–complexity for several classes of problems.
To this end, we use the general bounds given in the previous section. A
special attention will be devoted to the dependence of Comp(ε) on the cost
function.

2.10.1 Linear problems in Hilbert spaces

We begin with the problem defined in Section 2.8.1. That is, we assume
that S is a compact operator acting between separable Hilbert spaces F
and G, and E is the unit ball in F . The class Λ of permissible information
functionals consists of all continuous linear functionals with norm bounded
by 1. The noise x satisfies

∑n
i=1 x

2
i /δ

2
i ≤ 1 where n is the length of x and

[δ1, . . . , δn] is the precision vector used.

In this case, it is convenient to introduce the function

c̃(x) = c(x−2), 0 < x < +∞.
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We assume that c̃ is concave or convex.
We first show how in general the T th minimal radius can be evaluated. As

in Section 2.8.1, we denote by ξj , j ≥ 1, the orthonormal basis of eigenvectors
of the operator S∗S, and by λj the corresponding eigenvalues, λ1 ≥ λ2 ≥ · · · .
We shall also use the function Ω which was defined in Section 2.8.1,

Ω = Ω(α; η1, . . . , ηn) = max
1≤i≤n+1

λi
α+ (1− α) ηi

(with the convention λi/0 = +∞ for λi > 0 and 0/0 = 0).

Lemma 2.17 The T th minimal radius is equal to

R(T ) = inf
√

Ω(α; η1, . . . , ηn) ,

where the infimum is taken over all 0 ≤ α ≤ 1, n, and ηi ≥ 0, 1 ≤ i ≤ n,
satisfying
(a1) for c̃–concave

n∑

i=1

c̃(ηi) ≤ T,

(b1) for c̃–convex

n c̃

(
1

n

n∑

i=1

ηi

)
≤ T.

Moreover, if the infimum is attained for some n∗ and η∗ = (η∗1 , . . . , η
∗
n∗),

then
R(T ) = radwor({NT ,∆T })

where
(a2) for c̃–concave

∆T =
[

1/
√
η∗1 , . . . , 1/

√
η∗n∗

]
, NT = [〈·, ξ1〉F , . . . , 〈·, ξn∗〉F ],

(b2) for c̃–convex

∆T =
[

1/
√
η∗0 , . . . , 1/

√
η∗0︸ ︷︷ ︸

n∗

]
, NT = [ 〈·, ξ∗1〉F , . . . , 〈·, ξ∗n∗〉F ],

where η∗0 = 1/n∗
∑n∗
i=1 η

∗
i and ξ∗i ’s are as in Theorem 2.16 with δi =√

1/η∗0 , ∀ i.
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Proof We first prove (a1) and (b1). Let the function c̃ be concave. Then
for any n and η1, . . . , ηn satisfying (2.49) we have

n∑

i=1

c̃(ηi) ≤
n∑

i=1

c̃(1/δ2
i ). (2.68)

Denoting by η∗(δ) the vector minimizing Ω over all 0 ≤ α ≤ 1 and η satisfying
(2.49), we obtain from Theorem (2.16) and (2.68) that

R2(T ) = inf

{
(rwor
n (δ1, . . . , δn))2

∣∣∣ n ≥ 1,
n∑

i=1

c(δ2
i ) ≤ T

}

= inf {Ω(α; η∗(δ) ) | 0 ≤ α ≤ 1, n ≥ 1,

δ = (δ1, . . . , δn),
n∑

i=1

c̃(1/δ2
i ) ≤ T

}

= inf {Ω(α; η) | 0 ≤ α ≤ 1, n ≥ 1,

η = (η1, . . . , ηn),
n∑

i=1

c̃(ηi) ≤ T
}
.

Let c̃ be convex. Then for any n and η1, . . . , ηn we have

n∑

i=1

c̃(ηi) ≥ n c̃(η0)

where η0 = 1/n
∑n
i=1 ηi. Since for δ2

i = 1/η0, 1 ≤ i ≤ n, the condition
(2.49) holds for any η1 ≥ · · · ≥ ηn, we obtain

R2(T ) = inf
{

(rwor
n (δ, . . . , δ︸ ︷︷ ︸

n

))2
∣∣∣ n ≥ 1, n c(δ) ≤ T

}

= inf {Ω(α; η) | 0 ≤ α ≤ 1, n ≥ 1

η = (η1, . . . , ηn), n c̃

(
1

n

n∑

i=1

ηi

)
≤ T

}
.

To show (a2) and (b2) it is enough to apply (a1), (a2), and Theorem
2.16. 2

We now comment on the above lemma. Observe first that the T th minimal
radius depends only on the cost function and eigenvalues of the operator
S∗S. The second remark is about information for which R(T ) is achieved.
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In the case of convex c̃, optimal information uses observations with fixed
precision δ. This is no longer true for concave functions c̃. However, in this
case we can restrict ourselves to observations of the functionals 〈·, ξi〉F .

To give an illustration of how Lemma 2.17 can be used to evaluate
Comp(ε), suppose that the cost function is given by

c(δ) = clin(δ) =

{
δ−2 δ > 0,
+∞ δ = 0.

This cost function possesses an interesting property. Namely, the error of
approximating the value of a functional from several observations depends
only on the total cost of observations and not on the number of them and
precisions used. Indeed, if we observe n times the value L(f) with ac-
curacy ∆ = [δ1, . . . , δn], then the minimal error of approximating L(f) is(∑n

i=1 δ
−2
i

)−1/2
=
∑n
i=1 clin(δi).

Note that in this case the function c̃lin(x) = x. Hence, it is convex and
concave. After some calculations we obtain

R(clin;T )2 = λn+1 +
1

T

n∑

j=1

(λj − λn+1) (2.69)

where n = n(T ) = bT c. Observe now that for 0 ≤ T ≤ 1 we have
R(clin;T )2 = R(0)2 = λ1, while for T ≥ c0, R(clin;T )2 is linear on each inter-
val [n, n+ 1] and R(clin;n)2 = 1/n

∑n
j=1 λj, j ≥ 1. Hence, the T th minimal

radius is a continuous function of T and limT→∞R(clin;T ) = 0. Moreover,
since λ1 ≥ λ2 ≥ · · · → 0, for sufficiently large T , T > min{ j | λj < λ1}, it is
also decreasing. We obtain from Lemma 2.16 that for small ε

ICompnon(clin; ε) = R−1(ε) ≈ min



n ≥ 1

∣∣∣ 1

n

n∑

j=1

λj ≤ ε2



 .

7

To get the ε–complexity of our problem, we can use Theorem 2.19. We
have that 0 is the 1–strongly hard element and therefore IComp(clin; ε) =
ICompnon(clin; ε). Furthermore, ICompnon(clin; ε) can be achieved by infor-
mation that uses n(ε) = bICompnon(clin; ε)c observations, and there exists

7a(ε) ≈ b(ε) means the strong equivalence of functions, i.e., limε→0+ a(ε)/b(ε) = 1
(0/0 =∞/∞ = 1).
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an optimal linear algorithm. Hence,

Comp(clin; ε) � min



n ≥ 1

∣∣∣ 1

n

n∑

j=1

λj ≤ ε2



 .

It turns out that the cost function clin is in some sense “worst” possible.
Namely, we have the followinf fact.

Lemma 2.18 Let c be an arbitrary cost function. Let δ0 be such that
c(δ0) < +∞. Then

Comp(c; ε) ≤ M · Comp(clin, ε), ∀ ε > 0,

where M = M(c, δ0) = d2δ2
0e( c(δ0) + 2g).

Proof Since R(clin;T )2 ≥ λ1/max{1, T}, we have

ICompnon(clin; ε)

{
= 0 ε ≥

√
λ1,

> 1 ε <
√
λ1.

In the first case zero is the best approximation and the lemma is true.

Let ε <
√
λ1. Let N be such an information operator that radwor(N) = ε

and comp(clin;N) = ICompnon(clin; ε). We can assume that N uses n =
bICompnon(clin; ε)c observations with the same precision δ satisfying δ−2 =
ICompnon(clin; ε)/n. Let k = k(δ0) = d2δ2

0e. Consider the information

operator Ñ which repeats k times observations of the same functionals as in
N, but with precisions δ̃ where δ̃−2 = δ−2/k. We obviously have radwor(Ñ) =
radwor(N) and

comp(c; Ñ) = k n c̃

(
ICompnon(clin; ε)

k n

)

≤ k n c̃(2/k) ≤ k c(δ0) ICompnon(clin; ε).

Since the optimal algorithm ϕ̃ for information Ñ is linear, we finally obtain

Comp(c; ε) ≤ comp(c; Ñ, ϕ̃) ≤ k c(δ0)Comp(clin; ε) + (2 k n− 1)g

≤ k (c(δ0) + 2 g) Comp(clin; ε),

as claimed. 2
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Lemma 2.18 can be used for deriving complexity for some other cost func-
tions. For instance, consider the case of fixed positive precision where
the cost function cfix(δ) = c0 for δ ≥ δ0, and cfix(δ) = +∞ for δ < δ0,
with c0, δ0 > 0. Since cfix(δ) ≥ c0 δ

2
0 clin(δ), we have ICompnon(cfix; ε) ≥

c0 δ
2
0 ICompnon(clin; ε). Hence, cfix is also the “worst” cost function and

Comp(cfix; ε) � Comp(clin; ε).

We now consider the exact information case where the cost function is
constant, e.g., cexa ≡ 1. In this case rwor

n (0) =
√
λn+1. Hence, R(cexa;T ) =√

λn+1 where n = n(T ) = bT c, and

Comp(cexa; ε) � min
{
n ≥ 1

∣∣∣ λn+1 ≤ ε2
}
.

Clearly, Comp(cexa; ε) gives a lower bound for complexity corresponding
to a cost function that is bounded from below by a positive constant. That
is, if c(δ) ≥ c0 > 0 for all δ ≥ 0, then

Comp(c; ε) ≥ c0 · Comp(cexa; ε).

Let us see more exactly how the complexity depends on the cost function
c and eigenvalues λj. Consider

cq(δ) =

{
(1 + δ−2)q δ > 0,
+∞ δ = 0,

where q ≥ 0. Note that for q ≥ 1 the function c̃q is convex, while for
0 < q ≤ 1 it is concave. The case q = 0 corresponds to the exact information.

Since for all q we have Comp(q; ε) = O(Comp(1; ε)), we can restrict
ourselves to 0 ≤ q ≤ 1. To obtain the formula for the T th minimal radius
we set, for simplicity, α = 1/2 in the α–smoothing spline algorithm and use
Lemma 2.17. The minimum min1≤i≤n+1 λi/(1 + ηi) over all η1 ≥ · · · ≥ ηn ≥
ηn+1 = 0 such that

∑n
i=1(1 + ηi)

q ≤ T , is attained at

ηj =
T 1/q

(
∑n
i=1 λ

q
i )

1/q
· λj − 1, 1 ≤ j ≤ n,

where n is the largest integer satisfying

n∑

j=1

λqj ≤ λqn T.
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Furthermore,

R(q;T )2 = b ·
(

1

T

n∑

i=1

λqi

)1/q

where 1/2 ≤ b ≤ 1. Assume now that the eigenvalues of the operator S∗S
satisfy

λj �
(

lns j

j

)p

with p > 0 and s ≥ 0. As we know, this corresponds to function approxima-
tion in tensor product spaces, see NR 2.30. In this case we have

R(q, p, s;T ) � R(1, pq, s;T )1/q .

The formulas for R(1, pq, s;T ) can be derived based on (2.69). We obtain
that for all q

R(q, p, s;T ) �





(
1
T

)1/q̃
p q̃ > 1,(

lns+1 T
T

)p
p q̃ = 1,(

lns T
T

)p
0 ≤ p q̃ < 1,

as T → +∞, where q̃ = min{1, q}. This together with Lemma 2.16 and
Corollary 2.8 gives the ε–complexity. Namely,

Theorem 2.20

Compwor(q, p, s; ε) �





(
1
ε

)2q̃
p q̃ > 1,

(
1
ε

)2/p
lns+1

(
1
ε

)
p q̃ = 1,

(
1
ε

)2/p
lnsp

(
1
ε

)
0 ≤ p q̃ < 1,

as ε→ 0. 2

We see that the complexity is determined by the value of p q̃. More precisely,
suppose first that p > 1. Then for pq > 1 we have Comp(q, p, s; ε) �
Comp(1, p, s; ε), while for pq < 1 we have Comp(q, p, s; ε) � Comp(0, p, s; ε).
If p < 1 then Comp(q, p, s; ε) � Comp(0, p, s; ε) � Comp(1, p, s; ε), for all
q ≥ 0. This means, roughly speaking, that the ε–complexity may behave in
at most two different ways – as for exact information, or as for the “worst”
cost function clin(δ) = 1/δ2. Moreover, if the eigenvalues λj tend to zero
sufficiently slowly (p < 1), then the ε–complexity behaves independently of
the cost function.
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2.10.2 Approximation and integration of Lipschitz functions

We pass to approximation, App, and integration, Int, of real valued Lipschitz
functions f : [0, 1] → R, based on noisy values of f at some points. The
noise x = y − Ny(f) is assumed to be bounded in the weighted sup–norm,
x ∈ B(∆y), where

B(∆y) = {x ∈ Rn | |xi| ≤ δi(y1, . . . , yi−1), 1 ≤ i ≤ n(y) }.

These problems were precisely defined in Section 2.8.2.

Theorem 2.21 Let the cost function c be convex. Then

ICompnon(App; ε) = inf
0≤δ<ε

c(δ)

⌈
1

2(ε− δ)

⌉

and

inf
0≤δ<2ε

c(δ)

⌈
1

2(2ε − δ)

⌉
≤ ICompnon(Int; ε) ≤ inf

0≤δ<ε
c(δ)

⌈
1

4(ε− δ)

⌉
.

Furthermore,
Comp(App; ε) � ICompnon(App; ε)

and
Comp(Int; ε) � ICompnon(App;α(ε) ε),

where α(ε) ∈ [1, 2].

Proof For both problems we have

ICompnon(ε) = inf

{
n∑

i=1

c(δi)
∣∣∣ rwor

n (δ1, . . . , δn) ≤ ε
}
,

where rwor
n (δ1, . . . , δn) is the minimal radius of information using observations

with precisions δi. The formulas for rwor
n (δ1, . . . , δn) are given in Theorem

2.18.

Consider first the function approximation problem. Observe that for δi’s
such that

∑n
i=1 δi = A, the radius is minimized at δi = δ = A/n, ∀i. Due to

convexity of c we also have
∑n
i=1 δi ≥ n c(δ). Hence,

ICompnon(App; ε) = inf

{
n c(δ)

∣∣∣ n ≥ 1,
1

2n
+ δ ≤ ε

}

= inf
0≤δ<ε

c(δ)

⌈
1

2(ε− δ)

⌉
.
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We now turn to the integration. The upper bound for ICompnon(Int; ε)
can be obtained by setting again δi = δ, ∀i. Then,

ICompnon(Int; ε) ≤ inf

{
n c(δ) | n ≥ 1,

1

4n
+ δ ≤ ε

}

= inf
0≤δ<ε

c(δ)

⌈
1

4(ε − δ)

⌉
.

To get the lower bound, we first observe that for all n ≥ 1 and A ≥ 0, the
maximum

M(A,n) = max

{
n∑

i=1

δ2
i

∣∣∣
n∑

i=1

δi = A, δj ≤
1

n

(
1

2
+A

)
, ∀j

}

is attained at

δ∗j =





1
n

(
1
2 +A

)
1 ≤ j ≤ k = b nA

1/2+Ac,
A− k

n

(
1
2 +A

)
j = k + 1,

0 k + 2 ≤ j ≤ n,

and therefore

M(A,n) =
n∑

i=1

(δ∗i )2 ≤
(

nA

1/2 +A

)(
1/2 +A

n

)2

=
A

n

(
1

2
+A

)
.

This yields that for all δi’s such that
∑n
i=1 δi = A, we have

rwor
n (δ1, . . . , δn) ≥ 1

n

(
1

2
+A

)2

− A

n

(
1

2
+A

)
=

1

4n
+
A

2n
.

Hence,

ICompnon(Int; ε) ≥ inf

{
n c(δ)

∣∣∣ 1

4n
+
δ

2
≤ ε

}

= inf
0≤δ<2ε

c(δ)

⌈
1

2(2ε − δ)

⌉
.

To prove the remaining part of the theorem, observe that the just proven
bounds for ICompnon(Int; ε) yield

ICompnon(App; 2 ε) ≤ ICompnon(Int; ε) ≤ ICompnon(App; ε). (2.70)
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Moreover, ICompnon(App; ε) and the upper bound for ICompnon(Int; ε) are
attained by information which uses n(ε) observations of the same precision
δ(ε), and δ(ε) → 0 as ε → 0. For such information the linear algorithms
based on natural splines of order 1 interpolating data, are optimal. Hence, for
sufficiently small ε, we have c(δ(ε)) ≥ c0 for some c0 > 0, and consequently
n(ε) ≤ ICompnon(ε)/c0. The formulas for Comp(ε) now follow from (2.70)
and Corollary 2.8. 2

Clearly, if ICompnon(App; 2 ε) � ICompnon(App; ε) (which holds when c(δ)
tends to infinity not too fast as δ → 0, see E.2.70), then the factor α(ε) in
Theorem 2.21 can be omitted.

To give concrete examples, suppose that the cost function is given as

cq(δ) = δ−q, δ > 0,

where q > 0, and cq(0) = +∞. Then we have

ICompnon(App, q; ε) ≈
(

1

ε

)q+1 (q + 1)q+1

2 qq
.

The best information uses n(ε) ≈ (1 + q)/(2ε) observations with precision
δ(ε) ≈ q(1 + q)−1ε. Thus

Comp(App, q; ε) � Comp(Int, q; ε) � ICompnon(App, q; ε). (2.71)

Note that letting q → 0 we get results for exact information with c ≡ 1.
For c(δ) = max{ 0, log2 δ

−1} for δ > 0, and c(0) = +∞, we have in turn
that

ICompnon(App; ε) ≈ log2(1/ε)

2 ε
,

and n(ε) ≈ 1/(2ε), δ(ε) ≈ ε/(ln ε−1). Clearly, (2.71) also holds.

Observe that for any cost function we have the following bounds:

c(ε) d1/(2ε)e ≤ ICompnon(App; ε) ≤ c(ε/2) d1/εe.

Hence, the ε–complexity tends to infinity roughly as c(ε)/ε, as ε→ 0. This
means, in particular, that for problems with fixed noise level the complexity
is infinite, if only ε is sufficiently small. Actually, this is the consequence of
Lemma 2.15 which says that the radius of information cannot be arbitrarily
small. We now translate that general result to the language of complexity.
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We consider the general linear solution operator S : F → G. The set E is
the unit ball of F with respect to a seminorm ‖·‖F . We wish to approximate
S(f) from noisy, possibly adaptive, observations of linear functionals from a
class Λ, with noise bounded always by δ0 > 0. Recall that this corresponds
to a cost function which assumes +∞ on the interval [0, δ0).

Theorem 2.22 Suppose there exists an element h∗ ∈ F such that h∗ 6∈
kerS and

|L(h∗)| ≤ 1, for all L ∈ Λ.

Then for all ε < min{ δ0, ‖h∗‖−1
F } ‖S(h∗)‖ we have

Comp(S; ε) = +∞.

Proof It was shown in Lemma 2.15 that for any nonadaptive information N
that uses observations with noise not smaller than δ0 we have radwor(N) ≥
min{δ0, ‖h∗‖−1

F } ‖S(h∗)‖. Repeating the same proof we find that the same
bound holds for any adaptive information N. Hence, the theorem follows.
2

Recall that for the problems App and Int we can take h∗ ≡ 1. Then, Theorem
2.22 says that Comp(App; ε) = Comp(Int; ε) = +∞, for all ε < δ0 (actually,
this is true also for ε = δ0). For approximation of a compact operator S in
Hilbert spaces of Section 2.10.1, we find that the ε–complexity is infinite if
only ε < min{ 1, δ0} ‖S‖F .

2.10.3 Multivariate approximation in a Banach space

For the problems App and Int the ε–complexity is achieved by nonadaptive
information that uses observations with precisions δi � ε. In this section we
show that this nice result can be generalized to a class of problems where the
noise of information is bounded in the absolute or relative sense. The results
will be oriented towards approximation of multivariate functions from noisy
data about function values. This particular problem will be defined later.
Now, we consider a general problem.

We assume that F is a linear space equipped with a norm ‖ · ‖F and
G is a normed space. The solution operator S : F → G is linear. We
want to approximate S(f) for all f from the ball ‖f‖F ≤ 1, based on noisy
observations of some functionals L ∈ Λ at f . Two types of information noise
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are considered: absolute and relative. More precisely, exact information is
given as

N(f) = [L1(f), . . . , Ln(f)) ]

where Li ∈ Λ, 1 ≤ i ≤ n. In the case of noise bounded in the absolute sense,
the obtained information y ∈ Rn satisfies

|yi − Li(f)| ≤ δi,

while for noise bounded in the relative sense we have

|yi − Li(f)| ≤ δi · |Li(f)|,

1 ≤ i ≤ n. We stress that the functionals Li, precisions δi, and the number
n of observations can depend adaptively on yj. That is, we deal in general
with adaptive information.

To distinguish the absolute and relative noise, we shall sometimes use
the subscripts “abs” and “rel”.

We start with the analysis of noise bounded in the absolute sense. Let
dn be the minimal diameter of nonadaptive information that uses n exact
observations,

dn = inf { diam(N, 0) | N = [L1, . . . , Ln], Li ∈ Λ, 1 ≤ i ≤ n }.

We also let d0 = 2 ‖S‖F = 2 sup‖h‖F≤1 ‖S(h)‖. Define the number

n∗(ε) = min {n ≥ 0 | dn(0) ≤ 2 ε }

(min ∅ = +∞).

We first show a lower bound on Compabs(ε). To this end, assume that the
following condition is satisfied. There exists a constant K, 0 < K < +∞,
such that

|L(h)| ≤ K · ‖S(h)‖, for all L ∈ Λ and h ∈ F. (2.72)

Lemma 2.19 Suppose that the κ–strongly hard element exists. If the con-
dition (2.72) is satisfied then

Compabs(ε) ≥ n∗(κ ε) · c(K κε).
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Proof We first show that

ICompnon
abs (ε) ≥ n∗(ε) · c(K ε). (2.73)

If ε ≥ ‖S‖F then the zero approximation is optimal. Hence, n∗(ε) = 0 and
(2.73) follows.

Let ε < ‖S‖F . Let N = {N,∆} where N = [L1, . . . , Ln] and ∆ =
[δ1, . . . , δn], 0 ≤ δ1 ≤ · · · ≤ δn, be an arbitrary information operator with
the radius radwor

abs (N) ≤ ε. Let

k = max

{
i ≤ n

∣∣∣ δi ≤
1

2
K diamabs(N)

}
.

(If δ1 > K diamabs(N)/2 then k = 0.) We claim that

k ≥ n∗(ε). (2.74)

To show this, it suffices that for information N′ = {N ′,∆′} where N ′ =
[L1, . . . , Lk] and ∆′ = [δ1, . . . , δk] (or for information N′ ≡ {0} if k = 0), we
have diamabs(N′) ≤ 2 ε.

Indeed, suppose to the contrary that diamabs(N′) > 2 ε. Then there is
h ∈ F such that ‖h‖F ≤ 1, |Li(h)| ≤ δi, 1 ≤ i ≤ k, and 2 ‖S(h)‖ > 2 ε ≥
diamabs(N). Let

h′ = min

{
1,

δk+1

K ‖S(h)‖

}
· h.

Then ‖h′‖F ≤ 1, and for all k + 1 ≤ j ≤ n it holds

|Lj(h′)| ≤ K · ‖S(h′)‖ ≤ min {K ‖S(h)‖, δj } = δj .

Since also for 1 ≤ i ≤ k we have |Li(h′)| ≤ |Li(h)| ≤ δi,

diamabs(N) ≥ 2 ‖S(h′)‖ = 2 min

{
1,

δk+1

K ‖S(h)‖

}
‖S(h)‖

= min

{
2 ‖S(h)‖, 2

δk+1

K

}
> diamabs(N),

which is a contradiction. Hence, diamabs(N′) < 2 ε. Since information N′
uses k observations, (2.74) follows.

Observe that (2.74) also yields k ≥ 1. Hence, we have

comp(N) =
n∑

i=1

c(δi) ≥
k∑

i=1

c(δi) ≥ k · c
(

1

2
K diam(N)

)

≥ k c(Kε) ≥ n∗(ε) · c(Kε).
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Since N was arbitrary, the proof of (2.73) is complete.

Now, Theorem 2.19 together with (2.73) yields

Compabs(ε) ≥ ICompnon(κ ε) ≥ n∗(κ ε) · c(κε)

which proves the lemma. 2

To show an upper bound, we assume that for any n ≥ 1 and δ > 0, there
exists information N that uses n observations with the precision vector ∆ =
[δ, . . . , δ︸ ︷︷ ︸

n

], and a linear algorithm ϕ, such that

ewor
abs (N, ϕ) ≤ M · (dn + δ). (2.75)

Here M is an absolute positive constant independent of n and δ.

Lemma 2.20 If the condition (2.75) is satisfied then

Compabs(ε) ≤ n∗(mε) ( c(mε) + 2 g)

where m = (3M)−1.

Proof Let δ = mε and n = n∗(δ). Let N be such information that it
uses n observations with precisions δ, and let ϕ be such an algorithm that
ewor

abs (N, ϕ) ≤M(dn + δ). Since dn ≤ 2 δ, we have

ewor
abs (N, ϕ) ≤ 3 δ M ≤ 3M mε = ε.

Hence,

Compabs(ε) ≤ comp(N, ϕ) ≤ n c(δ) + (2n− 1)g

≤ n (c(δ) + 2g) = n (mε)) ( c (mε) + 2g) ,

as claimed. 2

The upper and lower bounds on Compabs(ε) give the following theorem.

Theorem 2.23 Assume that for any α > 0,

n∗(α ε) � n∗(ε) and c(α ε) � c(ε),

as ε → 0+. If the conditions (2.72) and (2.75) are satisfied and the κ–
strongly hard element exists, then

Compabs(ε) � n∗(ε) · c(ε), as ε→ 0+.

Furthermore, optimal information uses n � n∗(ε) observations with the same
precision δ � ε. 2
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This theorem has a very useful interpretation. It states that the ε–complexity
is proportional to the cost c(ε) of obtaining the value of a functional with
precision ε, and to the complexity in exact information case with c ≡ 1.
We stress that Theorem 2.23 applies only to problems for which c(ε) and
n∗(ε) tend to infinity at most polynomially in 1/ε, as ε → 0+. It seems
also worthwhile to mention that we obtained the complexity results without
knowing exact formulas for the minimal radii rwor

n (∆).

We now pass to the case of relative noise. We assume that all functionals
L ∈ Λ satisfy ‖L‖F ≤ 1, and that there exists h0 such that ‖h0‖F ≤ 1 and

inf
L∈Λ
|L(h0)| = A > 0. (2.76)

Theorem 2.24 Suppose that the assumptions of Theorem 2.23 and the
condition (2.76) are satisfied. Then

Comprel(ε) � Compabs(ε) � n∗(ε) · c(ε).

Proof Observe first that if |yi − Li(f)| ≤ δi|Li(f)| then |yi − Li(f)| ≤
δi‖Li‖F ‖f‖F ≤ δi. This means that for any information N and f with
‖f‖F ≤ 1, we have Nrel(f) ⊂ Nabs(f). Hence,

ewor
rel (N, ϕ) ≤ ewor

abs (N, ϕ), ∀N, ∀ϕ,

and consequently
Comprel(ε) ≤ Compabs(ε).

This shows the upper bound for Comprel(ε).

As in Section 2.7.2, we can show that for any adaptive information N we
have

radwor
rel (N) ≥ 1

2
min {1− ‖αh0‖F , αA/2} · radwor

abs (N).

Taking α = (1 +A/2)−1 we obtain

radwor
rel (N) ≥ 1

2

A

A+ 2
radwor

abs (N).

Hence, for any B > 2(A+ 2)/A we have

Comprel(ε) ≥ ICompnon
rel (ε) ≥ ICompnon

abs (Bε)

� ICompnon
abs (ε) � Compabs(ε),
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which shows the lower bound for Comprel(ε) and completes the proof. 2

Thus, under some assumptions, the cases of relative and absolute noise are
(almost) equivalent. We note that such an equivalence does not always
hold. For instance, for the problems App and Int of Section 2.10.2 and
information N using n observations of function values with precision δ ∈
(0, 1), we have radwor

rel (N) = +∞. Indeed, the vector y = [a, . . . , a︸ ︷︷ ︸
n

], a > 0, is

noisy information about f1 ≡ a/(1 − δ) and f−1 ≡ a/(1 + δ). We also have
f1, f−1 ∈ E. Hence, for S ∈ {App, Int}

radwor
rel (N) ≥ 1

2
‖S(f1)− S(f−1)‖

= a
2δ

1− δ2
−→ +∞, as a→ +∞.

(See also E 2.74.)

Multivariate approximation

We now apply the obtained results to a concrete problem. We consider
approximation of multivariate functions from noisy data.

Let F = F rs be the space of all real valued functions defined on the s–
dimensional unit cube D = [0, 1]s that possess all partial continuous deriva-
tives of order r, r ≥ 1. The norm in F r

s is given as

‖f‖F = max
0≤k1+···+ks=i≤r

sup
t∈D

∣∣∣∣∣
∂if(t)

(∂x1)k1 . . . (∂xs)ks

∣∣∣∣∣ , f ∈ F,

where t = [t1, . . . , ts]. Information about f is given by noisy values of f at
some points, i.e., exact information is of the form

N(f) = [ f(t1), f(t2), . . . , f(tn) ],

where ti ∈ D, 1 ≤ i ≤ n. We want to approximate S(f) = f in the sup–
norm. That is, formally S : F → G where G is the space of continuous
functions f : D → R with the norm

‖g‖ = ‖g‖∞ = sup
t∈D
|g(t)|.
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We shall show that the assumptions of Theorems 2.23 and 2.24 are sat-
isfied. Clearly, there exists the κ–strongly hard element, for all κ > 2. Since
for any t ∈ D and f ∈ F rs we have

|f(t)| ≤ ‖f‖∞ ≤ ‖f‖F ,

the condition (2.72) holds with K = 1, and ‖L‖F ≤ 1 for any functional L
of the form L(f) = f(t). It is also easily seen that (2.76) is satisfied with
the function f ≡ 1 and A = 1. Hence, it remains to show (2.75). We do it
in two steps.

Lemma 2.21 For the multivariate approximation we have

dn ≥ γ · n−r/s

where γ is positive and independent of n.

Proof Let ψ : R→ R to be an arbitrary nonzero function such that
(i) ψ(x) = 0, for all |x| ≥ 1/2, and
(ii) the rth derivative ψ(r) exists and is continuous.
Let Ψ : Rs → R,

Ψ(t) = αψ(t1) · · ·ψ(ts)

where α 6= 0 is chosen in such a way that ‖Ψ‖F ≤ 1.

Let n ≥ 1 and let N(f) = [ f(t1), . . . , f(tn)], ti ∈ D, be an arbitrary
exact nonadaptive information. Define m ≥ 1 in such a way that (m/2)s ≤
n < ms, and the set K ⊂ D of ms points,

K =

{
x = [x1, . . . , xs] ∈ Rs

∣∣∣ xj =
2ij − 1

m
, 1 ≤ ij ≤ m, 1 ≤ j ≤ s

}
.

The set K determines the collection of ms functions

Ψx(t) = m−rΨ(m(t− x) ), x ∈ K.

They are linearly independent and, moreover, they have mutually different
supports. Since n < ms, there exist real coefficients βx, x ∈ K, not all equal
to zero, such that the function

fN =
∑

x∈K
βxΨx
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is in kerN . We can also assume maxx∈K |βx| = 1 so that ‖fN‖F ≤ 1. Hence,

dn ≥ ‖S(fN )‖ = ‖fN‖∞ = m−r‖Ψ‖∞ = n−r/s 2−rα ‖ψ‖s∞,

and the lemma holds with γ = 2−rα‖ψ‖s∞. 2

We now exhibit exact nonadaptive information Nn and a linear algorithm
ϕn such that

ewor(Nn, [δ, . . . , δ︸ ︷︷ ︸
n

], ϕn) ≤ M(n−r/s + δ),

for all δ and n ≥ (r − 1)s, where M is independent of n and δ.
Assume first that r ≥ 2. Let n ≥ rs. Let k ≥ 1 be the largest integer

such that (k(r − 1) + 1)s = m ≤ n. Information Nn consists of function
evaluations at m equispaced points, i.e., N(f) = {f(t)}t∈K, where

K =

{
t = [t1, . . . , ts]

∣∣∣ ti =
ij

k(r − 1)
, 0 ≤ ij ≤ k(r − 1), 1 ≤ i ≤ s

}
.

Let h = 1/k. Divide the cube D = [0, 1]s onto ks subcubes

Di1...ik = ×sj=1[(ij − 1)h, ijh],

1 ≤ ij ≤ k, 1 ≤ j ≤ s. Observe that each subcube contains exactly rs

points from K. For given information y = {yx}x∈K about f ∈ F rs , the
approximation ϕn(y) is given as such a function w = wy that

(i) on each subcube w is a polynomial of the form

w(t) =
∑

ai1...is(t
1)i1 · · · (ts)is ,

where the summation is taken over all 0 ≤ ij ≤ r − 1, 1 ≤ j ≤ s,
(ii) w interpolates the data y, i.e.,

w(x) = yx, ∀x ∈ K.

Note that w exists and is determined uniquely for any information y. More-
over, w depends linearly on y.

Lemma 2.22 If |yx − f(x)| ≤ δ, ∀x ∈ K, then for all t ∈ D we have

|f(t)− w(t)| ≤ hr

r!

(
s−1∑

i=0

Ai
)

+ δ As
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where

A = sup
0≤x≤r−1

r−1∑

i=0

∣∣∣∣∣∣

r−1∏

j=0,6=i

x− j
i− j

∣∣∣∣∣∣
.

Proof We prove the lemma by induction on s. We assume without loss of
generality that t ∈ [0, h]s.

Let s = 1. Let wf be the polynomial of degree at most r − 1 that
interpolates f at the points ti = ih/(r − 1), 0 ≤ i ≤ r − 1, i.e.,

wf (x) =
r−1∑

i=0

f(ti)




r−1∏

j=0,6=i

x− tj
ti − tj


 .

From the well known formula for the error of interpolation we get

f(t)− w(t) = ( f(t)− wf (t) ) + (wf (t)− w(t) )

=
f (r)(u(t) )

r!

r−1∏

i=0

(t− ti) +
r−1∑

i=0

(yi − f(ti) )




r−1∏

j=0,6=i

t− tj
ti − tj




where 0 ≤ u(t) ≤ h. Hence,

|f(t)− w(t)| ≤ (r!)−1hr + δ A.

Let s > 1. Let t = [t1, . . . , ts] ∈ [0, h]s. Consider the function of one
variable ft1...ts−1(x) = f(t1, . . . , ts−1, x), and the corresponding polynomial
wt1...ts−1(x) = w(t1, . . . , ts−1, x), 0 ≤ x ≤ h. From the inductive assumption
it follows that for all x = ih/(r − 1), 0 ≤ i ≤ r − 1, we have

|ft1...ts−1(x)−wt1 ...ts−1(x)| ≤ hr

r!

(
s−2∑

i=0

Ai
)

+ δ As−1.

As in the case s = 1, let wf be the polynomial of one variable that interpo-
lates ft1...ts−1 at x = ih/(r − 1), 0 ≤ i ≤ r − 1. Then we have

|f(t)− w(t)| ≤ |ft1...ts−1(ts)− wf (ts)| + |wf (ts)− wt1...ts−1(ts)|

≤ hr

r!
+

(
hr

r!

(
s−2∑

i=0

Ai
)

+ δAs−1

)
A

=
hr

r!

(
s−1∑

i=0

Ai
)

+ δ As,
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as claimed. 2

Observe now that h ≈ (r− 1)n−1/s. Thus Lemmas 2.21 and 2.22 yield dn �
n−r/s, and there exists a positive constant M such that for any information
y about f

‖f − ϕn(y)‖∞ ≤ M ( dn + δ ),

This is true also for r = 1 since then we can use the same information and
algorithm as for r = 2.

We summarize our analysis in the following theorem.

Theorem 2.25 If the cost function c satisfies

c(α δ) � c(δ), ∀α > 0,

then for the multivariate approximation we have

Compabs(ε) � Comprel(ε) � c(ε) · ε−s/r.

Furthermore, optimal information uses n = ε−s/r equidistant observations
with precision δ � ε, and piecewise polynomial approximation is the optimal
algorithm.

Notes and Remarks

NR 2.41 Sections 2.10.1 and 2.10.2are original, while Section 2.10.3 is based on
Kacewicz and Plaskota [32].

NR 2.42 Using results from the average case analysis of Chapter 3, one can also
obtain some complexity results for integration in the r.k.h.s W 0

r (0, 1) when only
observations of function values are allowed. See NR 3.30 for details.

NR 2.43 Approximation of smooth functions of a single variable in the case of
noise bounded in the absolute sense by a fixed constant, was also studied by Lee et
al. [47]. In that paper the complexity of information is measured by the memory
needed to store it. Consequently, the ε–information complexity can be interpreted
as the minimal amount of memory sufficient to store information, from which it is
possible to recover a function with given accuracy. With such an interpretation, the
case of absolute noise corresponds to the fact that the fixed point representation of yi
is used with roughly max{ 0, log2 1/δi} bits. The relative noise in turn corresponds
to the floating point representation using the same number of bits. In both cases
the cost function is c(δ) = max{0, log2 1/δ }. A more detailed discussion on this
subject can be found in Kacewicz and Plaskota [32].
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NR 2.44 The techniques used in the proofs of Lemmas 2.21 and 2.22 are well
known and often applied to evaluate diameters of problems with exact information,
and also some n–widths in approximation theory (see also NR 2.28). The fact that
for multivariate approximation we have rwor

n (δ) ≤ M(dn + δ) can be derived from
Babenko [3].

Exercises

E 2.67 Consider the Hilbert case. Suppose that the cost function c satisfies the
following condition: there exists x0 and d > 0 such that xc(x) > d, ∀x ≥ x0. Prove
that then

ICompnon(c; ε) ≥ d

x 0
· ICompnon

(
c0;

√
1 +

1

x 0
ε

)
, ∀ε > 0.

Show also that if the condition is not satisfied then ICompnon(c; ε) = 0, ∀ε > 0.

E 2.68 Let the cost function cln(δ) = ln(1 + δ−2). Prove that then in the Hilbert
case we have

R(T )2 = d ·
(∏n

j=1 λj

eT

)1/n

,

where n = n(T ) is the largest integer for which λn ≥ (
∏n
j=1 λj)

1/ne−T/n, and
1/2 ≤ d ≤ 1.

E 2.69 Use the previous exercise to show that for λj = j−p, j ≥ 1, we have
Comp(cln; ε) � Comp(c0; ε), for all p > 0, while for λj = e−j we have Comp(cln; ε) �
ln(1/ε)2, and Comp(c0; ε) � ln(1/ε).

E 2.70 Show that the equivalence ICompnon(App; 2 ε) � ICompnon(App; ε) holds
iff c(δ) tends to infinity not faster than polynomially in 1/δ, as δ → 0.

E 2.71 Show that Theorem 2.23 can be applied for the problems App and Int.

E 2.72 (Kacewicz and Plaskota) Let F = F rs be the space defined as in the multi-
variate approximation problem. Let Λ be the class of functionals L : F → R of the
form

L(f) =
∂if(t)

(∂x1)k1 . . . (∂xs)ks
, for some t ∈ [0, 1]s,

where k1, . . . , ks and i are certain integers such that 0 ≤ k1 + · · · + ks = i ≤ k,
where 0 ≤ k ≤ r. Show that then

sup
‖f‖F≤1

inf
L∈Λ
|L(f)| ≥ e−min{s,k} (min{1, k/s})k

(with the convention that 00 = 1).
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E 2.73 (Kacewicz and Plaskota) Show that if the space F and the class Λ are as
in the previous exercise, then for any solution operator S, nonadaptive information
N , and precision vector ∆, we have

diamabs(N,∆)

1 + 2 emin{k,s} (min{1, k/s})−k
≤ diamrel(N,∆) ≤ diamabs(N,∆).

E 2.74 (Kacewicz and Plaskota) For given p, 1 ≤ p < +∞, define F = { f ∈
R∞ | ‖f‖p < +∞}, where ‖f‖p = (

∑∞
i=1 |fi|p)1/p, f = [f1, f2, . . .] ∈ R∞. For

‖f‖p ≤ 1, we approximate values S(f) of the operator S : F → F ,

S(f) = [αif1, α2f2, . . . ],

where αi = 2(1−i)/p, i ≥ 1. Exact information is given as Nn(f) = [f1, f2, . . . , fn].
Show that

sup
‖f‖p≤1

min
1≤i≤n

|fi| = n−1/p,

and that for δi = αn+1/αi, 1 ≤ i ≤ n, ∆n = [δ1, . . . , δn], we have

diamrel(Nn,∆n)

diamabs(Nn,∆n)
≤ n−1/p.

E 2.75 Theorem 2.23 cannot be applied if instead of the multivariate approxima-
tion problem, S(f) = f , the multivariate integration, S(f) =

∫
D f(t)dt, is consid-

ered. Why?



Chapter 3

Average case setting

3.1 Introduction

This chapter is devoted to the average case setting. In the average case
setting, we are interested in the average performance of the error and cost of
algorithms. The material is organized similarly to the worst case setting of
Chapter 2. That is, we first deal with optimal algorithms, then we analyze
the optimal information, and finally, we present some complexity results.

To study the average performance of the error and/or cost, we have to
assume some probability distribution µ on the space F of the problem el-
ements as well as some distribution of the information noise. The latter
assumption means that information is corrupted with random noise. Basi-
cally, we consider Gaussian distributions (measures) which seem to be most
natural and are most often used in practice.

In Section 3.2, we give a general formulation of the average case setting.
We also introduce the concept of the (average) radius of information which,
similarly to the worst case, provides a sharp lower bound on the (average)
error of algorithms.

Then we pass to linear problems with Gaussian measures. These are
problems where the solution operator is linear, µ is a Gaussian measure, and
information is linear with Gaussian noise. In Section 3.3, we recall what
a Gaussian measure on a Banach space is and list some of its important
properties. In Sections 3.4 to 3.6 we study optimal algorithms. Formulas
for the optimal algorithm and radius of information are presented in Section
3.8.1. The optimal algorithm turns out to be linear and unique. In Section
3.5, we specialize the obtained results to the solution operator being a linear

129



130 CHAPTER 3. AVERAGE CASE SETTING

functional. In particular, we show that in this case the problem is as difficult
as an appropriately chosen one dimensional subproblem.

As we know, in the worst case setting optimal algorithms are smoothing
splines with appropriately chosen parameter α. It turns out that a simi-
lar fact holds in the average case. More precisely, in Section 3.6 we show
that for linear problems with Gaussian measures, the optimal algorithm can
be interpreted as 1/2–smoothing spline algorithm. This smoothing spline
corresponds to Hilbert norms ‖ · ‖H and ‖ · ‖Y which are induced by the
distribution µ on F and by the distribution of noise, correspondingly. Note
that, unlike in the worst case, the optimal parameter α = 1/2 is constant
and the optimal regularization parameter γ equals the variance σ2 of noise.

The fact that smoothing splines are optimal in the worst and average
cases enables us to establish a correspondence between the both settings.
Namely, the optimal algorithm for the average case is almost optimal for a
corresponding problem in the worst case, where the set E ⊂ F is the unit
ball in ‖·‖H and the noise is bounded uniformly in the norm ‖·‖Y . Moreover,
for approximating a linear functional, the corresponding worst and average
radii of the same linear information differ only by a factor of

√
2.

Next, we allow information to vary. In Section 3.7 we carefully define non-
adaptive and adaptive information. Then we show that for linear problems
with Gaussian measures, adaptive information cannot reduce the minimal
average error given by nonadaptive information. That is, adaption does not
help with respect to the error.

The problem of optimal information is studied in Section 3.8. Using a
similar technique to that from the worst case with Hilbert norms, in Section
3.8.1 we show the optimal selection of functionals forming information, for
n independent observations with given variances σ2

i of noise. The formulas
for optimal information and minimal radius are given in terms of σ2

i ’s and
eigenvalues of the correlation operator of the a priori Gaussian distribution
on the space G. It turns out that for independent observations with the same
variances, the minimal radius converges to zero with n, but not faster than
σ/
√
n. We also show relations between optimal information in the average

case and the corresponding worst case settings. We construct information
which is almost optimal for both settings.

Tight bounds on the minimal error for function approximation and inte-
gration on the Wiener space, are found in Section 3.8.2. For these problems,
independent noisy observations of function values with the same variances
are assumed. Observations at equidistant points turn out to be almost op-
timal.
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In the last two sections we study the average case complexity. In Section
3.9 we show the second theorem on adaption. It says that, under some
assumptions, adaption cannot help not only with respect to the error but
also with respect to the average cost of information. That is, for any adaptive
information there exists nonadaptive information whose radius and cost are
not (much) larger than the radius and cost of the adaptive information. This
holds when the minimal cost of information with radius not greater than

√
ε

is a semiconvex function of ε. This fact and linearity of optimal algorithms
imply, similarly to the worst case, that the ε–complexity essentially equals
the information complexity.

In Section 3.10 we apply the general complexity results to two special
problems. We first consider a linear continuous problem with Gaussian mea-
sures and with information consisting of functionals bounded by 1 in a norm
induced by the measure µ. We find sharp bounds on the ε–complexity de-
pendent on the cost function. We note that the situation here reminds that
from the worst case setting with Hilbert norms.

Finally, we show some complexity bounds for function approximation and
integration on the Wiener space, based on information about noisy function
values.

3.2 Information and its radius

Let S : F → G, where F is a linear space and G is a normed space, be a given
solution operator. As in the worst case setting, we wish to find approxima-
tions to S(f) for f ∈ F . Basically, the approximations are constructed as
before, i.e., by means of an algorithm that uses some information. However,
we now assume that the elements f ∈ F as well as information values y are
distributed randomly, according to some probability measures.

More specifically, we assume that the space F is equipped with a prob-
ability measure µ defined on a σ–field of F , with respect to which S is a
measurable mapping. The measure µ shows the probability of occurrence of
elements f ∈ F . Observe that the exact solution S(f) can also be viewed as
a random variable distributed according to the measure ν = µS−1,

ν(B) = µ(S−1(B) ) = µ ({ f ∈ F | S(f) ∈ B}),

for all Borel sets B of G.

An information operator assigns to any f ∈ F a probability measure πf
on a set Y of real sequnces. This measure shows how often certain values
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y ∈ Y occur when gaining information about f . Formally, an information
operator as a mapping

N : F → PY

where PY denotes all probability distributions on the Borel sets of Y . The
Borel structure on Y is given in a natural way. That is, B ⊂ Y is a Borel set
iff B ∩Rn are Borel sets of Rn. In particular, Y ∩Rn must be Borel sets of
Rn ∀n. We additionally assume that the mapping f → πf (B) is measurable
for any measurable set B ⊂ Y .

Noisy information about f ∈ F is any vector y ∈ Y which is a realization
of the random variable distributed according to πf = N(f).

If πf is a Dirac measure for any f ∈ F a.e. (almost everywhere), i.e., if
there are elements N(f) ∈ Y such that for any B

πf (B) =

{
0 N(f) 6∈ B,
1 N(f) ∈ B,

then information is called exact. In this case the vector y = N(f) is observed
with probability one. Otherwise, information is noisy.

We now give two examples.

Example 3.1 Suppose we want to approximate a one dimensional ran-
dom variable f with normal distribution, f ∼ N (0, λ) where λ > 0, based on
information y ∼ N (f, σ2), σ2 ≥ 0. In this case F = G = R and S(f) = f .
The measure µ on F is defined as

µ(B) =
1√
2πλ

∫

B
e−x

2/(2λ) dx, ∀B– Borel set of R.

Furthermore, the information operator N : R → PR is given as N(f) =
N (f, σ2). That is, for σ2 > 0 the noisy information y about f is distributed
according to the measure

πf (B) =
1√

2πσ2

∫

B
e−(y−f)2/(2σ2) dy,

while for σ2 = 0 we have πf (B) = 0 if f 6∈ B, and πf (B) = 1 otherwise.
Hence, for σ2 = 0 information is exact, while for σ2 > 0 it is noisy.

Example 3.2 Suppose we wish to approximate the value of the integral
S(f) =

∫ 1
0 f(t) dt of a continuous function f : [0, 1] → R. Information is
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given by independent noisy observations of f at n points. That is, in the
ith observation we obtain yi = f(ti) + xi where the noise xi ∼ N (0, σ2),
1 ≤ i ≤ n, and σ2 > 0. This corresponds to Y = Rn and N(f) = πf where

πf (B) = ( 2π σ2)−n/2
∫

Rn
exp

{
− 1

2σ2

n∑

i=1

(yi − f(ti))
2

}
dy1 dy2 . . . dyn.

As µ we take the classical Wiener measure, µ = w. We recall that the
Wiener measure is defined on the σ–field of Borel sets of the space

F = { f : [0, 1]→ R | f–continuous, f(0) = 0 },

with the supremum norm, ‖f‖ = supx∈[0,1] |f(x)|. It is uniquely determined
by the following condition. Let m ≥ 1 and let B be a Borel set of Rm. Let
Bt1...tm = { f ∈ F | ( f(t1), . . . , f(tm) ) ∈ B } where 0 < t1 < t2 < · · · < tn ≤
1. Then

w(Bt1 ...tm) = { (2π)nt1(t2 − t1) . . . (tn − tn−1) }−1/2

∫

B
exp

{
−1

2

(
x2

1

t1
+

(x2 − x1)2

t2 − t1
+ · · · + (xn − xn−1)2

tn − tn−1

)}

dx1 dx2 . . . dxn. 2

Let N : F → PY be a given information operator. For an algorithm ϕ : Y →
G, we define its error as the square root of the average performance of the
difference ‖S(f) − ϕ(y)‖2, over all f ∈ F and y ∈ Y . Hence, the average
case error of ϕ is given as

eave(N, ϕ) =

√∫

F

∫

Y
‖S(f)− ϕ(y)‖2 πf (dy)µ(df) .

In order that the error be well defined, we consider only such algorithms
ϕ that the mapping y → ϕ(y) is measurable with respect to the a priori
distribution µ1 on Y . This distribution is given as

µ1(B) =

∫

F
πf (B)µ(df), ∀B–measurable set of Y.

Note that we can equivalently say that the error is taken with respect to
the a priori distribution µ̃ of elements (f, y) in the product space F × Y ,

µ̃(B) =

∫

F
πf (Bf )µ(df), ∀B–measurable set of F × Y,
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where Bf = { y ∈ Y | (f, y) ∈ B }.

Let N be a given information operator. Our first aim will be to minimize
the error eave(N, ϕ) over all algorithms ϕ. As usually, an algorithm ϕopt for
which

eave(N, ϕopt) = inf
ϕ

eave(N, ϕ).

is called optimal.

We assume that there exists a unique (up to a set of µ1–measure zero)
family {µ2(·|y)}y∈Y of probability measures that satisfy the following condi-
tions:

(i) µ2(·|y) are probability measures on the σ–field of F , ∀y a.e.,

(ii) the maps y → µ2(B|y) are µ1–measurable for all y ∈ Y , and

(iii) µ̃(B) =
∫
Y µ2(By|y)µ1(dy), ∀B, By = { f ∈ F | (f, y) ∈ B }.

Such a family is called a regular conditional probability distribution. It exists
under some mild assumptions, e.g., if F is a separable Banach space and
Y = Rn; see NR 3.3. We interpret µ2(·|y) as the a posteriori (or conditional)
distribution on F , after information y has been observed.

The most important for us will be the property (iii). It says that the
measure µ̃ can be equivalently defined by the right hand side of (iii). Hence,
the error of an algorithm ϕ that uses information N can be rewritten as

eave(N, ϕ) =

√∫

Y

∫

F
‖S(f)− ϕ(y)‖2 µ2(df |y)µ1(dy) . (3.1)

For a probability measure ω on G, let

r(ω) = inf
a∈G

√∫

G
‖g − a‖2 ω(dg) .

We call r(ω) a radius of the measure ω. An element gω ∈ G is a center of ω

iff r(ω) =
√∫

G ‖g − gω‖2ω(dg).

Example 3.3 Suppose that the measure ω is centrosymmetric. That is,
there exists an element g∗ ∈ G such that for any measurable set B ⊂ G
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it holds ω(B) = ω({ 2 g∗ − g | g ∈ B }). Then g∗ is the center of ω and

r(ω) =
√∫

G ‖g − g∗‖2 ω(dg). Indeed, since

‖x+ y‖2 + ‖x− y‖2 ≥ 1

2
( ‖x + y‖+ ‖x− y‖ )2 ≥ 2 ‖x‖2,

for any a ∈ G we have
∫

G
‖g − a‖2 ω(dg) =

∫

G
‖2g∗ − g − a‖2 ω(dg)

=
1

2

∫

G
‖(g∗ − p) + (g∗ − a)‖2 + ‖(g − g∗)− (g∗ − a)‖2

≥
∫

G
‖g − g∗‖2 ω(dg). 2

For y ∈ Y , define the measures ν2(·|y) = µ2(S−1(·)|y). That is, ν2(·|y) is
the a posteriori distribution of the elements S(f) after information y has
been observed. Assuming the mapping y → r(ν2(·|y) ) is µ1–measurable, an
(average) radius of information N is given as

radave(N) =

√∫

Y
( r(ν2(·|y)) )2 µ1(dy) .

Hence, radave(N) is the average radius of the conditional distributions in G.

Lemma 3.1 If the space G is separable then the function

ψ(y) = inf
a∈G

∫

G
‖a− g‖2 ν2(dg|y), y ∈ Y,

is µ1–measurable.

Proof It suffices to show that the set

B = { y ∈ Y | ψ(y) ≥ a }
is µ1–measurable for any a ∈ R. Let ψ(x, y) =

∫
G ‖x− g‖2 ν2(dg|y), x ∈ G,

y ∈ Y . Then ψ is continuous with respect to x and measurable with respect
to y, and ψ(y) = infx∈G ψ(x, y). Choosing a countable and dense in G set
A, we obtain

B = { y ∈ Y | ∀x ∈ G, ψ(x, y) ≥ a }
= { y ∈ Y | ∀x ∈ A, ψ(x, y) ≥ a }
=

⋂

x∈A
{ y ∈ Y | ψ(x, y) ≥ a }.
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Hence, B(a) is a countable intersection of measurable sets. This implies that
B is also measurable. 2

From now on we assume that the space G is separable. As we have just
shown, separability of G makes the radius of information well defined. We
are ready to show the main result of this section.

Theorem 3.1 For any information operator N we have

inf
ϕ

eave(N, ϕ) = radave(N).

If radave(N) < +∞ then a necessary and sufficient condition for existence
of the optimal algorithm is that for all y ∈ Y a.e., there exists a center gy of
the measure ν2(·|y). In particular, the algorithm

ϕctr(y) = gy

is optimal.

Proof We can assume that radave(N) < +∞. Then the set A = { y ∈
Y | r(ν2(·|y)) = +∞} is of µ1–measure zero. Let ψ(x, y) be as in the proof
of Lemma 3.1. We already mentioned that ψ is continuous with respect to
x. We also have supx∈G ψ(x, y) = +∞. Indeed, there is t > 0 such that the
ball Bt = { g ∈ G | ‖g‖ ≤ t } has positive ν2(·|y)–measure. Then, for x ∈ G
such that ‖x‖ > t, we have

ψ(x, y) ≥
∫

Bt
‖x− g‖2 ν2(dg|y) ≥ ν2(Bt|y) · ( ‖x‖ − t )2,

and consequently ψ(x, y)→ +∞ as x→ +∞.
Thus, for fixed y ∈ Y \ A the function ψ(x, y) assumes all values from

the interval ( r(ν2(·|y)), +∞). Hence, for any ε > 0 we can find an element
ay ∈ G such that

ψ(ay, y) =

∫

G
‖g − ay‖2 ν2(dg|y) = ( r( ν2(·|y) ) )2 + ε2. (3.2)

We now define ϕε(y) = ay for y ∈ Y \A, and ϕε(y) = 0 for y ∈ A. Then the
algorithm ϕε is µ1–measurable and due to (3.1) and (3.2) we have

eave(N, ϕε) =

√∫

Y
( r(ν2(·|y) )2 µ1(dy) + ε2 ≤ radave(N) + ε.
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On the other hand, for an arbitrary algorithm ϕ we have

(eave(N, ϕ))2 =

∫

Y

∫

F
‖S(f)− ϕ(y)‖2 µ2(df |y)µ1(dy)

=

∫

Y

∫

G
‖g − ϕ(y)‖2 ν2(dg|y)µ1(dy)

≥
∫

Y
(r(ν2(·|y)) )2 µ1(dy) = (radave(N, ϕ) )2,

which proves the first part of the theorem.

Let ϕ be such an algorithm that eave(N, ϕ) = radave(N). Let ψ1(y) =∫
G ‖g − ϕ(y)‖2 ν2(dg|y) and ψ2(y) = (r(ν2(·|y)) )2. Then ψ1(y) ≥ ψ2(y),
∀y ∈ Y , and

∫
Y ψ1(y)µ1(dy) =

∫
Y ψ2(y)µ1(dy). It is a very known fact

that this can hold if and only if ψ1(y) = ψ2(y), for all y a.e. Since the last
equality means that ϕ(y) is a center of ν2(·|y), the proof is complete. 2

Following the terminology of the worst case setting we can call ϕctr a central
algorithm. We see that unlike in the worst case, in the average case setting
optimal algorithm may differ from the central algorithm only on a set of
µ1–measure zero.

In some cases, the optimal algorithms turn out to be mean elements of
conditional distributions. Recall that mω is the mean element of a measure ω
defined on a separable Banach space G iff for any continuous linear functional
L : G→ R it holds

∫
G L(g)ω(dg) = L(mω). We also recall that ν is the a

priori distribution of S(f) ∈ G, ν = µS−1.

Lemma 3.2 Let G be a separable Hilbert space and let m(y) be the mean
elements of the measures ν2(·|y), y ∈ Y . Then the unique (up to a set of
µ1–measure zero) central algorithm is ϕctr(y) = m(y) and

radave(N) = eave(N, ϕctr) =

√∫

G
‖g‖2 ν(dg) −

∫

Y
‖m(y)‖2 µ1(dy) .

Proof For any y ∈ Y and a ∈ G we have

∫

G
‖g − a‖2 ν2(dg|y) = ‖a‖2 − 2 〈a,m(y)〉 +

∫

G
‖g‖2 ν2(dg|y)

= ‖a−m(y)‖2 +

∫

G
‖g‖2 ν2(dg|y) − ‖m(y)‖2.
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The minimum of this is attained only at a = m(y). Hence, ϕopt(y) = m(y)
∀y a.e., and

(radave(N))2 = (eave(N, ϕopt))
2

=

∫

Y

∫

G
‖g‖2 ν2(dg|y)µ1(dy) −

∫

Y
‖m(y)‖2 µ1(dy).

To complete the proof, observe that
∫
G ‖g‖2ν2(dg|y) =

∫
F ‖S(f)‖2µ2(df |y),

and consequently

∫

Y

∫

G
‖g‖2 ν2(dg|y)µ1(dy) =

∫

F
‖S(f)‖2 µ(df) =

∫

G
‖g‖2 ν(dg). 2

Notes and Remarks

NR 3.1 Modulo some details, main results of this section have been adopted from
Traub et al. [Sect.2,3 of Chap.6][108] (see also Wasilkowski [117]), where exact
information is considered.

NR 3.2 We assume that the algorithm is a measurable mapping. One can allow
arbitrary algorithms and define the error eave(N, ϕ) as the upper integral, as in the
papers cited in NR 3.1 (see also Novak [63] where even nonmeasurable S and N are
allowed). As it will turn out, for problems considered in this monograph optimal
algorithms in both cases are the same.

NR 3.3 A general theorem on existence of the regular conditional probability dis-
tribution reads as follows. Let X and Y be two separable Banach spaces, and let
ω be a probability measure on Borel sets of X . Let ψ : X → Y be a measur-
able mapping and ω1 = ωψ−1. Then there exists a family of probability measures
{ω2(·|y)}y∈Y such that:

(i) ω2(ψ−1(y)|y) = 1, ∀y a.e.,

(ii) for any Borel set B the mapping y → ω2(B|y) is measurable, and

(iii) ω(B) =
∫
Y
ω2(B|y)ω1(dy).

Moreover, any other family satisfying (i)–(iii) may differ from {µ2(·|y)}y∈Y only on
a set of µ1–measure zero. For a proof, see Parthasarathy [71] or Varadarajan [114].

Observe that that theorem tells about decomposition of the measure ω with
respect to the “exact” mapping ψ. The “noisy” version can be derived as follows.
We set X = F × Y , ω = µ̃, and ψ(f, y) = y, ∀f ∈ F , ∀y ∈ Y . Then ωψ−1 = µ1.
Hence, there exists a family {µ̃2(·|y)}y∈Y of measures defined on F × Y , such that
µ̃2(·|y) is concentrated on F × {y} a.e., the maps y → µ̃2(B|y) are measurable and
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µ̃(B) =
∫
Y µ̃2(B|y)µ1(dy). Letting µ2(·|y) = µ̃2(· × {y}|y), ∀y ∈ Y , we obtain that

µ2(·|y) are concentrated on F a.e., the maps µ2(B|·) are measurable and

µ̃(B) =

∫

Y

µ̃2(B|y)µ1(dy) =

∫

Y

µ2(By|y)µ1(dy),

as claimed. We also note that if F is a Banach space and Y = Rn, then F × Y is
also a Banach space and the regular conditional distribution exists.

NR 3.4 In the exact information case and linear information N , the radius of N
is closely related to average widths, see e.g., Magaril–Il’yaev [51], Maiorov [53] [54],
Sun and Wang [104].

Exercises

E 3.1 Give an example of a measure ω for which
1. The center does not exist.
2. The center is not unique.

E 3.2 A diameter of a measure ω on G is defined as

d(ω) =

√∫

G

∫

G

‖g1 − g2‖2 ω(dg)ω(dg) .

Consequently, a diameter of information N is given as

diamave(N) =

√∫

Y

(d(µ2(·|y) )2 µ1(dy) .

Show that r(ω) ≤ d(ω) ≤ 2 · r(ω) and radave(N) ≤ diamave(N) ≤ 2 · radave(N).

E 3.3 Let the space G of the previous exercise be a separable Hilbert space. Show
that then d(ω) =

√
2 · r(ω) and diamave(N) =

√
2 · radave(N).

E 3.4 Let F = Rm and let µ be the weighted Lebesgue measure,

µ(A) =

∫

A

α(f) dmf,

for some positive α : Rm → R+ such that
∫
Rm α(f) dmf = 1, where dm is the m–

dimensional Lebesgue measure. Consider the information operatorN with Y = Rn,
given as N(f) = πf ,

πf (B) =

∫

B

β(y −N(f)) dny,

where N : Rm → Rn, β : Rn → R+ and
∫
Rn β(y) dny = 1. Show that in this case

µ1(B) =

∫

B

γ(y) dny and µ2(A|y) =
1

γ(y)

∫

A

α(f)β(y −N(f)) dmf,

where γ(y) =
∫
Rm α(f)β(y −N(f)) dmf , ∀y ∈ Y .
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E 3.5 Let the solution operator S : F → G, measure µ on F and information
N(f) = πf with Y = Rn be given. Define the space F̃ = F × Y , solution operator

S̃ : F̃ → G, measure µ̃ on F̃ and exact information operator Ñ : F → Y as

S̃(f, y) = S(f),

µ̃(B) =

∫

F

πf (Bf )µ(df),

Ñ(f, y) = y.

Show that for any algorithm ϕ : Y → G we have

eave(N, ϕ;S, µ) = ẽave(Ñ , ϕ; S̃, µ̃).

(The second quantity stands for the average error of ϕ with respect to µ̃, for ap-
proximating S̃(f, y) based on exact information y = Ñ(f, y).)

3.3 Gaussian measures on Banach spaces

In our study a crucial role will play Gaussian measures defined on Banach
spaces. In this section, we recall what a Gaussian measure is and cite these
properties of Gaussian measures that will be needed later.

3.3.1 Basic properties

Assume first that F is a finite dimensional space, F = Rd, d < +∞. A
Gaussian measure µ on Rd is uniquely defined by its mean element m ∈ Rd
and correlation operator (matrix) Σ : Rd → Rd which is symmetric and
nonnegative definite, Σ = Σ∗ ≥ 0. If m = 0 and Σ is positive definite,
Σ > 0, then

µ(B) =
1

(2π)d/2(det Σ)1/2

∫

B
exp

{
−1

2
〈Σ−1f, f 〉2

}
df. (3.3)

(Here df stands for the Lebesgue measure on Rd). In the case m 6= 0
and/or singular Σ, the Gaussian measure µ is concentrated on m+X1 where
X1 = Σ(X) and given as follows. Let Σ1 : X1 → X1, Σ1(x) = Σ(x) ∀x ∈ X1,
and let d1 = dimX1. Then, for any B = m+B1 where B1 is a Borel subset
of X1, the measure µ(B1) is given by the right hand side of (3.3) with Σ,
d and B replaced by Σ1, d1 and B1, respectively, and with the Lebesgue
measure df in X1.

If m = 0 and Σ = I is the identity then µ is called the standard d–
dimensional Gaussian distribution.
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Let µ be a Gaussian measure on Rd. Then for any x, x1, x2 ∈ Rd we
have

∫
Rn〈x, f〉2 µ(df) = 〈x,m〉2 and

∫

Rd
〈x1, f −m〉2〈x2, f −m〉2 µ(df) = 〈Σx1, x2〉2 = 〈Σx2, x1〉2.

Consider now a more general case when F be a separable Banach space.
A Borel measure µ on F is Gaussian iff for any n and any continuous linear
mapping N : F → Rn, the measure µN = µN−1 given as

µ(N−1(B) ) = µ { f ∈ F | N(f) ∈ B }, ∀B–Borel set of Rn,

is Gaussian.

As in the finite dimensional case, any Gaussian measure µ defined on a
separable Banach space F is determined by its mean element mµ ∈ F and
correlation operator Cµ : F ∗ → F . 1 They are defined as

L(mµ) =

∫

F
L(f)µ(df), ∀L ∈ F ∗,

and

L1(CµL2) =

∫

F
L1(f −mµ)L2(f −mµ)µ(df), ∀L1, L2 ∈ F ∗.

That is, for any mapping N(f) = [L1(f), . . . , Ln(f)] where Li ∈ F ∗, 1 ≤
i ≤ n, the Gaussian measure µN−1 has mean element m = N(mµ) and
correlation matrix Σ = {Li(CµLj)}ni,j=1.

The correlation operator is always symmetric, L1(CµL2) = L2(CµL1),
and nonnegative definite, L(CµL) ≥ 0. It is positive definite, i.e., L(CµL) >
0 ∀L 6= 0, iff µ has full support, supp µ = F . In general, µ is concentrated
on the hyperplane mµ + Cµ(F ∗).

Suppose that F is a separable Hilbert space. Then Cµ : F ∗ = F → F
is the correlation operator of a Gaussian measure on F iff it is symmetric,
nonnegative definite and has a finite trace, i.e.,

trace(Cµ) =

∫

F
‖f‖2 µ(df) =

∞∑

i=1

〈Cµηi, ηi〉 < +∞,

1For F = Rd or, more generally, for F being a Hilbert space we have F ∗ = F . Then
Cµ can be considered as an operator in F , Cµ : F → F .
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where ηi, i ≥ 1, is a complete orthonormal system in F .
The complete characterization of correlation operators of Gaussian mea-

sures on Banach spaces is not known. However, in this case we have the
following fact. Let Cµ be the correlation operator of a Gaussian measure on
F . Let a ∈ F and let C ′ : F ∗ → F satisfy the following conditions: C ′ is sym-
metric, L1(C ′L2) = L2(C ′L1), and 0 ≤ L(C ′L) ≤ L(CµL), ∀L1, L2, L ∈ F ∗.
Then there exists a (unique) Gaussian measure on F with mean element a
and correlation operator C ′.

The characteristic functional of a measure µ is given as ψµ : F ∗ → C,

ψµ(L) =

∫

F
ei L(f) µ(df) (i =

√
−1).

Any measure is uniquely determined by its characteristic functional. If µ is
Gaussian with mean mµ and correlation operator Cµ then

ψµ(L) = exp

{
i L(mµ)− 1

2
L(CµL)

}
.

The correlation operator Cµ generates the µ-semi-inner product on the
space F ∗. It is defined as 〈·, ·〉µ : F ∗ × F ∗ → R,

〈L1, L2〉µ = L1(CµL2) = L2(CµL1)

=

∫

F
L1(f)L2(f)µ(df), L1, L2 ∈ F ∗.

We denote by ‖ · ‖µ the corresponding semi-norm, ‖L‖µ =
√
〈L,L〉µ. If

supp µ = F then Cµ is one-to-one and 〈·, ·〉µ is an inner product and ‖ · ‖µ is
a norm. The space F ∗ with the norm ‖ · ‖µ is complete only if dimF < +∞.
µ–orthogonality in F ∗ means orthogonality with respect to 〈·, ·〉µ.

3.3.2 Gaussian measures as abstract Wiener spaces

We noticed that any Gaussian measure µ is determined by its mean and
correlation operator. Sometimes it is convenient to define µ in another way.

Let H be a separable Hilbert space. For any (cylindrical) set B ⊂ H of
the form B = { g ∈ H | P (g) ∈ A }, where P is the orthogonal projection in
H onto a finite dimensional subspace of H and A is a Borel set in P (H), we
let

µ′(B) =
1

(
√

2π)n

∫

A
e−‖g‖

2
H/2 dg (3.4)
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where n = dimP (H) and dg is the Lebesgue measure on P (H). That is, µ′ is
the standard weak distribution on the algebra of cylindrical sets. Note that
µ′ is an additive measure but, in case dimH = +∞, it cannot be extended
to a σ–additive measure on the Borel σ-field of F . Let ‖·‖F be another norm
on H which is weaker than the original norm ‖ · ‖H , i.e., ‖ · ‖F ≤ K‖ · ‖H
for some constant K > 0. Let F be the closure of H with respect to ‖ · ‖F .
It turns out that if ‖ · ‖F possesses some additional properties (it is in some
sense measurable, see NR 3.8), then there exists a unique σ–additive measure
µ defined on the Borel sets of F , such that the following holds. For any n
and continuous linear functionals Li ∈ F ∗, 1 ≤ i ≤ n, we have

µ( { f ∈ F | (L1(f), . . . , Ln(f) ) ∈ B } )

= µ′( {g ∈ H | (〈gL1 , g〉H , . . . , 〈gLn , g〉H ) ∈ B } ),

for all Borel sets B ⊂ Rn. Here gL is the representer of L in H, i.e.,
L(f) = 〈gL, f〉H for f ∈ H or, in other words, gL = e∗L where e : H → F
is the continuous embedding. The pair {H,F} is called an abstract Wiener
space.

Observe that for the measure µ constructed as above we have

∫

F
L(f)µ(df) = (2π‖gL‖2H)−1/2

∫

R
x exp{−x2/(2‖gL‖2H)} dx = 0

and

L1(CµL2) =

∫

F
L1(f)L2(f)µ(df) = 〈gL1 , gL2〉H

∀L,L1, L2 ∈ F ∗. Hence, µ is the zero mean Gaussian measure with pos-
itive definite correlation operator Cµ(L) = gL. Moreover, Cµ(F ∗) ⊂ H ⊂
Cµ(F ∗) = F .

Such an extension of µ′ to a Gaussian measure µ always exists and is not
unique. For instance, we can take ‖g‖F =

√
〈Ag, g〉H where A : H → H is an

arbitrary symmetric, positive definite operator with finite trace. Then the
resulting space F is a separable Hilbert space and the correlation operator
of µ is given by the continuous extension of A to the operator A : F → F .

On the other hand, for any separable Banach space F equipped with
a zero mean Gaussian measure µ, there exists a unique separable Hilbert
space H, such that Cµ(F ∗) ⊂ H ⊂ Cµ(F ∗) and {H,F1} with F1 = supp µ =
Cµ(F ∗) is an abstract Wiener space. The space H is given as follows. Let
H0 = Cµ(F ∗). For f2, f2 ∈ H0, we define 〈f1, f2〉H = 〈L1, L2〉µ where Li are
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arbitrary functionals satisfying CµLi = fi, i = 1, 2. Since 〈f1, f2〉H does not
depend on the choice of Li, it is a well defined inner product on H0. Then
H is the closure of H0 with respect to the norm ‖ · ‖H =

√
〈·, ·〉H . Clearly,

(3.4) also holds.

Thus any zero mean Gaussian measure on a separable Banach space can
be viewed as an abstract Wiener space. And, of course, vice versa.

In the end, consider the case when H in an abstract Wiener space {H,F}
is an r.k.h.s. with r.k. R : T ×T → R (see Section 2.6.4). Suppose that the
functionals Lt(f) = f(t), f ∈ F , are continuous in F for all t ∈ T . Then we
always have

Lt(CµLs) = 〈Rt, Rs〉H = R(t, s) ∀s, t ∈ T ,

no matter what norm ‖ · ‖F has been used. Therefore the reproducing ker-
nel R is also called the covariance kernel. µ is determined uniquely by its
covariance kernel.

Example 3.4 Let r ≥ 0. Let H = W 0
r+1 be the reproducing kernel

Hilbert space of Example 2.12 with (a, b) = (0, 1). That is,

W 0
r+1 = { f : [0, 1]→ R | f (r)–abs. cont.,

f (i) = 0, 0 ≤ i ≤ r, f (r+1) ∈ L2([0, 1]) }

Let ‖f‖Cr = sup0≤x≤1 |f (r)(x)|. Then ‖f‖Cr ≤ ‖f‖Wr+1 . The space W 0
r+1

can be completed with respect to the norm ‖ · ‖Cr . The resulting space is a
separable Banach space,

C0
r = { f : [0, 1]→ R | f (r)–continuous, f (i)(0) = 0, 0 ≤ i ≤ r }.

Then {W 0
r+1, C

0
r } is an abstract Wiener space. That is, µ constructed

based on the weak distribution on W 0
r is a well defined Gaussian mea-

sure on the Borel sets of C0
r . In the case r = 0 we obtain the classical

Wiener measure w of Example 3.2, where the covariance kernel R(s, t) =∫ 1
0 G0(s, u)G0(t, u) du = min{s, t}. For arbitrary r, µ is called the r–fold

Wiener measure and denoted by wr. 2

The name for wr is justified by the following property. For a Borel set
B ⊂ C0

r , let Dr(B) = { f (r) | f ∈ B }. Then wr = wDr. To see this,



3.3. GAUSSIAN MEASURES ON BANACH SPACES 145

observe that w̃r = wDr is a well defined Borel measure on C0
r . Since w = w0

is uniquely determined by its covariance kernel R(s, t) = min{s, t}, w̃r is
uniquely determined by the equation

∫
C0
r
f (r)(s)f (r)(t)wr(df) = min{s, t},

s, t ∈ [0, 1]. On the other hand, the representer of the functional f (r)(t) in
W 0
r+1 is given as Gr(t, ·). Hence,

∫

C0
r

f (r)(s)f (r)(t)wr(df) =

∫ 1

0
G(r)
r (s, u)G(r)

r (t, u) du

=

∫ 1

0
G0(s, u)G0(t, u) du = min{s, t},

and w̃r = wr.

Notes and Remarks

NR 3.5 For references about Gaussian measures on separable Hilbert and Banach
spaces see, e.g., Kuo [44], Parthasarathy [71], Skorohod [95], Vakhania [112], Vakha-
nia et al. [113].

NR 3.6 Let F all be the space of all functions f : [a, b] → R. Then any function
f(t), a ≤ t ≤ b, can be viewed as a realization of the stochastic process corre-
sponding to a covariance kernel R(s, t), a ≤ s, t ≤ b. For instance, the process
corresponding to the kernel R(s, t) = min{s, t} is called a Brownian motion. The
reader interested in stochastic processes is referred to, e.g., Gikhman and Skorohod
[16].

NR 3.7 Some interesting things about Gaussian measures on the space C([0, 1])
can be found in Parthasarathy [71]. In particular, he gives a sufficient condition for
covariance kernel R : [0, 1]2 → R to determine a unique probability measure µ on
C([0, 1]). Namely, it suffices that there exist constants α, β, K > 0, such that for
all t1, t2 ∈ [0, 1] ∫

R2

|x1 − x2|α µt1t2(dx) ≤ K |t1 − t2|1+β .

Here x = (x1, x2) and µt1t2 is the Gaussian measure in R2 with correlation matrix
{R(ti, tj)}2i,j=1.

NR 3.8 A norm ‖ · ‖F in a Hilbert space H is called measurable iff for any ε > 0
there exists a finite dimensional orthogonal projection P0, such that for any finite
dimensional orthogonal projection P ⊥ P0 it holds

µ′( { g ∈ H | ‖Pg‖F > ε } ) ≤ ε.

If ‖ · ‖F is measurable then the weak measure µ′ can be extended to a measure µ
defined on the closure F of H with respect to ‖ · ‖F .
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NR 3.9 Gaussian measures as abstract Wiener spaces are studied e.g. in Kuo [44].

NR 3.10 In the case of multivariate functions, Gaussian measures may be defined
based on Gaussian distributions on univariate functions. An example is provided
by the Wiener sheet measure which is given as follows.

Let d ≥ 1 and ri ≥ 0, 1 ≤ i ≤ d. Let F be the Banach space of functions
f : [0, 1]d → R that are ri times continuously differentiable with respect to the ith
variable,

F = C0...0
r1...rd

=
{
f : [0, 1]d → R

∣∣ Dr1...rdf–cont.,

(Dr1...rdf)(t) = 0, 0 ≤ ij ≤ rj , 1 ≤ j ≤ d,
when at least one ti is zero } ,

with the norm ‖f‖ = supt∈[0,1]d |(Dr1...rdf)(t)|. The Wiener sheet measure on F
is defined as

wr1...rd(B) = w0...0(Dr1...rd(B) ) ∀B–Borel set in F,

where w0...0 is the classical Wiener measure on C0...0
0...0. Its covariance kernel is given

as

R0...0(s, t) =

∫

C0...0
0...0

f(s)f(t) =

d∏

j=1

min{sj , tj}

where s = (s1, . . . , sd), t = (t1, . . . , td).
It is easy to see that wr1...rd is the zero mean Gaussian measure with covariance

kernel

Rr1...rd(s, t) =
d∏

j=1

Rrj (sj , tj),

where Rrj is the covariance kernel of the rj–fold Wiener measure on C0
rj . Hence,

the associated with wr1...rd abstract Wiener space is {W 0...0
r1+1...rd+1,C

0...0
r1...rd

} where
W 0...0
r1+1...rd+1 is the r.k.h.s. defined in NR 2.21.

Anther example of a Gaussian distribution on multivariate functions is the
isotropic Wiener measure (or the Brownian motion in Lévy’s sense) which is defined
on the space C([0, 1]d). Its mean is zero and covariance kernel is given as

R(s, t) =
‖s‖2 + ‖t‖2 − ‖s− t‖2

2
s, t ∈ [0, 1]d,

see e.g. Ciesielski [9] for more details.

Exercises

E 3.6 Let H be a separable Hilbert space. Let ei, i ≥ 1, be a complete orthonormal
system in H , and let Pn : H → Rn, n ≥ 1, be defined as Pn(x) = {〈x, ei〉}ni=1. Prove



3.4. LINEAR PROBLEMS WITH GAUSSIAN MEASURES 147

that there is no such a Gaussian measure µ on H that for any n, µP−1
n is ithe zero

mean n–dimensional Gaussian measure with identity correlation operator.

E 3.7 The space l2 can be treated as the space of functions f : {1, 2, . . .} → R,
such that ‖f‖2 =

∑∞
i=1 f

2(i) < +∞. Show that R(i, j) = λiδij , i, j ≥ 1, is the
covariance kernel of a Gaussian measure on l2 iff

∑∞
i=1 λi < +∞.

E 3.8 Let H be a separable Hilbert space and let ‖ · ‖F be a norm equivalent to
‖ · ‖H , i.e., K1‖ · ‖F ≤ ‖ · ‖H ≤ K2‖ · ‖F for some 0 < K1 ≤ K2 < +∞. Show that
{F,H} is an abstract Wiener space if and only if dimH < +∞.

E 3.9 Let {F,H} be an abstract Wiener space and let µ be the associated with it
Gaussian measure. Show that µ(H) = 0.

E 3.10 Show that the r–fold Wiener measures wr satisfy wr = wsD
r−s, where Dk

is the differential operator of order k, and r ≥ s ≥ 0.

E 3.11 Let Rr be the covariance kernel of the r–fold Wiener measure. Show that

Rr(s, t) =

∫ s

0

∫ t

0

Rr−1(u1, u2) du1 du2.

3.4 Linear problems with Gaussian measures

We start the study of linear problems with Gaussian measures. The final
goal of this section is to give general formulas for the optimal algorithm and
radius of information.

We assume that

• F is a separable Banach space, G is a separable Hilbert space, and the
solution operator S : F → G is continuous and linear.

• The a priori distribution µ on F is a zero mean Gaussian measure.

We also assume that the information values y are distributed according to
some Gaussian measure. More precisely, we assume that Y = Rn and there
exists a continuous linear operator N : F → Rn,

N(f) = [L1(f), L2(f), . . . , Ln(f) ], f ∈ F,

where Li ∈ F ∗, 1 ≤ i ≤ n, as well as a matrix Σ : Rn → Rn, Σ = Σ∗ ≥ 0,
such that

N(f) = N (N(f),Σ), ∀ f ∈ F. (3.5)
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Here N (N(f),Σ) stands for the n–dimensional Gaussian (normal) distribu-
tion with mean N(f) and correlation matrix (operator) Σ. In other words,
information y about f is obtained by noisy observation of the value N(f) of
a linear mapping N , y = N(f) +x, and the noise x is a zero mean Gaussian
random variable.

Sometimes we shall write N(f) = N (N(f), σ2Σ) to stress that the noise
level depends also on a parameter σ2. In particular, for σ2 = 0 (or for Σ ≡ 0)
we obtain exact information.

Information (3.5) will be called linear with Gaussian noise. Note that
information with Gaussian noise seems to be most often used in practice.

3.4.1 Induced and conditional distributions

In this section, we give formulas for induced and conditional distributions.
They are necessary to find the optimal algorithm and radius of information.

The following lemma is well known. For completeness, we provide it with
a proof.

Lemma 3.3 Let ω be a Gaussian measure on F with the mean element
mω and correlation operator Cω. Then the measure ωS−1 is also Gaussian.
The mean element of ωS−1 is S(mω), and the correlation operator equals
S(CωS

∗) where S∗ : G = G∗ → F ∗ is the adjoint operator to S, i.e., S∗(g) =
〈S(·), g〉.

Proof Indeed, the characteristic functional of ωS−1 is given as

ψωS−1(g) =

∫

G
ei〈x,g〉 ωS−1(dx)

=

∫

F
ei〈S(f),g〉 ω(df) =

∫

F
ei(S

∗g)(f) ω(df)

= ei(S
∗g)(mω)− 1

2
(S∗g)(Cµ(S∗g) ) = ei〈S(mω),g〉− 1

2
〈SCµ(S∗g),g〉.

Hence, S(mω) is the mean element and S(CωS
∗) is the correlation operator

of ω. 2

Define the matrix
GN = {〈Lj , Lk〉µ}nj,k=1.

Clearly, GN is symmetric and nonnegative definite. Let Y1 = (Σ+GN )(Rn).
Then for any y ∈ Y1 there is exactly one element z ∈ Y1 satisfying (Σ +
GN )z = y.
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We need the following simple fact.

Lemma 3.4 For any L ∈ F ∗ we have N(CµL) ∈ Y1.

Proof Indeed, any L ∈ F ∗ can be decomposed as L = L0 +
∑n
j=1 αjLj ,

where L0 ⊥µ span{L1, . . . , Ln}. Then N(CµL) = GN (α), α = (α1, . . . , αn).
Since both matrices Σ and GN are symmetric and nonnegative definite, we
have GN (Rn) ⊂ (Σ +GN )(Rn) = Y1, and N(CµL) ∈ Y1. 2

We now show formulas for the regular conditional distribution. Recall that
the distribution of information y on Rn is denoted by µ1, and the conditional
distribution on F with respect to y is denoted by µ2(·|y).

Theorem 3.2 For the linear information with Gaussian noise, µ1 is a
zero mean Gaussian measure and its correlation matrix is Cµ1 = Σ +GN .
Furthermore, the conditional measure µ2(·|y), y ∈ Y1, is also Gaussian. Its
mean element equals

m(y) =
n∑

j=1

zj (CµLj)

where z = z(y) = (z1, . . . , zn) ∈ Y1 satisfies (Σ+GN ) z = y. The correlation
operator of µ2(·|y) is independent of y and given as

Cµ2(L) = Cµ(L) − m(N(CµL) ), L ∈ F ∗.

The lemma needs an explanation in the case when the matrix Σ + GN is
singular. Then the measure µ1 is concentrated on Y1, i.e., µ1(Y1) = 1.
Hence, it suffices to know the conditional measure µ2(·|y) for y ∈ Y1. We
also note that due to Lemma 3.4, the element m(N(CµL)) in the definition
of Cµ2 is well defined.

Proof The characteristic functional of the measure µ1 is given as (a ∈ Rn
and i =

√
−1)

ψµ1(a) =

∫

Rn
ei 〈y,a〉2 µ1(dy) =

∫

F

∫

Rn
ei 〈y,a〉2 πf (dy)µ(df)

=

∫

F
exp

{
i〈N(f), a〉2 −

1

2
〈Σa, a〉2

}
µ(df).

Since for the functional La(·) = 〈N(·), a〉2 we have La(CµLa) = 〈GNa, a〉2,

ψµ1(a) = exp

{
−1

2
〈(Σ +GN )a, a〉2

}
.
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Hence, µ1 is the zero mean Gaussian measure with correlation matrix Σ +
GN .

We now pass to the conditional distribution. For y ∈ Y1, let µ′2(·|y) be the
Gaussian measure on F with the mean m′(y) =

∑n
j=1 zj(CµLj), (Σ+GN) z =

y, and correlation operator C ′(·) = Cµ(·)−m′(NCµ(·)). Observe that µ′2(·|y)
are well defined Gaussian measures. Indeed, for y ∈ Y1 we have

L(m′(y)) = L




n∑

j=1

zjCµLj


 = 〈(Σ +GN )−1y,NCµL〉2

= 〈y, (Σ +GN )−1NCµL〉2.
Hence, for any L,L′ ∈ F ∗

L(C ′L′) = L(CµL
′) − L(m′(NCµL′) )

= L(CµL
′) − 〈NCµL′, (Σ +GN )−1NCµL〉2

= L′(CµL) − 〈NCµL, (Σ +GN )−1NCµL
′〉2

= L′(C ′L),

and 0 ≤ L(C ′L) ≤ L(CµL).

We need to show that the characteristic functional of the measure µ̃ is
equal to the characteristic functional of the measure µ̃′ defined as

µ̃′(B) =

∫

Y
µ′2(By|y)µ1(dy), B–Borel set of F̃ = F ×Rn.

To this end, let L̃ ∈ F̃ ∗. Then there are L ∈ F ∗ and w ∈ Rn such that
L̃(f̃) = L(f) + 〈y, w〉2, ∀f̃ = (f, y) ∈ F̃ . We have

ψµ̃′(L̃) =

∫

Rn

(∫

F
exp{i(L(f) + 〈y, w〉2)}µ′2(df |y)

)
µ1(dy)

=

∫

Rn
exp{i〈y, w〉2}

(∫

F
exp{iL(f)}µ′2(df |y)

)
µ1(dy)

=

∫

Rn
exp

{
i
(〈y, w〉2 + L(m′(y))

)

− 1

2
(L(CµL)− L(m′(NCµL)) )

}
µ1(dy).

Recall that for y ∈ Y1 we have L(m′(y)) = 〈y, (Σ +GN )−1NCµL〉2. Hence,
L(m′(NCµL)) = 〈NCµL, (Σ +GN )−1NCµL〉2, and

ψµ̃′(L̃) = exp

{
−1

2
(L(CµL)− 〈NCµL, (Σ +GN )−1NCµL〉2 )

}
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∫

Rn
exp{ i〈y, w + (Σ +GN )−1NCµL〉2 }µ1(dy)

= exp

{
−1

2
(L(CµL)− 〈NCµL, (Σ +GN )−1NCµL〉2 )

}

exp

{
−1

2
( 〈(Σ +GN )w,w〉2 + 〈NCµL, (Σ +GN )NCµL〉2

+ 2 〈w,NCµL〉2 )}

= exp

{
−1

2
( L(CµL) + 2〈w,NCµL〉2 + 〈(Σ +GN )w,w〉2 )

}
.

On the other hand, for the characteristic functional ψµ̃ of the measure µ̃ we
have

ψµ̃(L̃) =

∫

F

∫

Rn
exp{ i(L(f) + 〈y, w〉2) }πf (dy)µ(df)

=

∫

F
exp {iL(f)}

(∫

Rn
exp{ i〈y, w〉2}πf (dy)

)
µ(df)

= exp

{
−1

2
〈(Σ +GN )w,w〉2

}

∫

F
exp{ i(L(f) + 〈N(f), w〉2) }µ(df)

= exp

{
−1

2
( L(CµL) + 2〈w,NCµL〉2 + 〈(Σ +GN )w,w〉2 )

}
.

Thus ψµ̃ = ψµ̃′ which completes the proof.

3.4.2 Optimal algorithms

We are now ready to give formulas for the optimal algorithm and radius of
information. They can be easily found using Lemma 3.2.

Indeed, this lemma states that ϕopt is determined uniquely (up to a set of
y of µ1–measure zero), and that ϕopt(y) (y ∈ Y1) is the mean element of the
measure ν2(·|y) = µ2(S−1(·)|y). Using Lemma 3.3 we find that ϕopt(y) =
S(m(y) ) where m(y) is the mean element of µ2(·|y). Due to Theorem 3.2,
we have m(y) =

∑n
j=1 zj(CµLj) where z = (Σ+GN )−1y ∈ Y1. Furthermore,

for the radius of information N we have

(radave(N))2 = (eave(N, ϕopt))
2

=

∫

G
‖g‖2 ν(dg) −

∫

Y
‖S(m(y) )‖2 µ1(dy)

= trace (SCµS
∗) − trace ( (Sm)(Σ +GN )(Sm)∗ ),
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where Sm : Y1 → G, (Sm)(y) = S(m(y) ), and (Sm)∗ : G → Y1 is the
adjoint operator to Sm. Observe now that (Sm)∗ = (Σ +GN )−1NCµ(S∗g).
Indeed, for any y ∈ Y1 and g ∈ G we have

〈Sm(y), g〉 =

〈
n∑

j=1

zjS(CµLj), g

〉
=

n∑

j=1

zj〈S(CµLj), g〉

=
n∑

j=1

zj(S
∗g)(CµLj) =

n∑

j=1

zjLj(CµS
∗g)

= 〈z,NCµ(S∗g)〉2 =
〈
y, (Σ +Gn)−1NCµ(S∗g)

〉
2

= 〈y, (Sm)∗g〉.

Thus (Sm)(Σ +GN )(Sm)∗g = Sm(NCµ(S∗g) ), ∀g ∈ G.

We summarize this in the following theorem.

Theorem 3.3 For the linear information N with Gaussian noise the op-
timal algorithm is linear and equals

ϕopt(y) =
n∑

j=1

zj S(CµLj), y ∈ Y1,

where z = z(y) ∈ Y1 satisfies (Σ +GN ) z = y. Furthermore,

radave(N) = eave(N, ϕopt)

=
√

trace (SCµS∗) − trace (Sm(NCµS∗) ) . 2

The above formulas are rather complicated. They can be simplified if we as-
sume a special form of Σ and N . Namely, suppose that information consists
of independent observations of n functionals which are µ–orthonormal. This
corresponds to diagonal matrix Σ, Σ = diag{σ2

1 , . . . , σ
2
n}, and the assumption

that N = [L1, . . . , Ln] where 〈Li, Lj〉µ = δij (the Kronecker delta).
In this case, the Gram matrix GN is the identity and Σ+GN = diag{1+

σ2
1 , . . . , 1 + σ2

n}. Hence, S(m(y) ) =
∑n
j=1(1 + σ2

j )
−1yjS(CµLj), y ∈ Rn. If

we replace y above by N(CµL), L ∈ F ∗, then

S(m(NCµL) ) =
n∑

j=1

〈L,Lj〉µ
1 + σ2

j

,
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so that for g ∈ G we have

〈S(m(NCµ(S∗g)) ), g〉 =
n∑

j=1

〈S∗g, Lj〉µ
1 + σ2

j

〈S(CµLj), g〉

=
n∑

j=1

〈S(CµLj), g〉2
1 + σ2

j

.

Choosing an orthonormal basis {gi}∞i=1 in G, we obtain

trace (Sm(NCµS
∗) ) =

∞∑

i=1

n∑

j=1

〈S(CµLj), gi〉2
1 + σ2

j

=
n∑

j=1

1

1 + σ2
j

∞∑

i=1

〈S(CµLj), gi〉2 =
n∑

j=1

‖S(CµLj)‖2
1 + σ2

j

.

Thus, we have the following corollary.

Corollary 3.1 Let the functionals Lj be orthonormal, 〈Li, Lj〉µ = δij,
1 ≤ i, j ≤ n. If the observations of successive Lj are independent, Σ =
diag{σ2

1 , . . . , σ
2
n}, then the optimal algorithm

ϕopt(y) =
n∑

j=1

yj
1 + σ2

j

S(CµLj)

and the radius of information

(radave(N))2 = trace (SCµS
∗) −

n∑

j=1

‖S(CµLj)‖2
1 + σ2

j

. 2

It turns out that the assumptions of Corollary 3.1 are not restrictive. More
precisely, we now show that using some linear transformation, any linear
information with Gaussian noise, N(f) = N (N(f),Σ), can be translated to
other information M which is as powerful as N and consists of independent
observations of µ–orthonormal functionals.

Suppose first that the matrix Σ is nonsingular. Denote by L̃i the func-
tionals which form the operator Σ−1/2N , i.e., Σ−1/2N = [L̃1, . . . , L̃n]. Let
G = {〈L̃i, L̃j〉µ}ni,j=1, and let {q(i)}ni=1 be the orthonormal basis of eigenvec-

tors of the matrix G, Gq(i) = ηiq
(i) where η1 ≥ · · · ≥ ηm > 0 = ηm+1 =



154 CHAPTER 3. AVERAGE CASE SETTING

. . . = ηn. Letting Q to be the (orthogonal) n × n matrix of vectors q(i),

and D1 to be the m × n diagonal matrix diag{η−1/2
1 , . . . , η

−1/2
m }, we define

M = D1Q
∗Σ−1/2N : F → Rm.

The problem of approximating S(f) from the data y = N(f) + x where
x ∼ N (0,Σ), can be translated to the problem of approximating S(f) from
y′ = D1Q

∗Σ−1/2y = M(f) + x′, where x′ ∼ N (0,diag{η−1
1 , . . . , η−1

m } ) and
the functionals in M are µ–orthonormal. Indeed, if M = [K1, . . . ,Km] then

Ki =
∑m
j=1 η

−1/2
j q

(i)
j L̃j and

〈Ki,Kj〉µ = η
−1/2
i η

−1/2
j

n∑

s,t=1

q(i)
s q

(j)
t 〈L̃i, L̃j〉µ

= η
−1/2
i η

−1/2
j 〈Gq(i), q(j)〉2 = δij .

The random variable y′ is Gaussian with mean M(f) and correlation matrix
Σ′ = (D1Q

∗Σ−1/2)Σ(D1Q
∗Σ−1/2)∗ = diag{η−1

1 , . . . , η−1
m }.

We now show that the information operator M = N (M(·), D) is as
powerful as N i.e., radave(M) = radave(N). To this end, it suffices to show
that the conditional measures in F with respect to information N and M
have the same correlation operator. This in turn holds iff the functionals∑n
j=1 zjLj , where (Σ +GN )z = NCµL, and

∑n
j=1 z

′
jKj , where (D + I)z′ =

MCµL, coincide for all L ∈ F ∗. Indeed, straightforward calculations show
that z and z′ satisfy Q∗Σ1/2z = (D1/2z′, 0, . . . , 0︸ ︷︷ ︸

n−m

). Hence,

m∑

j=1

z′jKj(f) = 〈z′,M(f) 〉2 = 〈z′, D1Q
∗Σ−1/2N(f) 〉2

= 〈Q∗Σ1/2z,Q∗Σ1/2N(f) 〉2 = 〈Σ−1/2QQ∗Σ−1/2z,N(f) 〉2

=
n∑

j=1

zjLj(f),

as claimed.

Consider now the case when Σ is singular, rank(Σ) = k < n. Then
there exists a nonsingular and symmetric matrix V such that V ΣV =
diag{0, . . . , 0︸ ︷︷ ︸

n−k

, 1, . . . , 1︸ ︷︷ ︸
k

}. Let V N = [L̃1, . . . , L̃n]. We can assume that the

functionals L̃i and L̃j for 1 ≤ i ≤ n − k < j ≤ n are µ–orthogonal



3.4. LINEAR PROBLEMS WITH GAUSSIAN MEASURES 155

since otherwise L̃j’s can be replaced by their µ–orthogonal projections onto
(span{L̃1, . . . , L̃n−k})⊥. Let N0 = [L′1, . . . , L

′
n−k], N1 = [L′n−k+1, . . . , L

′
n].

Let D0 be the zero matrix in Rn−k and let D1 be the identity matrix in
Rk. Now we can use the already known procedure to transform N0 =
N (N0(·), D0) and N1 = N (N1(·), D1) to equivalent information M0 and
M1, where M0 is exact and both consist of independent observations of µ–
orthonormal functionals. Then M = [M0,M1] also consists of independent
observations of µ–orthonormal functionals, and M is equivalent to N.

Let us see how the optimal algorithm and radius depend on the accuracy
of information. As explained above, we can assume without loss of generality
that Σ = σ2D where D = diag{η1, . . . , ηn} and 〈Li, Lj〉µ = δij , 1 ≤ i, j ≤ n.
Let r(σ2) be the radius of information Nσ = N (N(·), σ2D), and let ϕσ be
the optimal algorithm for Nσ. Then

ϕσ(y) = ϕ0(y) − σ2
n∑

j=1

ηj
1 + σ2ηj

〈S,Lj〉µ, y ∈ Rn,

and

r2(σ2) = r2(0) + σ2
n∑

j=1

ηj
1 + σ2ηj

‖S(CµLj)‖2.

Hence, for r(0) > 0 we have

r(σ2)− r(0) ≈ σ2 ·
∑n
j=1 ηj‖S(CµLj)‖2

2
(
trace(SCµS∗)−

∑n
j=1 ‖S(CµLj‖2

)1/2
,

while for r(0) = 0 we have

r(σ2)− r(0) = r(σ2) ≈ σ ·
√√√√

n∑

j=1

ηj‖S(CµLj)‖2,

as σ → 0+. Thus, if r(0) = 0 then the radius of noisy information converges
to the radius of exact information linearly in σ. Otherwise we have quadratic
convergence. For S being a functional, this stands in contrast to results of
the worst case setting where we always have linear convergence of r(δ) to
r(0); see Theorem 2.5.

Notes and Remarks

NR 3.11 In the case Σ = σ2I , the conditional distribution of a Gaussian measure
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was evaluated in Plaskota [78]. For exact information, Σ = 0, see Traub et al. [108].

NR 3.12 It is worthwhile to mention that the space G in Theorem 3.3 need not be
a Hilbert space. That is, the algorithm ϕ(y) = S(m(y)), where m(y) is the mean
element of µ2(·|y), is optimal also when G is a separable Banach space. Indeed,
observe that in this case the measure ν2(·|y) = µ2(S−1(·)|y) remains Gaussian with
the mean element S(m(y)) (see E 3.14). Any Gaussian measure is centrosymmetric
with respect to its mean element (see e.g. Vakhania et al. [113]). Hence, due
to Example 3.3, the element S(m(y)) is the center of ν2(·|y) and the algorithm
ϕ(y) = S(m(y)) is optimal.

Exercises

E 3.12 Prove that N(Cµ(F ∗)) = GN (Rn).

E 3.13 Show that the measure µ̃ defined on F×Rn is Gaussian. The mean element
of µ̃ is zero and the correlation operator is given as

Cµ̃(L̃) =
(
Cµ(L) + Cµ( 〈N(·), w 〉2), N(CµL) + (σ2Σ +GN )w

)
∈ F ×Rn

where L̃(f, y) = L(f) + 〈y, w〉2, f ∈ F , y ∈ Rn.

E 3.14 Let F and G is separable Banach spaces and let S : F → G be a continuous
linear operator. Let ω be a Gaussian measure on F with mean element mω and
correlation operator Cω. Show that then the measure ωS−1 on G is also Gaussian.
Its mean element is S(mω) and correlation operator CωS−1(L) = S(Cµ(LS) ), L ∈
G∗.

E 3.15 Suppose that the functionals Lj , 1 ≤ j ≤ n, are orthonormal and that
Σ = diag{σ2

1 , . . . , σ
2
n}. Let PN : F ∗ → F ∗ be the µ–orthogonal projection onto the

subspace V = span{L1, . . . , Ln}, and let D : V → V be defined by D(Lj) = (1 +
σ2
j )Lj , 1 ≤ j ≤ n. Show that then the correlation operator Cµ2 of the conditional

distribution µ2(·|y) can be rewritten as Cµ2 = Cµ(I −D−1PN ). Hence, for small
σ2
j the operator Cµ2 is roughly the superposition of the “almost” µ–orthogonal

projection onto V ⊥, and Cµ.

E 3.16 Show that ϕopt(y) = ϕ0(y−Σz) where (Σ+GN )z = y and ϕ0 is the optimal
algorithm for exact information (Σ ≡ 0).

E 3.17 Let S : F → G and N be given solution operator and linear information
with Gaussian noise. Let µm be a Gaussian measure on F with the mean element m,
not necessarily equal to zero. Let ϕm and radave

m (N) denote the optimal algorithm
and radius of information with respect to µm. Show that for all m ∈ F we have
radave

m (N) = radave
0 (N) and ϕm(y) = S(m) + ϕ0(y −N(m)).
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E 3.18 Let N be linear information with Gaussian noise, N(f) = N (N(f),Σ),
with Y = Rn. Let B : Rn → Rn be a linear mapping. Show that for information
N′ given as N′(f) = N (BN(f), BΣB∗), we have radave(N) ≤ radave(N′). If B is
nonsingular then radave(N) = radave(N′) and the corresponding optimal algorithms
satisfy ϕ′opt(y) = ϕopt(B

−1y).

3.5 The case of linear functionals

In this section we make an additional assumption that

• the solution operator S is a continuous linear functional.

In this case, the formulas for ϕopt and radave(N) obtained in Theorem 3.3 can
be expressed in a simple way. Namely, we have ϕopt(y) =

∑n
j=1 zjS(CµLj) =∑n

j=1 zjLj(CµS) = 〈z,N(CµS)〉2 where (Σ +GN )z = y, or equivalently,

ϕopt(y) = 〈 y, w 〉2

where w satisfies (Σ + GN )w = N(CµS). To find the radius, observe that
S(CµS

∗) = ‖S‖2µ and Sm(NCµS) = 〈w,N(CµS)〉2. Hence,

radave(N) =
√
‖S‖2µ − 〈w, N(CµS)〉2.

For independent observations of µ–orthonormal functionals, i.e., when Σ =
D = diag{σ2

1 , . . . , σ
2
n} and 〈Li, Lj〉µ = δij , we have

ϕopt(y) =
n∑

j=1

yj
〈S,Lj〉µ
1 + σ2

j

and

radave(N) =

√√√√‖S‖2µ −
n∑

j=1

〈S,Lj〉2µ
1 + σ2

j

.

Let PN be the µ–orthogonal projection onto V = span{L1, . . . , Ln}. Then
radave(N) = ‖S − (I + D)−1PNS‖µ. In particular, for exact information
radave(N) is the µ–distance between the functional S and the linear subspace
spanned by the functionals Lj , and ϕopt(N(f)) = (PNS)(f).

In Section 2.4.2, we noticed that in the worst case setting the problem
of approximating a functional based on given information is as difficult as
the hardest one–dimensional subproblem contained in the original problem.



158 CHAPTER 3. AVERAGE CASE SETTING

Exercise E 2.5 of the same chapter shows that this actually holds for an
arbitrary linear solution operator. We shall see that in the average case a
positive result can be shown only if S is a functional.

For a functional K ∈ F ∗ with ‖K‖µ > 0, let PK : F → F be given by

PK(f) = f − K(f)

‖K‖2µ
CµK .

That is, PK is the projection onto kerK with kerPK = span{CµK}. The a
priori Gaussian measure µ on F can be decomposed as

µ =

∫

kerK
µK( · |g)µP−1

K (dg)

where µK( · |g) is the conditional measure on F given g = PK(f). Clearly,
µK( · |g) is concentrated on the line

P−1
K (g) = { g + αCµK | α ∈ R } .

We also formally allow K with ‖K‖µ = 0. In this case we set P0(f) = f
∀ f . Hence, µP−1

K = µ and µ0(·|g) is the Dirac measure concentrated in
{g}, ∀ g ∈ F .

Any functional K determines a family of one–dimensional subproblems.
This family is indexed by g ∈ kerK and given as follows. For g ∈ kerK, the
subproblem relays on minimizing the average error

eave(N, ϕ;µK(·|g) ) =

√∫

F

∫

Rn
|S(f)− ϕ(y)|2 πf (dy)µK(df |g)

over all algorithms ϕ. Thus, in the subproblem we use additional information
that g = PK(f) or, in other words, that f = g+αCµK for some α = α(f) ∈
R.

Lemma 3.5 Let ‖K‖µ > 0. Then for all g a.e. the measure µK( · |g) is
Gaussian with mean m(g) = g and correlation operator

AK(L) =
〈L,K〉µ
‖K‖2µ

CµK.
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Proof We shall use the fact that any Gaussian measure ω is uniquely de-
termined by its characteristic functional ψω. For ω = µP−1

K we have

ψω(L) =

∫

kerK
exp{iL(g)}µP−1

K (dg) =

∫

F
exp{iL(PKf)}µ(df)

= exp

{
−1

2
(LPK(Cµ(LPK) ) )

}
.

Hence, the measure µP−1
K is zero mean Gaussian and its correlation operator

is given as

Cω(L) = PK(Cµ(LPK)) = CµL −
〈K,L〉µ
‖K‖2µ

CµK .

Now, let µ′K( · |g) be the Gaussian measure with mean g and corre-
lation operator AK . Then the characteristic functional of the measure
µ′ =

∫
kerK µ

′
K( · |g)µP−1

K (dg) is given as

ψµ′(L) =

∫

kerK

∫

F
exp{iL(f)}µ′K( df |g)µP−1

K (dg)

=

∫

kerK
exp

{
i L(g) − 〈K,L〉

2
µ

2 ‖K‖2µ

}
µP−1

K (dg)

= exp

{
−〈K,L〉

2
µ

2 ‖K‖2µ

} ∫

kerK
exp{iL(g)}µP−1

K (dg)

= exp

{
−1

2
〈L,L〉µ

}
.

This shows that µ = µ′. Since conditional measures are determined uniquely
(up to a set of measure zero), the lemma follows. 2

Since the measures µK(·|g) have the same correlation operator for all g ∈
kerK, the radius radave(N;µK(·|g) ) does not depend on g (compare with E
3.17). We denote it by radave

K (N). It is clear that

radave
K (N) ≤ radave(N). (3.6)

Indeed, we have

(radave
K (N))2 =

∫

kerK
(eave(N;µK(·|g)) )2 µP−1

K (dg)

=

∫

kerK
inf
ϕ

(eave(N, ϕ;µK(·|g)) )2 µP−1
K (dg)
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≤ inf
ϕ

∫

kerK
(eave(N, ϕ;µK(·|g)) )2 µP−1

K (dg)

= inf
ϕ

(eave(N, ϕ))2 = (radave(N))2 .

We now prove that for a special choice of K we have equality in (3.6).

Theorem 3.4 Consider the family of one–dimensional subproblems de-
termined by the functional

K∗ = S − 〈w,N(·)〉2 = S −
n∑

j=1

wjLj

where (Σ +GN )w = N(CµS). Then, for all g a.e., the algorithm ϕopt(y) =
〈y, w〉2 is optimal for the subproblem determined by g ∈ kerK ∗. Further-
more,

radave
K∗(N) = radave(N).

Proof If ‖K∗‖µ = 0 then S(f) = 〈w,N(f)〉2, ∀f ∈ Cµ(F ∗). In this case,
the measure µK∗(·|g) is concentrated in {g} and any algorithm with the
property ϕ(N(g)) = S(g) is optimal for the subproblem indexed by g. As
for g ∈ Cµ(F ∗) we have ϕopt(N(g)) = 〈w,N(g)〉2 = S(g), the algorithm
ϕopt is optimal for any subproblem a.e. Moreover, we have radave(N) =√
S(CµK∗) = 0 = radave

K∗(N).

Assume that K∗ 6= 0. Let ω be the zero mean Gaussian measure with
correlation operator A = AK∗ , where AK∗ is defined in Lemma 3.5. We need
to show that the algorithm ϕopt = 〈 · , w〉2 is optimal if the average error over
f is taken with respect to ω, i.e.,

radave(N;ω) = inf
ϕ

eave(N, ϕ;ω) = eave(N, ϕopt;ω)

where eave(N, ϕ;ω) =
√∫

F

∫
Rn ‖S(f)− ϕ(y)‖2 πf (dy)ω(df).

Due to Theorem 3.3, the optimal algorithm with respect to ω is given
by ϕω(y) =

∑n
j=1 zjS(ALj), where (Σ +HN )z = y, HN = {Li(ALj)}ni,j=1,

and z, y ∈ (Σ +HN )(Rn). We have Li(ALj) = 〈K∗, Li〉µ〈K∗, Lj〉µ/‖K‖2µ
and S(ALj) = 〈K∗, S〉µ〈K∗, Lj〉µ/‖K∗‖2µ. Hence, setting a = N(CµK

∗)
we obtain

ϕω(y) =
〈K∗, S〉µ
‖K∗‖2µ

〈 z, a 〉2 (3.7)
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where

Σ z +
〈a, z〉2
‖K∗‖2µ

a = y. (3.8)

Observe now that

a = N(CµK
∗) = N(CµS) −

n∑

j=1

wjN(CµLj)

= N(CµS) − GNw = Σw.

This and (3.8) yield 〈y, w〉2 = 〈Σz, w〉2 + 〈a, z〉2〈a,w〉2/‖K∗‖2µ = 〈z, a〉2(1 +
〈Σw,w〉2/‖K∗‖2µ), so that

〈z, a〉2 =
‖K∗‖2µ 〈y, w〉2

‖K∗‖2µ + 〈Σw,w〉2
. (3.9)

We also have

〈S,K∗〉µ = ‖S‖2µ − 〈w,N(CµS)〉2 (3.10)

= ( ‖S‖2µ − 2 〈w,N(CµS)〉2 + 〈GNw,w〉2 )

+ ( 〈w, (Σ +GN )w〉2 − 〈GNw,w〉2 )

= ‖K∗‖2µ + 〈Σw,w〉2.

Taking together (3.9), (3.10) and (3.7) we finally obtain

ϕω(y) =
〈S,K∗〉µ

‖K∗‖2µ + 〈Σw,w〉2
〈y, w〉2 = 〈y, w〉2,

as claimed.

Now, let ωg be the Gaussian measure with mean g ∈ kerK∗ and correla-
tion operator A. Then, due to E 3.17, the optimal algorithm for ωg is given
as

ϕg(y) = S(g) + 〈y −N(g), w〉2 = S(g) − 〈N(g), w〉2 + 〈y, w〉2
= K∗(g) + 〈y, w〉2 = 〈y, w〉2 = ϕopt(y).

Since µK∗(·|g) = ωg ∀g a.e., the algorithm ϕopt is optimal for all subproblems
almost everywhere.
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To prove the equality radave
K∗(N) = radave(N), observe that

(radave
K∗(N) )2 =

∫

kerK∗
(radave(N;µK∗(·|g)))2 µP−1

K∗(dg)

=

∫

kerK∗

∫

F

(∫

Rn
‖S(f)− ϕopt(y)‖2 πf (dy)

)

µK∗(df |g)µP−1
K∗ (dg)

=

∫

F

∫

Rn
‖S(f)− ϕopt(y)‖2 πf (dy)µ(df)

= (radave(N) )2.

This completes the proof of the theorem. 2

Thus we have shown that there exists a family of one–dimensional subprob-
lems which are as difficult as the original problem. In words, this result
can be interpreted as follows: approximation of S(f) based on information
y ∈ N(f) is as difficult as approximation of S(f) based on y and the addi-
tional information that f is in the line {g + αCµK

∗ | α ∈ R}.
We summarize our analysis in the following corollary.

Corollary 3.2 Let the solution operator S be a functional. Then, for any
information N, we have

radave(N) = sup
K∈F ∗

radave
K (N) = radave

K∗(N)

where the functional K∗ is given by K∗(f) = S(f) − ϕopt(N(f) ), f ∈ F .
2

If S is not a functional then Corollary 3.2 is no longer true. An example is
moved to E 3.22.

Notes and Remarks

NR 3.13 The main result of this section was obtained by Plaskota [82].

Exercises

E 3.19 Suppose we want to estimate a real random variable f , f ∼ N (0, λ), λ > 0,
based on the data y = f + x where x ∼ N (0, σ2). Show that in this case the radius
equals
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r(σ2) =

√
σ2 λ

σ2 + λ
,

and the optimal algorithm

ϕopt(y) =
λ

σ2 + λ
y, y ∈ R.

E 3.20 Consider the problem of the previous exercise but with information y =
[y1, . . . , yn] where yi ∼ N (f, σ2

i ) and σ2
j > 0, 1 ≤ i ≤ n. Show that the radius of

information is given as

r(σ2
1 , . . . , σ

2
n) =

√
λ

1 + λ
∑n

i=1 1/σ2
i

and

ϕopt(y) =
λ

1 + λ
∑n

i=1 1/σ2
i

n∑

i=1

yi
σ2
i

.

Hence, n observations of f with variances σ2
i is as good as one observation of f with

the variance σ2 = (
∑n

i=1 1/σ2
i )−1.

E 3.21 Consider the one–dimensional linear problem with the correlation operator
Cµ(L) = λL(f0)f0, ∀L ∈ F ∗, where λ > 0 and f0 ∈ F . Let g0 = S(f0) ∈ R and
y0 = N(f0) ∈ Rn. Show that for y0 ∈ Σ(Rn) we have

radave(N) = |g0|
√

λ

1 + λ 〈Σ−1y0, y0〉2
, ϕopt(y) = g0

λ 〈Σ−1y0, y〉2
1 + λ 〈Σ−1y0, y0〉2

,

while for y0 /∈ Σ(Rn) we have radave(N) = 0 and

ϕopt(y) = g0
〈Py0, y〉2
〈Py0, y0〉2

,

where P is the orthogonal projection in Rn onto (Σ(Rn))⊥.

E 3.22 Let F = G = Rd and let S be the identity. Let µ be the standard Gaussian
measure on Rd, µ = N (0, I). Consider information N consisting of n < d noisy
observations. Show that radave(N) ≥ d − n, while for any functional K ∈ F ∗ we
have radave

K (N) ≤ 1. Hence,

radave(N) ≥ (d− n) sup
K∈F∗

radave
K (N)

and any one–dimensional subproblem is d−n times easier than the original problem.



164 CHAPTER 3. AVERAGE CASE SETTING

3.6 Optimal algorithms as smoothing splines

Recall that in the worst case setting we defined an α–smoothing spline algo-
rithm as ϕα(y) = S(sα(y) ), where sα(y) is the α–smoothing spline element.
It minimizes the functional

Γα(f, y) = α · ‖f‖2F + (1− α) · δ−2‖y −N(f)‖2Y ,

where ‖ · ‖F and ‖ · ‖Y are Hilbert extended seminorms. Moreover, for a
properly chosen α, the algorithm ϕα turns out to be optimal; see Section
2.5.2.

In this section, we show that optimal algorithms in the average case
setting can also be viewed as smoothing spline algorithms. We use the
fact that Gaussian measures can be equivalently defined as abstract Wiener
spaces.

3.6.1 A general case

We consider the linear problem of Section 3.4. That is, the measure µ
on F is zero mean Gaussian. Information N is linear with Gaussian noise,
N(f) = N (N(f), σ2Σ) where σ2 > 0. The operator N consists of functionals
Li ∈ F ∗,

N = [L1, L2, . . . , Ln ].

Let H be the associated with µ separable Hilbert space, so that the
pair (H,Cµ(F ∗)) is an abstract Wiener space. Recall that Cµ(F ∗) ⊂ H ⊂
Cµ(F ∗), see Section 3.3.2. Let ‖ · ‖Y be the extended norm in Rn defined as

‖x‖Y =

{ √
〈Σ−1x, x〉2 x ∈ Σ(Rn),

+∞ x /∈ Σ(Rn).

We denote by s(y) ∈ H the smoothing spline that minimizes

Γ(f, y) = ‖f‖2H +
1

σ2
‖y −N(f)‖2Y

over all f ∈ H. For instance, in the case of independent observations,
Σ = diag{σ2

1 , . . . , σ
2
n} and σ2 = 1, s(y) is the minimizer of

‖f‖2H +
n∑

j=1

1

σ2
j

(yj − Lj(f) )2
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(with the convention that 0/0 = 0). As usually, the smoothing spline algo-
rithm is given as

ϕspl(y) = S(s(y) ), y ∈ Rn.
Let fj = CµLj ∈ H, 1 ≤ j ≤ n. Then fj is the representer of Lj in H

and for all f ∈ H we have

N(f) = [ 〈f1, f〉H , 〈f2, f〉H , . . . , 〈fn, f〉H ].

Applying Lemma 2.9 we immediately obtain that Γ(y) = inf f∈F Γ(f, y) is
finite if and only if y ∈ Σ(Rn) + N(F ), or equivalently, y ∈ Y1 = (σ2Σ +
GN )(Rn). For y ∈ Y1, the smoothing spline is unique and given as

s(y) =
n∑

j=1

zjfj

where z ∈ Y1 satisfies (σ2Σ +GN )z = y. Comparing this with Theorem 3.2
we obtain that s(y) is the mean element m(y) of the conditional distribution
on F . Hence, ϕspl(y) = S(s(y)) = S(m(y) ) is the optimal algorithm.

Theorem 3.5 The smoothing spline algorithm ϕspl is optimal. 2

Thus, in the average case setting, optimal algorithms are smoothing spline
algorithms. Observe that, unlike in the worst case, this time we have no
problems with the optimal choice of the parameters α or γ = α(1−α)−1σ2.
Namely, we always have α∗ = 1/2 and γ∗ = σ2.

3.6.2 Special cases

The formulas for α–smoothing splines in some special cases were given in
Section 2.6. Clearly, they can be applied to obtain optimal algorithms in the
average case. It suffices to set α = 1/2 and replace mechanically δ2 and γ by
σ2, and the norm ‖ · ‖F by ‖ · ‖H . Therefore we now devote more attention
only to the regularization and least squares.

Consider the linear problem of Section 3.6.1 with positive definite matrix
Σ. Then ‖·‖Y is a Hilbert norm. We denote by Y the Hilbert space of vectors
from Rn with the inner product 〈·, ·〉Y = 〈Σ−1(·), ·〉2. Let NH : H → Y be
the restriction of N : F → Y to the subspace H ⊂ F , i.e., NH(f) = N(f),
∀f ∈ H. Let N ∗H : Y → H be the adjoint operator to NH . That is, N ∗H
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is defined by 〈NH(f), y〉Y = 〈f,N∗H(y)〉H , ∀f ∈ H, ∀y ∈ Y . Similarly, we
define the operators SH : H → G and S∗H : G→ H.

Recall that the regularized approximation of S(f) is given as ϕγ(y) =
S(uγ(y)) where uγ(y) ∈ H is the solution of the equation

(γIH +N∗HNH)f = N∗Hy.

Here γ > 0 is the regularization parameter and IH is the identity in H;
compare with Section 2.6.2. In view of Lemma 2.11 and Theorem 3.5, we
immediately obtain the following fact.

Corollary 3.3 The regularized solution

uγ(y) = (γIH +N∗HNH)−1N∗Hy

is the smoothing spline, uγ(y) = s(y), if and only if the regularization pa-
rameter γ = σ2. Hence, the algorithm ϕσ2(y) = S(uσ2(y) ) is optimal. 2

We now derive a formula for the radius. Let {ξi}i≥1 be the complete or-
thonormal in H basis of eigenelements of N ∗HNH , and let ηi’s be the corre-
sponding eigenvalues, N ∗HNHξi = ηiξi. We assume without loss of generality
that η1 ≥ · · · ≥ ηk > 0 where k = dimN(F ).

Lemma 3.6 We have

radwor(N) =

√√√√√σ2 ·
k∑

i=1

‖S(ξi)‖2
σ2 + ηi

+
dimH∑

j=k+1

‖S(ξj)‖2 .

Proof Observe that for any continuous linear operator A : F → H1 where
H1 is a Hilbert space, we have A∗Hh = Cµ(A∗h), A∗h = 〈A(·), h〉H1 , ∀h ∈ H1.
This and Theorem 3.3 yield

(radave(N))2 = trace(SCµS
∗) − trace(Sm(NCµS

∗) )

= trace(SCµS
∗) − trace(S(σ2IH +N∗HNH)−1N∗H(NCµS

∗) )

= trace(SHS
∗
H) − trace(SH(σ2IH +N∗HNH)−1N∗HNHS

∗
H )

=
∑

i≥1

‖SH(ξi)‖2 −
∑

i≥1

‖SH( (σ2IH +N∗HNH)−1N∗HNH)1/2ξi‖2

= σ2 ·
k∑

i=1

‖S(ξi)‖2
σ2 + ηi

+
∑

j≥k+1

‖S(ξj)‖2,
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as claimed. 2

We note that if the matrix Σ is singular then the formula for radave(N) in
Lemma 3.6 holds with H replaced by the space H1 = { f ∈ H | N(f) ∈
Σ(Rn) } with the norm ‖ · ‖H1 = ‖ · ‖H (compare with the proof of Theorem
2.10). In the special case, when the operators S∗HSH and N∗HNH possess a
common orthonormal basis of eigenelements and S∗HSHξi = λiξi, we have

radave(N) =

√√√√√σ2
k∑

i=1

λi
σ2 + ηi

+
dimH∑

j=1

λj .

Let us now consider the (generalized) least squares algorithm ϕls, as
applied to a problem with F = Rd. We assume that the correlation operator
Cµ of the Gaussian measure µ on Rd is positive definite. Information about
f is given as y = N(f) + x, where dimN(Rd) = d and x ∼ N (0, σ2 Σ).
Recall that ϕls = S(N∗N)−1N∗, or equivalently, ϕls = SN−1PN where PN
is the orthogonal projection onto N(Rd) with respect to 〈·, ·〉Y .

As the optimal value of the regularization parameter is γ = σ2, the least
squares are optimal only for exact information, σ2 = 0. However, it turns out
that for small noise level δ, this algorithm is very close to optimal. Namely,
we have the following theorem.

Theorem 3.6 For the (generalized) least squares algorithm ϕls we have

eave(N, ϕls) = σ ·
√

trace(S(N ∗N)−1S∗) ≈ radave(N), as σ2 → 0+.

Proof The formula for eave(N, ϕls) follows from the fact that for any f

∫

Rd
‖S(f)− ϕls(N(f) + x)‖2 π(dx) =

∫

Rd
‖SN−1PN (x)‖2 π(dx)

= σ2 trace( (SN−1)(SN−1)∗) = σ2 trace(S(N ∗N)−1S∗).

Since N ∗ = C−1
µ N∗H and S∗ = C−1

µ S∗H , we can equivalently write

eave(N, ϕls) = σ2 trace(SH(N∗HNH)−1S∗H ).
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Denote, as before, by ξi, ηi the eigenpairs of the operator N ∗HNH . Letting
σ2 → 0+ and using Lemma 3.6 we obtain

σ2 trace(SH(N∗HNH)−1S∗H) = σ2
d∑

i=1

‖S(ξi)‖2
ηi

≈ σ2
d∑

i=1

‖S(ξi)‖2
σ2 + ηi

= (radwor(N))2,

which completes the proof.

3.6.3 A correspondence theorem

The fact that smoothing spline algorithms are optimal in the worst and
average case settings enables us to show a correspondence between both
settings. Namely, consider the following two problems.

P1: Approximate S(f) for f ∈ E ⊂ F , based on information y = N(f)+x ∈
Rn where x ∈ Σ(Rn) and ‖x‖Y =

√
〈Σ−1x, x〉2 ≤ δ.

P2: Approximate S(f), where f ∈ F is distributed according to a zero mean
Gaussian measure µ on F , based on information y = N(f) + x ∈ Rn
such that x ∼ N (0, σ2Σ).

Then we have the following correspondence theorem.

Theorem 3.7 Suppose that {H,F} is the abstract Wiener space corre-
sponding to the measure µ, and that the set E is the unit ball of H. If
δ2 = σ2 then the algorithm ϕspl(y) = S(s(y)) is optimal for the problem (P2)
in the average case, eave(N, ϕspl;µ) = radave(N;µ), and almost optimal for
the problem (P1) in the worst case, ewor(N, ϕspl;E) ≤

√
2 ·radwor(N, ϕspl;E).

Furthermore,

radwor(N;E) ≤
√

2 · radave(N;µ).

If S is a functional then

radave(N;µ) ≤ radwor(N;E) ≤
√

2 · radave(N;µ).

Proof Optimality or almost optimality of ϕspl follows from Theorem 3.5,
Lemma 2.7, and the fact that s(y) is the 1/2–smoothing spline for (P1).
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To obtain the formulas for the radii, we proceed as follows. Assume first
that Σ > 0. Let {fi}dimH

i=1 be the complete and orthonormal in H basis of
eigenelements of the operator N ∗HNH : H → H, N ∗HNHfi = ηifi, i ≥ 1. Due
to Lemma 3.6 we have

(eave(N, ϕspl))
2 = (radave(N))2 = σ2

dimH∑

i=1

‖S(fi)‖2
σ2 + ηi

. (3.11)

On the other hand, from Lemma 2.7 and Theorem 2.10 we have

(ewor(N, ϕspl))
2 ≤ 2 δ2 ‖S(δ2IH +N∗HNH)−1/2‖2
≤ 2 (radwor(N))2.

Note that any operator T : H → G satisfies ‖T‖2 ≤ trace(T ∗T ), and if T is
a functional then ‖T‖2 = trace(T ∗T ). This and (3.11) yield

(ewor(N, ϕspl))
2 ≤ 2 δ2

dimH∑

i=1

‖S(δ2IH +N∗HNH)−1/2fi‖2

= 2 δ2
dimH∑

i=1

‖S(fi)‖2
δ2 + ηi

= 2 (radave(N))2,

which proves radwor(N) ≤
√

2radave(N). If S is a functional then

radave(N) =
1√
2

ewor(N, ϕspl) ≤
1√
2

(
√

2 radwor(N) ) = radwor(N),

as claimed.

If Σ is singular then we repeat the proof with H replaced by H1 = { f ∈
H | N(f) ∈ Σ(Rn) }.

Notes and Remarks

NR 3.14 Optimality of spline algorithms in the average case setting and for exact
information was shown in Traub et al. [108, Sect.5.4 of Chap.6]. Optimality prop-
erties of smoothing splines in reproducing kernel Hilbert spaces and for Σ = σ2I
are well known in Bayesian statistics. We mention only Kimeldorf and Wahba [37]
and Wahba [116] where many other references can be found. The general result of
Theorem 3.5 (together with Lemma 2.9) is however new.

NR 3.15 The correspondence theorem is well known in the case of exact informa-
tion, Σ ≡ 0, and solution operator S being a functional. Then the algorithm ϕspl

is optimal in both settings and radwor(N) = radave(N). The generalization of these
results to the noisy case and arbitrary S seem to be new.
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Exercises

E 3.23 Show that for exact information, Σ ≡ 0, the optimal algorithms in the worst
and average case settings are the same and given as ϕopt(y) = S(s(y) ), y ∈ N(F ),
where s(y) ∈ H is such an element that N(s(y) ) = y and ‖s(y)‖H = inf { ‖f‖H | f ∈
H, N(f) = y }. Moreover, if S is a functional then radwor(N) = radave(N).

E 3.24 Consider the approximation of a parameter f ∈ R based on information
y = f + x, where
(a) |f | ≤ 1 and |x| ≤ δ,
(b) f ∼ N (0, 1) and x ∼ N (0, σ2).
Let rw(γ) and ra(γ) be the worst and average radii of information for the problems
(a) and (b) with δ2 = γ2 and σ2 = γ2, respectively. Show that

rw(γ)

ra(γ)
=

{
(1 + γ2)1/2 0 ≤ γ ≤ 1,
(1 + γ−2)1/2 γ > 1.

That is, the ratio rw(γ)/ra(γ), γ ≥ 0, assumes all values from the interval [1,
√

2].

E 3.25 Suppose that the solution operator S in Theorem 3.7 is finite dimensional,
i.e., dimS(F ) = d < +∞. Show that then

d−1 · radave(N) ≤ radwor(N) ≤
√

2 · radave(N).

E 3.26 Show that the inequality radave(N) ≤ radwor(N) in Theorem 3.7 does not
hold any longer if S is not a functional. Even more, the ratio radave(N)/radwor(N)
can be arbitrarily large.

3.7 Varying information

With this section we start the study of varying information. Basically, we
assume that information can be obtained as in the worst case setting. The
only difference is in the interpretation of noise which is now random.

3.7.1 Nonadaptive and adaptive information

A nonadaptive information operator N is uniquely determined by exact in-
formation N : F → Rn,

N(f) = [L1(f), L2(f), . . . , Ln(f) ], ∀ f ∈ F,



3.7. VARYING INFORMATION 171

where Li’s are continuous linear functionals, and by a precision vector Σ =
[σ2

1 , σ
2
2 , . . . , σ

2
n] where σ2

i ≥ 0, 1 ≤ i ≤ n. Given N and Σ, the nonadaptive
noisy information operator N = {N,Σ} is given as

N(f) = N (N(f),Σ )

where N (N(f),Σ ) is the n–dimensional Gaussian measure with mean N(f)
and diagonal correlation matrix diag{σ2

1 , . . . , σ
2
n}. This means that the suc-

cessive observations are independent and the noise of ith observation has
normal distribution, xi = yi − Li(f) ∼ N (0, σ2

i ).
We shall use the same letter Σ to denote the precision vector Σ =

[σ2
1 , . . . , σ

2
n] as well as the matrix diag{σ2

1 , . . . , σ
2
n}.

We now define adaptive information. As in the worst case, we assume
that the set Y of possible information values satisfies the following condition:

for any (y1, y2, . . . ) ∈ R∞ there exists exactly one index n

such that (y1, y2, . . . , yn ) ∈ Y.
An adaptive information operator N is determined by a family N = {Ny}y∈Y
of exact nonadaptive information operators,

Ny = [L1(·), L2(·; y1), . . . , Ln(y)(·; y1, . . . , yn(y)−1) ],

where Li(·; y1, . . . , yn−1) ∈ F ∗, 1 ≤ i ≤ n, and n(y) is the length of y, and
by a family Σ = {Σy}y∈Y of precision vectors,

Σy = [σ2
1 , σ

2
2(y1), . . . , σ2

n(y)(y1, . . . , yn(y)−1) ].

To complete the definition, we have specify the measures πf = N(f) on Y ,
for f ∈ F . They are defined as follows. For m ≥ 1, let

Wm = { (y1, . . . , ym) ∈ Rm | (y1, . . . , yj) /∈ Y, 1 ≤ j ≤ m− 1 }
(W1 = R). In words, y ∈Wm iff y ∈ Rm and it can be extended to a vector
belonging to Y . Note that Wm are measurable. Indeed, so is W1, and for
arbitrary m ≥ 2 we have Wm = (Wm−1 \ Ym−1)×R.

Assuming the maps Li(f ; ·) : Ri−1 → R and σi(·) : Ri−1 → R+ are
Borel measureable, we define on Wm measures ωm = ωm,f as follows. Let
G(·|t, σ2) be the one–dimensional Gaussian measure with mean t ∈ R and
variance σ2 ≥ 0. Then

ω1(B) = G
(
B
∣∣∣L1(f), σ2

1

)
,

ωm+1(B) =

∫

Wm\Ym
G
(
B(t)

∣∣∣Lm+1(f ; t), σ2
m+1(t)

)
ωm(dt)
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where t ∈ Rm and B(t) = {u ∈ R | (t, u) ∈ B }. The measure πf is now
given as

πf (·) =
∞∑

m=1

ωm( · ∩ Ym).

Lemma 3.7 πf is a well defined probability measure on Y .

Proof The σ-field on Y is generated by cylindrical sets of the form

B =

(
m−1⋃

i=1

Bi

)
∪ { y ∈ Y | ym ∈ Am }

where Am is a Borel set of Wm and ym is the vector consisting of the first
m components of y, m ≥ 1. For any such a set, we let

π̃f (B) =
m−1∑

i=1

ωi(Bi) + ωm(Am).

Observe that π̃f (B) is well defined since it does not depend on the represen-
tation of B. Indeed, representation of the same set B with m replaced by
m+ 1 is given as

B =

[(
m−1⋃

i=1

Bi

)
∪ (Am ∩ Ym)

]
∪
{
y ∈ Y | ym+1 ∈ (Am \ Ym)×R

}
.

Then

m−1∑

i=1

ωi(Bi) + ωm(Am ∩ Ym) + ωm+1((Am \ Ym)×R)

=
m−1∑

i=1

ωi(Bi) + ωm(Am ∩ Ym) + ωm(Am \ Ym)

=
m−1∑

i=1

ωi(Bi) + ωm(Am).

π̃f is an additive measure defined on cylidrical sets. Hence, π̃f can be
uniquely extended to a σ-additive measure defined on the Borel sets of Y .
As π̃(Y ) = ω1(W1) = 1, this is a probability measure.
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Now, for any B =
⋃∞
i=1 Bi where Bi = B ∩ Yi, we have

π̃f (B) = lim
m→∞ π̃f

(
m⋃

i=1

Bi

)
= lim

m→∞

m∑

i=1

ωi(Bi) = πf (B).

Thus πf = π̃f and πf is well defined. 2

We note that πf possesses the following property. Let (y1, . . . , ym−1) be
such that (y1, . . . , yj) /∈ Yj , 1 ≤ j ≤ m − 1. Then the distribution of ym
given (y1, . . . , ym−1) is Gaussian with mean Lm(f ; y1, . . . , ym−1) and variance
σ2
m(y1, . . . , ym−1).

Clearly, nonadaptive information can be treated also as adaptive infor-
mation. Then Y = Rn, Li(·; y1, . . . , yi−1) = Li and σ2

i (y1, . . . , yi−1) = σ2
i are

independent of y1, . . . , yi−1.

3.7.2 Adaption versus nonadaption, I

Let N = {Ny}y∈Y be an arbitrary adaptive information operator. We know
from Section 2.7.2 that it is often possible to select y∗ ∈ Y in such a way
that the worst case radius of nonadaptive information Ny∗ , radwor(Ny∗), is
not much larger than radwor(N); see Theorem 2.15. Our aim now is to
show a similar result in the average case setting, for linear problems with
Gaussian measures. That is, we assume that F is a separable Banach space,
G is a separable Hilbert space, and the solution operator S : F → G is
continuous linear. The measure µ is zero mean Gaussian with correlation
operator Cµ : F ∗ → F .

Recall that for y = (y1, . . . , yn) ∈ Y , the nonadaptive information Ny =
{Ny,Σy} is given as

Ny = [L1,y, L2,y, . . . , Ln,y ]

and
Σy = [σ2

1,y, σ
2
2,y, . . . , σ

2
n,y ]

where, for brevity, Li,y = Li(·; y1, . . . , yi−1) and σ2
i,y = σ2

i (y1, . . . , yi−1), 1 ≤
i ≤ n. Recall also that µ1 denotes the a priori distribution of information y
in Y . Clearly, we have

µ1 =

∫

F
πf (·)µ(df),

and µ1 is in general not Gaussian, even when Y = Rn. For any f ∈ F , the
measure πf is supported on Y1,f = { y ∈ Y | y ∈ Ny(f)+Σy(Rn(y)) }. Hence,
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µ1 is supported on Y1 = { y ∈ Y | y ∈ Ny(F1) + Σy(Rn(y))} where F1 =
Cµ(F ∗) = supp µ, or equivalently, Y1 = { y ∈ Y | y ∈ (Σy +GNy)(Rn(y))}.

We need a theorem about the conditional distribution of a Gaussian
measure with respect to adaptive information.

Theorem 3.8 For adaptive information N = {Ny,Σy}y∈Y , the condi-
tional distribution µ2(·|y), y ∈ Y1, is Gaussian. Its mean element is given
as

m(y) =

n(y)∑

j=1

zj(CµLj,y),

where z is the solution of (Σy + GNy)z = y, Σy = diag{σ2
1,y, . . . , σ

2
n(y),y},

GNy = {〈Li,y, Lj,y〉µ}n(y)
i,j=1, and n(y) is the length of y. The correlation

operator of µ2(·|y) is given as

Cµ2,y(L) = Cµ(L) − m(Ny(CµL) ), L ∈ F ∗.

Proof We first give a proof for adaptive information N with Y = Rn.

Let F̃ = F ×Rn, and let µ̃ be the joint probability on F̃ ,

µ̃(B) =

∫

F
πf (B(f))µ(df),

B(f) = { y ∈ Y | (f, y) ∈ B }. For B ⊂ F̃ , let χB be the characteristic
function of B, i.e., χB(f̃) = 1 for f̃ ∈ B, and χB(f̃) = 0 for f̃ /∈ B.
We denote by µ1(·|M) the a priori distribution of information values with
respect to (adaptive or nonadaptive) information M, and by µ2(·|y,M) the
conditional distribution on F given y ∈ Y = Y (M).

Due to Theorem 3.2, we have to show that µ2(·|y,N) = µ2(·|y,Ny). To
this end, we shall use induction on n.

If n = 1 then any adaptive information is also nonadaptive and the proof
is obvious.

Suppose n > 1. Let Nn−1 be the adaptive information consisting of noisy
evaluations of the (n − 1) first functionals from N. For y ∈ Rn, we write
y = (yn−1, yn) where yn−1 ∈ Rn−1 and yn ∈ R. Then we have

µ̃(B) =

∫

F

∫

Rn
χB(f, y)πf (dy)µ(df)
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=

∫

F

∫

Rn−1
χB(f, y)G

(
dyn

∣∣∣Ln,yn−1(f), σ2
yn−1

)
ωn−1,f(dyn−1)µ(df)

=

∫

Rn−1

∫

F

∫

R
χB(f, y)G

(
dyn

∣∣∣Ln,yn−1(f), σ2
yn−1

)

µ2(df |yn−1,Nn−1)µ1(dyn−1,Nn−1) = (∗).

Due to the inductive assumption and Theorem 3.2, µ2(·|yn−1,Nn−1) can be
interpreted as the conditional distribution on F with respect to the non-
adaptive information Nn−1

yn−1 . Hence, denoting by ρ the distribution of yn

given yn−1, and using decomposition of µ2(·|yn−1, Nn−1) with respect to yn,
we have

∫

F

∫

R
G
(
dyn

∣∣∣Ln,yn−1(f), σ2
yn−1

)
µ2(df |yn−1,Nn−1) =

∫

R
h(y) ρ(dyn)

where h(y) =
∫
F χB(f, y)µ2(df |y,Ny). As a consequence, we obtain

(∗) =

∫

Rn−1

∫

R
h(y) ρ(dyn)µ1(dyn−1|Nn−1)

=

∫

Rn−1

∫

R

∫

F
h(y)µ2(df |y,Ny) ρ(dyn)µ1(dyn−1|Nn−1)

= · · · =

∫

F

∫

Rn
h(y)πf (dy)µ(df) =

∫

Rn
h(y)µ1(dy)

=

∫

Rn

∫

F
χB(f, y)µ2(df |y,Ny)µ1(dy).

On the other hand, µ̃(B) =
∫
Rn
∫
F χB(f, y)µ2(df |y,N)µ1(dy). Thus

µ2(·|y,N) = µ2(·|y,Ny), ∀y a.e.,

as claimed.

In the general case (Y 6= Rn), we have

µ̃(B) =

∫

F

∫

Y
χB(f, y)πf (dy)µ(df)

=
∞∑

m=1

∫

F

∫

Ym
χB(f, y)ωm,f (dy)µ(df)

=
∞∑

m=1

∫

Ym

∫

F
χB(f, y)µ2(df |y,Ny)µ1(dy)

=

∫

Y

∫

F
χB(f, y)µ2(df |y,Ny)µ1(dy).
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The proof is complete. 2

Thus, the conditional distribution µ2(·|y) with respect to adaptive informa-
tion N is equal to the conditional distribution with respect to nonadaptive
information operator Ny and the same y. This should be intuitively clear.
Indeed, in both cases, the information y is obtained by using the same func-
tionals Li,y and precisions σ2

i,y.

From Theorem 3.8 we obtain almost immediately the following result
corresponding to Theorem 2.15 of the worst case.

Theorem 3.9 For any adaptive information N = {Ny}y∈Y , there exists
y∗ ∈ Y such that for the nonadaptive information Ny∗ we have

radave(Ny∗) ≤ radave(N).

Proof There exists y∗ ∈ Y1 such that

radave(N) =

√∫

Y
( r(ν2(·|y)) )2 µ1(dy) ≥ r(ν2(·|y∗) ) (3.12)

where, as in Section 3.2, ν2(·|y) = µ2(S−1(·)|y) and r(ν2(·|y)) is the ra-
dius of ν2(·|y). From Theorem 3.2 we know that the conditional measures
µ2(·|y,Ny∗) have the same correlation operator. Hence, r(ν2(·|y,Ny∗)) =
r(ν2(·|y∗,Ny∗)) ∀y a.e. This, Theorem 3.8, and (3.12) yield

radave(Ny∗) =

√∫

Rn(y∗)
r(ν2(·|y,Ny∗))µ1(dy|Ny∗) = r(ν2(·|y∗,Ny∗))

= r(ν2(·|y∗)) ≤ radave(N). 2

Note that Theorem 3.8 does not say anything about the construction of y∗.
Actually, y∗ can assume arbitrary values (compare with E.3.28). Thus the
situation differs from that in the worst case where in the linear case we have
radwor(N0) ≤ 2 radwor(N).

Notes and Remarks

NR 3.16 Adaptive information with fixed, but not necessarily Gaussian observa-
tion noise was studied by Kadane et al. [36]. They give examples that adaption
can generally be much more powerful than nonadaption and show, under some
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additional assumptions, a result corresponding to Theorem 3.8; see also E 3.29.

NR 3.17 The adaptive information with varying noise in the average case setting
was presented in Plaskota [83].

Exercises

E 3.27 Let N = {N,Σ} be such adaptive information that σ2
i (y1, . . . , yi−1) > 0,

for all i and y1, . . . , yi−1. Show that then the measure πf is given as

πf (B) =
∞∑

m=1

(2π)−m/2
∫

Bm

(σ1σ2(t1) · · ·σm(t1, . . . , tm−1) )−1

exp

{
−1

2

m∑

i=1

( ti − Li(f ; t1, . . . , ti−1) )2

σ2
i (t1, . . . , ti−1)

}
dtmdtm−1 . . . dt1.

E 3.28 Let y ∈ Rn. Give an example of adaptive information N with y ∈ Y , such
that
(a) y is the only element for which radave(N) = radave(Ny).
(b) radave(N) = 0, but radave(Ny) > 0.

E 3.29 Let (Kadane, Wasilkowski, Woźniakowski) F = R2 be equipped with the
Euclidean norm and standard Gaussian measure µ, and let S be the identity in F .
Consider adaptive information N with Y = Rn, consisting of noisy observations of
n adaptively chosen functionals Li,

Li(f) = Li(f ; y1, . . . , yi−1) =

{
f1 y1 = y2 = · · · = yi−1,
f2 otherwise,

with noise xi such that xi = −1 or xi = 1 with probability 1/2. Show that

lim
n→+∞

infy∈Rn radave(Ny)

radave(N)
= +∞.

3.8 Optimal information

In this section we study the minimal radius and optimal (nonadaptive) in-
formation. Recall that they are defined as follows. Let Nn be the class of
exact nonadaptive information operators N consisting of n functionals from
a given class Λ, N = [L1, . . . , Ln], Li ∈ Λ. Then the minimal (average)
radius corresponding to a precision vector Σ = [σ2

1 , σ
2
2 , . . . , σ

2
n] is given as

rave
n (Σ) = inf

N∈Nn
radave(N,Σ).
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Information NΣ ∈ Nn is optimal iff

rave
n (Σ) = radave(NΣ,Σ).

We shall consider a general problem with Gaussian measures and also
function approximation and integration on the classical Wiener space.

3.8.1 Linear problems with Gaussian measures

We start with the general problem with a continuous linear solution operator
S : F → G and a zero mean Gaussian measure µ on F . The class Λ of
permissible information functionals consists of functionals whose µ–norm is
bounded by 1,

Λ = Λall =

{
L ∈ F ∗

∣∣∣ ‖L‖µ =
√
L(CµL) ≤ 1

}
.

Observe that Λall can be equivalently defined as

Λall =

{
L ∈ F ∗

∣∣∣ ‖LH‖H = sup
‖f‖H=1

|L(f)| ≤ 1

}

where H is the associated with µ Hilbert space, so that {H,Cµ(F )} is an
abstract Wiener space. The precision vector is Σ = [σ2

1 , σ
2
2 , . . . , σ

2
n] where,

without loss of generality,

0 = σ2
1 = · · · = σ2

n0
< σ2

n0+1 ≤ · · · ≤ σ2
n

(if all σi’s are nonzero then n0 = 0).
We shall see that the method of finding optimal information is in this

case similar to that used in Section 2.8.1, where the problem of optimal
information in the worst case for a compact solution operator and noise
bounded in the weighted Euclidean norm was studied.

Let ν = µS−1 be the a priori distribution on the space G, induced by
the measure µ and the operator S. Then ν is zero mean Gaussian with
correlation operator Cν = SCµS

∗ : G → G where S∗ : G → F ∗ is the
adjoint operator to S, S∗g = 〈S(·), g〉 ∀g ∈ G. Moreover, Cν is self-adjoint,
nonnegative definite, and has finite trace.

Let {ξi}dimG
i=1 ⊂ G be the complete and orthonormal system of eigenele-

ments of Cν . Let λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 be the corresponding eigenvalues,
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Cνξi = λiξi. We consider the sequence {λi} to be infinite by setting, if nec-
essary, λi = 0 for i > dim G. For λi > 0, define the functionals

K∗i = λ
−1/2
i S∗ξi = λ

−1/2
i 〈S(·), ξi〉.

(For λi = 0 we formally set K∗i = 0.) Clearly, the functionals K∗i are µ-
orthonormal,

〈K∗i ,K∗j 〉µ = (λiλj)
−1/2〈S∗Hξi, S∗Hξj〉H

= (λiλj)
−1/2〈SHS∗Hξi, ξj〉 = δij .

Since Cν = SHS
∗
H , λi’s are also the dominating eigenvalues of the com-

pact operator S∗HSH : H → H, and the corresponding orthonormal in H
eigenelements are ξH,i = CµK

∗
i ∈ H, i ≥ 1.

Recall that in the worst case setting the problem of optimal information
was related to some minimization problem. The corresponding problem in
the average case is as follows:

Problem (MP) Minimize

Ω(ηn0+1, . . . , ηn) =
n∑

i=n0+1

λi
1 + ηi

(3.13)

over all ηn0+1 ≥ · · · ≥ ηn ≥ 0 satisfying

n∑

i=r

ηi ≤
n∑

i=r

1

σ2
i

, n0 + 1 ≤ r ≤ n , (3.14)

and
∑n
i=n0+1 ηi =

∑n
i=n0+1 σ

−2
i .

Theorem 3.10 Let η∗n0+1 ≥ · · · ≥ η∗n be the solution of (MP). Then

rave
n (Σ) =

√√√√Ω(η∗n0+1, . . . , η
∗
n) +

∞∑

i=n+1

λi .

Furthermore, the optimal information is given as

NΣ = [K∗1 , . . . ,K
∗
n0
, L∗n0+1, . . . , L

∗
n ] ,
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where

L∗n0+i = σn0+i

n−n0∑

j=1

wijK
∗
n0+j ,

and W ∗ = {wij}n−n0
i,j=1 is the matrix from Lemma 2.14 applied for

ηi = η∗n0+i and βi =
1

σ2
n0+i

,

1 ≤ i ≤ n− n0 .

Proof Assume first that all σ2
i are positive, n0 = 0. Let N = [L1, . . . , Ln ]

be an arbitrary information from Nn. We can assume that ‖Li‖µ = 1,
1 ≤ i ≤ n.

We start with the lower bound on radave(N,Σ). Let the matrix

G = Σ−1/2GNΣ−1/2 = {(σiσj)−1〈Li, Lj〉µ}ni,j=1,

and let {q(i)}ni=1 be the orthonormal basis of eigenvectors of G, Gq(i) = ηiq
(i)

where η1 ≥ · · · ≥ ηm > 0 = ηm+1 = · · · = ηn. We know from Section
3.4.2 that the radius of N = {N,Σ} is equal to the radius of information
M = {M,Σ′} where M consists of m µ–orthonormal functionals Ki,

Ki =
1

ηi

n∑

j=1

q
(i)
j

σj
Lj, 1 ≤ i ≤ m,

and Σ′ = diag{η−1
1 , . . . , η−1

m }. That is,

(radave(N,Σ) )2 = (radave(M,Σ′) )2 = trace(SCµS
∗) −

m∑

i=1

‖SCµKi‖2
1 + η−1

i

.

It is a well known fact that for any orthonormal in H elements fi, 1 ≤
i ≤ k, it holds

∑k
i=1〈S∗HSHfi, fi〉H ≤

∑k
i=1 λi. Since for fi = CµKi is

〈fi, fj〉H = δij , we have

k∑

i=1

‖S(CµKi)‖2 =
k∑

i=1

‖SHfi‖2 =
k∑

i=1

〈S∗HSHfi, fi〉H ≤
k∑

i=1

λi.

This and η1 ≥ · · · ≥ ηm yield

m∑

i=1

ηi
1 + ηi

‖S(CµKi)‖2 ≤
n∑

i=1

ηi
1 + ηi

λi
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which implies the following lower bound on radave(N,Σ):

(radave(N,Σ))2 ≥
∞∑

i=1

λi −
n∑

j=1

ηj
1 + ηj

λj = Ω(η1, . . . , ηn) +
∞∑

j=n+1

λj .

Observe that for all 1 ≤ r ≤ n we also have

n∑

i=r

ηi ≤
n∑

i=r

〈Gei, ei〉2 =
n∑

i=r

1

σ2
i

,

(ei stands for the ith versor), and
∑n
i=1 ηi =

∑n
i=1 σ

−2
i . Thus we finally

obtain

rave
n (Σ) ≥

√√√√Ω(η∗1 , . . . , η∗n) +
∞∑

i=n+1

λi . (3.15)

We now show that radave(NΣ,Σ) is equal to the right hand side of (3.15).
Indeed, since

〈L∗i , L∗j〉µ =

〈
σi

n∑

s=1

wisK
∗
s , σj

n∑

t=1

wjtK
∗
t

〉

µ

= σiσj

n∑

s=1

wijwjs, (3.16)

the corresponding matrix G = WW ∗, the eigenvectors q(i) of G are the
columns w(i) of W , and Gw(i) = η∗iw

(i), 1 ≤ i ≤ n. Furthermore, for
1 ≤ i ≤ m, the functionals Ki equal

Ki =
1

ηi

n∑

s=1

q(i)
s σ−1

s


σs

n∑

j=1

wsjK
∗
j




=
1

ηi

n∑

s=1

wsi

n∑

j=1

wsjK
∗
j =

1

ηi

n∑

j=1

K∗j
n∑

s=1

wsiwsj

=
1

ηi
ηiK

∗
i = K∗i .

Hence,

radave(NΣ,Σ) =

√√√√
∞∑

i=1

λi −
m∑

j=1

η∗i
1 + η∗i

‖S(CµKj)‖2

=

√√√√
∞∑

i=1

λi −
n∑

j=1

η∗j
1 + η∗j

λj =

√√√√Ω(η∗1 , . . . , η∗n) +
∞∑

j=n+1

λj .
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Since, due to (3.16), we also have ‖L∗i ‖µ = σ2
i

∑n
s=1w

2
is = 1, information NΣ

is in Nn. This completes the proof of the case n0 = 0.

Suppose now that n0 ≥ 1. Then N = [N (0), N (1)] and Σ = [Σ(0),Σ(1)],
where N (0) = [L1, . . . , Ln0 ], N (1) = [Ln0+1, . . . , Ln], and Σ(0) = [σ2

1 , . . . , σ
2
n0

],

Σ(1) = [σ2
n0+1, . . . , σ

2
n]. The a posteriori Gaussian measure on F with respect

to information N (0) (which is exact, Σ(0) = 0) has the correlation opera-
tor Cµ,N(0) = Cµ(I − PN(0)), where PN(0) : F ∗ → F ∗ is the µ–orthogonal

projection onto span{L1, . . . , Ln0}. For the dominating eigenvalues λ̃i of
SCµ,N(0)S∗, which is the correlation operator of the a posteriori measure

on G with respect to N (0), we have λ̃i ≥ λn0+i, ∀i ≥ 1. Moreover, if
N (0) = N∗ = [K∗1 , . . . ,K

∗
n0

] then λ̃i = λn0+i, and the corresponding eigenele-

ments are ξ̃i = ξn0+i, ∀i ≥ 1. Hence, we obtain the desired result by reduc-
ing our problem to that of finding optimal N (1), where the precision is Σ(1)

and the a priori distribution on F is Gaussian with correlation operator
Cµ(I − PN∗). 2

We now give an explicit formula for the solution of the minimization problem
(MP) as well as for the minimal radius rave

n (Σ). For n0 ≤ q < r ≤ n, define
the following auxiliary minimization problem

Problem P(q, r) Minimize

Ωqr(ηq+1, . . . , ηr) =
r∑

j=q+1

λj
1 + ηj

over all ηq+1 ≥ · · · ≥ ηr ≥ 0 satisfying
∑r
i=q+1 ηi =

∑r
i=q+1 σ

−2
i .

The solution η∗ = (η∗q+1, . . . , η
∗
r ) of P(q, r) is as follows. Let k = k(q, r)

be the largest integer satisfying q + 1 ≤ k ≤ r and

∑k
j=q+1 λ

1/2
j∑r

j=q+1 σ
−2
j + (k − q) ≤ λ

1/2
k . (3.17)

Then

η∗i =

∑r
j=q+1 σ

−2
j + (k − q)

∑k
j=q+1 λ

1/2
j

· λ1/2
i − 1 for q + 1 ≤ i ≤ k, (3.18)
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and η∗i = 0 for k + 1 ≤ i ≤ r. Furthermore,

Ωqr(η
∗) =

(∑k
j=q+1 λ

1/2
j

)2

∑r
j=q+1 σ

−2
j + (k − q) +

r∑

j=k+1

λj .

We shall say that the solution η∗ = (ηq+1, . . . , η
∗
r ) of P(q, r) is acceptable

iff
r∑

j=s

η∗j ≤
r∑

j=s

1

σ2
j

, for all q + 1 ≤ s ≤ r .

Let the number p, 0 ≤ p < n, and the sequence 0 ≤ n0 < n1 < · · · <
np < np+1 = n be defined (uniquely) by the condition

ni = min{ s ≥ n0 | solution of (P(s,ni+1) is acceptable }, (3.19)

for all 0 ≤ i ≤ p.

Theorem 3.11 Let p and the sequence n0 < n1 < · · · < np+1 = n be
defined by (3.19). Then the optimal η∗ is given as

η∗ = (η(0), η(1), . . . , η(p))

where η(i) = (η∗ni+1, . . . , η
∗
ni+1

) is the solution of P(ni,ni+1), 0 ≤ i ≤ p.

Proof Let t = max{n0 + 1 ≤ i ≤ n | η∗i > 0}. For n0 + 1 ≤ i ≤ t, the
function

ψi(τ) = Ω(η∗n0+1, . . . , η
∗
i−2, η

∗
i−1 + η∗i − τ, τ, η∗i+1, . . . , η

∗
n)

is continuous, convex, and attains the minimum at τ0 such that λi−1(1 +
η∗i−1 + η∗i − τ0)−2 = λi(1 + τ0)−2. From this and from the definition of (MP)
it follows that

λi−1

(1 + η∗i−1)2
≤ λi

(1 + η∗i )
2
. (3.20)

Moreover, if λi−1(1 + η∗i−1)−2 < λi(1 + η∗i )
−2 then

∑n
j=i η

∗
j =

∑n
j=i σ

−2. If
t < n then, using the same argument with i = t+ 1, we find that

λt
(1 + η∗t )2

≥ λt+1. (3.21)

Let m1 < · · · < ms be the sequence of all indices i, n0 < i < t, for which
λi(1 + η∗i )

−2 < λi+1(1 + η∗i+1)−2. Set m0 = n0 and ms+1 = n. From (3.20)
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it follows that
∑mi+1

j=mi+1 η
∗
j =

∑mi+1

j=mi+1 σ
−2
j , 0 ≤ i ≤ s. This and (3.21)

yield that the numbers η∗mi+1, . . . , η
∗
mi+1

are the solution of (P(mi,mi+1))
for all 0 ≤ i ≤ s. To complete the proof, it is now enough to show that the
sequences {mi}s+1

i=0 and {ni}p+1
i=0 are the same, i.e., {mi}q+1

i=0 satisfies (3.19).
Indeed, suppose to the contrary that for some i there is j0, 0 ≤ j0 < mi,
such that the solution η̃∗j0+1, . . . , η̃

∗
mi+1

of (P(j0,mi+1)) is acceptable. Then

mi+1∑

j=mi+1

η̃∗j ≤
mi+1∑

j=mi+1

1

σ2
j

=

mi+1∑

j=mi+1

η∗j .

From this and the formulas (3.17), (3.18) we get η̃∗j ≤ η∗j for all mi + 1 ≤
j ≤ mi+1. Similarly, for j0 ≤ j ≤ mi we have

λj
(1 + η∗j )

2
<

λmi+1

(1 + η∗mi+1)2
≤ λmi+1

(1 + η̃∗mi+1)2
=

λj
(1 + η̃∗j )

2
,

and consequently η̃∗j < η∗j . Hence,

mi+1∑

j=j0+1

1

σ2
j

=

mi+1∑

j=j0+1

η̃∗j <

mi+1∑

j=j0+1

η∗j ,

which is a contradiction. 2

Knowing optimal η∗, we can write an explicit formula for rave
n (Σ).

Corollary 3.4 Let p and the sequence {ni}p+1
i=0 be defined by (3.19), and

let k = k(np, n) be given by (3.17). Then the minimal radius rave
n (Σ) equals

√√√√√
p−1∑

i=0

(∑ni+1

j=ni+1 λ
1/2
j

)2

∑ni+1

j=ni+1 σ
−2
j + (ni+1 − ni)

+

(∑k
j=np+1 λ

1/2
j

)2

∑n
j=np+1 σ

−2
j + (k − np)

+
∞∑

j=k+1

λj .

2

As we see, the formula for the minimal radius given in terms of the eigenval-
ues λi and precisions σi, 1 ≤ i ≤ n, is rather complicated. Let, for simplicity,
all σi’s be nonzero. Then we have the following bounds on rave

n (Σ):
√√√√√
(∑k

i=1 λ
1/2
i

)2

∑n
i=1 σ

−2
i + k

+
∞∑

i=k+1

λi ≤ rave
n (Σ) ≤

√√√√
n∑

i=1

λi

σ−2
i + 1

+
∞∑

i=n+1

λi,

(3.22)
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where k is the largest integer satisfying 1 ≤ k ≤ n and

∑k
j=1 λ

1/2
j∑n

j=1 σ
−2
j + k

≤ λ
1/2
k .

Clearly, we always have
√∑∞

i=n+1 λi ≤ rave
n (Σ) ≤

√∑∞
i=1 λi.

Let us see what happens when all n observations are performed with the
same precisions, σ2

i = σ2 > 0, ∀i. It is easy to verify that then

rave
n (Σ) = rave

n (σ2) =

√√√√√σ2 ·

(∑k
i=1 λ

1/2
i

)2

n+ σ2 k
+
∞∑

j=1

λj, (3.23)

where k = k(σ2, n) is the largest integer satisfying 1 ≤ k ≤ n and

σ2 ·
∑k
j=1 λ

1/2
j

n+ σ2 k
≤ λ

1/2
k .

The optimal information Nn,σ = [L∗1, . . . , L
∗
n] is given by Theorem 3.10 with

η∗i =
nσ−2 + k
∑k
j=1 λ

1/2
j

· λ1/2
i − 1, 1 ≤ i ≤ k,

and η∗i = 0 for k+1 ≤ i ≤ n. The optimal algorithm is the smoothing spline
(or regularized) algorithm with γ = σ2.

Let us look at the behavior of rave
n (σ2). Suppose first that σ2 → 0+.

Then, for rave
n (0) =

√∑∞
i=n+1 λi > 0, we have

rave
n (σ2) − rave

n (0) ≈
σ2
(∑n

i=1 λ
1/2
i

)2

2n (1 + σ2)
√∑∞

j=1 λj
,

while for rave
n (0) = 0 we have

rave
n (σ2) − rave

n (0) ≈ σ
∑n
i=1 λ

1/2
i√

n+ σ2 m

where m is the largest integer such that λm > 0.
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For fixed σ2 and n → +∞, the radius converges to zero, but not faster
than σ/

√
n. Suppose that the eigenvalues λj satisfy

λj �
(

lns j

j

)p
, as j → +∞, (3.24)

where p > 1 and s ≥ 0. Providing some calculations we find that for σ2 > 0

(
rave
n (σ2)

)2
�





σ2 lnsp n
np−1 1 < p < 2,

σ2 ln2(s+1) n
n p = 2,

σ2 1
n p > 2,

where the constants in the “�” notation do not depend on σ2. For exact
information we have

(rave
n (0))2 � lnsp n

np−1
.

Hence, for 1 < p < 2 the radius of noisy information behaves as rave
n (0),

while for p > 2 it achieves the best possible rate of convergence σ/
√
n.

Note that the eigenvalues (3.24) correspond to the function approxima-
tion in L2((0, 1)d) with respect to the Wiener sheet measure, see NR 3.20.

We now devote some attention to the already mentioned relations be-
tween the optimal information problem considered in this section and the
optimal information problem of Section 2.8.1.

Consider the pair of problems defined as in Section 3.6.3. That is, assume
that {H,F} is an abstract Wiener space and µ is the associated with it
zero mean Gaussian measure. We wish to approximate values S(f) of a
continuous linear operator S : F → G, based on noisy information y =
N(f)+x where N = [L1, . . . , Ln] and the functionals ‖Li‖µ = ‖(Li)H‖H ≤ 1.
We know from Theorem 3.7 that for fixed N the optimal algorithms in the
worst and average cases are (almost) the same. We now want to see whether
a similar result holds with respect to optimal information. More precisely,
suppose we want to choose information N ∈ Nn and algorithm ϕ as to
minimize:

P1: Worst case error ewor(N, ϕ) over the class E = { f ∈ H | ‖f‖H ≤ 1 }
and noise ‖x‖Y =

√
〈Σ−1x, x〉2 ≤ δ,

P2: Average case error eave(N, ϕ) over the Gaussian measure µ and noise
x ∼ N (0, σ2Σ),

where Σ is an n× n diagonal matrix.
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Observe first that in both problems the minimal radii are determined by
n dominating eigenvalues of the operator S∗HSH , and the optimal functionals
L∗i are linear combinations of the corresponding functionals K ∗i , 1 ≤ i ≤ n.
Furthermore, in the case Σ = I and δ2 = σ2 > 0, the radii rwor

n (δ) and
rave
n (σ2) decrease to zero as n→ +∞, but convergence cannot be faster than
n−1/2.

It turns out that even stronger correspondence between both problems
holds, similar to that of Theorem 3.7. Namely, assume additionally that
δ2 = σ2 and that 0 = γ2

1 = · · · = γ2
n0
< γ2

n0+1 ≤ · · · ≤ γ2
n are the diagonal

elements of the matrix Σ. Let αw and ηwn0+1 ≥ · · · ≥ ηwn ≥ ηwn+1 = 0 be the
solution of the minimization problem (MP) of Section 2.8.1 with δi = γi,
and let ηa1 ≥ · · · ≥ ηan ≥ 0 be the solution of the minimization problem (MP)
of the present section with σi = γi. Next, let information N ∗ be given as
in Theorem 3.10 (or in Theorem 2.16) with σ2

i = γ2
i /2 (or δi = γi/

√
2) and

η∗i = (ηwi + ηai )/2, n0 + 1 ≤ i ≤ n. Observe that N ∗ is well defined since for
any n0 + 1 ≤ r ≤ n we have

n∑

i=r

η∗i =
n∑

i=r

(ηwi + ηai )/2 ≤
n∑

i=r

1/γ2
i ,

and the assumptions of Lemma 2.14 are satisfied. Also, N ∗ ∈ Nn. We have
the following theorem.

Theorem 3.12 For information N ∗ and the spline algorithm ϕspl we have

ewor ({N∗,∆}, ϕspl) ≤ 2 · rwor
n (∆)

and
eave ({N∗,Σ}, ϕspl) ≤

√
2 · rave

n (Σ)

where ∆ = [γ1, . . . , γn] and Σ = [γ2
1 , . . . , γ

2
n].

Proof Indeed, the formulas for the worst and average case errors of the
algorithm ϕspl using information N ∗ can be obtained as in the proofs of
Theorem 2.16 and Theorem 3.10, respectively. Hence,

(ewor ({N∗,∆}, ϕspl))
2 ≤ max

n0+1≤i≤n+1

2λi
1 + η∗i

≤ max
n0+1≤i≤n+1

2λi
1 + ηwi /2

≤ 4 · max
n0+1≤i≤n+1

λi
αw + (1− αw)ηwi

= 4 · (rwor
n (∆))2.
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Similarly,

(eave ({N∗,Σ}, ϕspl))
2 =

n∑

i=n0+1

λi
1 + η∗i

+
∞∑

j=n+1

λj

≤
n∑

i=n0+1

λi
1 + ηai /2

+
∞∑

j=n+1

λj

≤ 2 ·



n∑

i=n0+1

λi
1 + ηai

+
∞∑

j=n+1

λj




= 2 · (rave
n (Σ))2,

as claimed. 2

We stress that Theorem 3.12 does not say anything about a correspondence
between rwor

n (∆) and rave
n (Σ). Due to Theorem 3.7, we have rwor

n (∆) ≤√
2 rave

n (Σ). However, the ratio rave
n (Σ)/rwor

n (∆) can be arbitrarily large. For
instance, consider ∆ = [δ, . . . , δ︸ ︷︷ ︸

n

], Σ = [σ2, . . . , σ2

︸ ︷︷ ︸
n

], and the eigenvalues as

in (3.24). Then, using results of this and Section 2.8.1, for σ2 = δ2 > 0 we
obtain

rave
n (σ2)

rwor
n (δ)

�





n1−p/2 lnsp/2 n 1 < p < 2,
lns+1 n p = 2,
1 p > 2,

as n→ +∞. For exact information we have rave
n (0)/rwor

n (0) � √n.

3.8.2 Approximation and integration on the Wiener space

In this section, we study optimal information for approximation and integra-
tion of continuous scalar functions, based on noisy observations at n points.
More precisely, we let F to be the space of functions defined as

F = C0 = { f : [0, 1]→ R | f–continuous, f(0) = 0 },

equipped with the classical Wiener measure w. Recall that w is uniquely
determined by its mean element zero and the covariance kernel

R(s, t) =

∫

C0
f(s)f(t)w(df) = min{s, t}, 0 ≤ s, t ≤ 1.
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The solution operator corresponding to the function approximation is given
as

App : C0 → L2(0, 1), App(f) = f, ∀f ∈ C0,

while the integration operator is defined as

Int : C0 → R, Int(f) =

∫ 1

0
f(x) dx, ∀f ∈ C0.

We assume that Λ = Λstd. That is, information about f ∈ C0 is supplied by
n noisy values of f at arbitrary points from [0, 1],

N(f) = [ f(t1), f(t2), . . . , f(tn) ] (3.25)

where 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1. The information noise is assumed to
be white, Σ = [σ2, . . . , σ2

︸ ︷︷ ︸
n

].

We start with a remark about the radius of information. Let S ∈
{App, Int}, the variance σ2, and information operator N of the form (3.25)
be given. We know that the radius radave(S,N, σ2) is attained by the algo-
rithm ϕopt(y) = S(m(y)), y ∈ Rn, where m(y) is the mean of the conditional
measure w(·|y) with respect to the observed vector y. Furthermore,

radave(S,N, σ2) =

(∫

C0
‖S(f)‖2 w(df |0)

)1/2

. (3.26)

Let RN : [0, 1]2 → R denote the covariance kernel function of the conditional
measure w(·|y) (it is independent of y). Applying (3.26) and the Fubini
theorem we obtain

(
radave(App, N, σ2)

)2
=

∫

C0

(∫ 1

0
f2(x) dx

)
w(df |0)

=

∫ 1

0

(∫

C0
f2(x)w(df |0)

)
dx

=

∫ 1

0
RN (x, x) dx (3.27)

and
(
radave(Int, N, σ2)

)2
=

∫

C0

(∫ 1

0
f(x) dx

)2

w(df |0)

=

∫

C0

(∫ 1

0

∫ 1

0
f(s)f(t) ds dt

)
w(df |0)

=

∫ 1

0

∫ 1

0
RN (s, t) ds dt. (3.28)
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Hence, the problem of finding the minimal error rave
n (S, σ2) can be reduced

to minimizing (3.27) for function approximation and (3.28) for integration,
over all N of the form (3.25).

We shall find the optimal information in three steps. We first give formu-
las for RN . Then, using these formulas, we estimate the radius of informa-
tion Nn consisting of observations at equidistant points. Finally, we present
lower bounds on rave

n (S, σ2), S ∈ {App, Int}, from which it will follow that
information Nn is almost optimal.

Covariance kernel of the conditional distribution

Recall that the mean element m(y) of w(·|y) is the natural linear spline
interpolating data {ti, zi}ni=0 where zi are obtained by smoothing the original
data {yi}ni=1, see Section 2.6.4.

We now find formulas for the covariance kernel function RN of w(·|y).
To this end, we first define sequences {ai}ni=0, {ci}ni=0, {di}ni=0, and {bi}ni=1,
as follows.

a0 = c0 = 0,

ci =
σ2 (ti − ai−1)

σ2 + (ti − ai−1)
, (3.29)

ai = ti − ci, i = 1, 2, . . . , n.

dn = cn,

bi = ai−1 +
(ti − ai−1)2

(ti − ai−1)− di
, (3.30)

di−1 =
(ti−1 − ai−1)(bi − ti−1)

bi − ai−1
, i = n, n− 1, . . . , 1.

(To make these and next formulas well defined for all σ’s and ti’s, we use the
convention that 0/0 = 0.) Note that the numbers bi, bi ≥ ti, are defined in
such a way that for the parabola

pi(t) =
(bi − t)(t− ai−1)

bi − ai−1

we have pi(ti−1) = di−1. If information is exact, σ2 = 0, then ai = bi = ti,
while for σ2 > 0 we have

0 ≤ ai−1 ≤ ti−1 ≤ ti ≤ bi, 1 ≤ i ≤ n.
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Theorem 3.13 The covariance kernel function RN is given as

RN (s, t) =





s− an tn ≤ s ≤ t ≤ 1,
(s−ai−1)(bi−t)

bi−ai−1
ti−1 ≤ s ≤ t ≤ ti, 1 ≤ i ≤ n,

s−ai−1

ti−ai−1
RN (ti, t) ti−1 ≤ s ≤ ti < t, 1 ≤ i ≤ n,

where ai, 0 ≤ i ≤ n, and bi, 1 ≤ i ≤ n, are defined by (3.29) and (3.30).

Proof We start the proof with the following observation. Let µ be a Gaus-
sian measure on a separable Banach space F of functions f : [0, 1] → R,
whose covariance kernel is K0. Let L(f) = f(u), ∀f ∈ F, where 0 ≤ u ≤ 1.
Then the conditional distribution of µ with respect to information operator
N = L : F → R and variance σ2 is Gaussian with covariance kernel

K1(s, t) = K0(s, t) − K0(s, u)K0(t, u)

K0(u, u) + σ2
, 0 ≤ s, t ≤ 1. (3.31)

Indeed, from the general formulas for conditional distributions given in Sec-
tion 3.4.1, it follows that K1(s, t) = K0(s, t) − (m1(K0(s, u)) )(t) where
(m1(y))(t) = (σ2 + K0(u, u))−1K0(t, u)y, ∀ y ∈ R, 0 ≤ t ≤ 1. This gives
(3.31).

We now use (3.31) to prove the theorem by induction with respect to the
number n of observations. Clearly, the theorem holds for n = 0. Assume
that the theorem holds for some n, n ≥ 0. We shall show that it holds also
for any information operator consisting of n+ 1 function values,

N1(f) = [f(t1), . . . , f(tn), f(tn+1)],

0 = t0 ≤ t1 ≤ · · · ≤ tn+1 ≤ 1. That is, we show that the function R̃ :
[0, 1]2 → R,

R̃(s, t) =





s− ãn+1 tn+1 ≤ s ≤ t ≤ 1,
(s−ãi−1)(b̃i−t)

b̃i−ãi−1
ti−1 ≤ s ≤ t ≤ ti, 1 ≤ i ≤ n+ 1,

s−ãi−1

ti−ãi−1
R̃(ti, t ti−1 ≤ s ≤ ti ≤ t, 1 ≤ i ≤ n+ 1,

where {ãi}n+1
i=0 and {b̃i}n+1

i=1 are defined by (3.29), (3.30), for information
operator N1, is equal to the covariance kernel R1 of the measure w(·|0, N1).
To this end, let the information operator N(f) = [f(t1), . . . , f(tn)], and let



192 CHAPTER 3. AVERAGE CASE SETTING

R0 be the covariance kernel of w(·|0, N). Then (3.31) is valid with u = tn+1

and
ãi = ai, 0 ≤ i ≤ n. (3.32)

We have three cases:
1. tn+1 ≤ s ≤ t ≤ 1.

Then, from (3.31), (3.32), and from the inductive assumption we get

R1(s, t) = (s− an) − (tn+1 − an)2

σ2 + (tn+1 − an)

= s −
[
tn+1 −

σ2(tn+1 − an)

σ2 + (tn+1 − an)

]
= s − ãn+1 = R2(s, t).

2. ti−1 ≤ s ≤ t ≤ ti, 1 ≤ i ≤ n+ 1.
To show that for such s, t is R2(s, t) = R1(s, t), we use induction on i,

i = n+ 1, n, . . . , 1. For i = n+ 1 we have

R1(s, t) = (s− an) − (s− an)(t− an)

σ2 + (tn+1 − an)
=

(s− an)(σ2 + tn+1 − t)
σ2 + tn+1 − an

=
(s− ãn)(b̃n+1 − t)

b̃n+1 − ãn
= R2(s, t).

Suppose that 1 ≤ i ≤ n. Then, from (3.31) we obtain

R1(s, t) =
(s− ai−1)(bi − t)

bi − ai−1
− (s− ai−1)(t− ai−1)

(t− ai−1)2
· R2

0(ti, tn+1)

σ2 +R0(tn+1, tn+1)
(3.33)

and

R1(ti, ti) =
(ti − ai−1)(bi − ti)

bi − ai−1
− R2

0(ti, tn+1)

σ2 +R0(tn+1, tn+1)
. (3.34)

On the other hand, we have

R1(ti, ti) =
(b̃i+1 − ti)(ti − ãi)

b̃i+1 − ãi
=

(b̃i − ti)(ti − ai−1)

b̃i − ai−1

. (3.35)

Combining (3.33), (3.34), (3.35) and providing some elementary calculations,
we finally get

R1(s, t) =
(s− ai−1)(bi − t)

bi − ai−1
+

(s− ai−1)(t− ai−1)

(ti − ai−1)2
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×
[

(ti − ai−1)(bi − ti)
bi − ai−1

− (b̃i − ti)(ti − ai−1)

b̃i − ai−1

]

= · · · =
(s− ai−1)(b̃i − t)

b̃i − ai−1

= R2(s, t).

3. ti−1 ≤ s ≤ ti ≤ t, 1 ≤ i ≤ n+ 1.
In this case,

R1(s, t) =
s− ai−1

ti − ai−1
R0(ti, t) −

(s− ai−1)R0(ti, tn+1)

ti − ai−1

· R0(t, tn+1)

σ2 +R0(tn+1, tn+1)
=

s− ãi−1

ti − ãi−1
R1(ti, t).

This completes induction on n and the proof of the theorem. 2

Note that in the case of exact information, σ2 = 0, the formulas for RN
reduce to

RN (s, t) =





s− tn, tn ≤ s ≤ t ≤ 1,
(s−ti−1)(ti−t)

ti−ti−1
, ti−1 ≤ s ≤ t ≤ ti, 1 ≤ i ≤ n,

0, otherwise.

Equidistant points

We now consider information consisting of observations at equidistant points.
That is, we assume that

N(f) = Nn(f) = [f(t∗1), f(t∗2), . . . , f(t∗n)], ∀f ∈ C0,

where t∗i = i/n, 1 ≤ i ≤ n. Such information is of practical importance
since obtaining function values at equidistant points is usually much easier
than obtaining them at any other points.

Using (3.36) and (3.27), (3.28), we find that

radave(App, Nn, 0) =
1√
6n

and

radave(Int, Nn, 0) =
1

2
√

3n
.



194 CHAPTER 3. AVERAGE CASE SETTING

Theorem 3.14 For σ2 > 0 we have

radave(App, Nn, σ
2) ≈

(
σ2

4n

)1/4

and

radave(Int, Nn, σ
2) ≈

(
σ2

n

)1/2

as n→ +∞.

The proof will be based on the following two lemmas. Let the sequences
{c∗i }ni=0 and {d∗i }ni=0 be defined by (3.29) and (3.30) for the information
operator Nn. That is,

c∗0 = 0, c∗i =
σ2(c∗i−1 + 1/n)

σ2 + c∗i−1 + 1/n
, 1 ≤ i ≤ n,

d∗n = c∗n, d∗i−1 = d∗i

(
c∗i−1

c∗i−1 + 1/n

)2

+
c∗i−1/n

c∗i−1 + 1/n
, n ≥ i ≥ 1.

Lemma 3.8 (i)

0 ≤ c∗i <
σ√
n
, ∀i ≥ 0.

(ii) Let 0 < α < 1 and K > α/(1 − α2). Then for sufficiently large n we
have

c∗i ≥
ασ√
n
, ∀i ≥ Kσ√n.

Proof Observe that the function

ξ(x) =
σ2(x+ 1/n)

σ2 + x+ 1/n
− x = −x

2 + x/n− σ2/n

σ2 + x+ 1/n
, x ≥ 0,

is decreasing and attains zero at

g =
σ√
n

√
1 +

1

4σ2n
− 1

2n
.

Moreover, if 0 ≤ x < g then x + ξ(x) < g. Hence, the sequence {c∗i } is
increasing and c∗i < g < σn−1/2, ∀i ≥ 0, which proves (i).
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To show (ii) observe that for c∗s < h < g we have

c∗s =
s−1∑

j=0

c∗j+1 − c∗j =
s−1∑

j=0

ξ(c∗j ) ≥ sξ(c∗s) ≥ sξ(h).

Hence, for any 0 < h < g and s ≥ 0

c∗s ≥ min{h, sξ(h) } = min

{
h, −s(h

2 + h/n− σ2/n)

σ2 + h+ 1/n

}
. (3.36)

Setting h = ασn−1/2 and using (3.36) we get that the inequality c∗i ≥
ασn−1/2 is satisfied for

i ≥ ασ
√
n
(
1 + α(σ

√
n)−1 + (σ

√
n)−2

)

1− α2 − α(σ
√
n)−1

≈ α

1− α2
σ
√
n.

Hence, (ii) follows.

Lemma 3.9 (i) Let 0 < α < 1 and K > α/(1 − α2). Then for suffi-
ciently large n

d∗i >
ασ

2
√
n
, ∀i ≥ Kσ√n.

(ii) Let β > 1 and L > − 1
2 ln(β − 1). Then for sufficiently large n

d∗n−i ≤
βσ

2
√
n
, ∀i ≥ Lσ√n.

Proof Let

Ai =

(
c∗i

c∗i + 1/n

)2

, Bi =
c∗i /n

c∗i + 1/n
, 0 ≤ i ≤ n.

Let α1 be such that α < α1 < 1 and α/(1 − α2) < α1/(1 − α2
1) < K. Due

to Lemma 3.8, for large n and i ≥ Kσ
√
n we have c∗i ≥ α1σ/

√
n. Hence,

for such i and n

d∗i = Aidi+1 + Bi ≥ Ad∗i+1 + B

≥ · · · ≥ An−id∗n +B
n−i−1∑

j=0

Aj = An−i
(
c∗n −

B

1−A

)
+

B

1−A,
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where

A =

(
α1σ
√
n

1 + α1σ
√
n

)2

, B =
α1σ

α1σn+
√
n
.

Since c∗n ≈ σ/
√
n and

B

1−A =
α1σ

2
√
n
· 2 + 2α1σ

√
n

1 + 2α1σ
√
n
≈ α1σ

2
√
n
,

(i) is proved.
To show (ii), let

C =

(
σ
√
n

1 + σ
√
n

)2

, D =
σ

σn+
√
n
.

Then, due to Lemma 3.8(i), we have Ai ≤ C and Bi ≤ D, ∀i. Hence,

dn−i ≤ Ci
(
d∗n −

D

1− C

)
+

D

1− C

≤ σ

2
√
n
· 2 + 2σ

√
n

1 + 2σ
√
n

(
1 +

σ
√
n

1 + σ
√
n

(
1 +

1

σ
√
n

)−2i
)
.

Since for i ≥ Lσ√n we have

(
1 +

1

σ
√
n

)−2i

≤ e−2L < β − 1,

(ii) follows.

Proof of Theorem 3.14 It follows from Theorem 3.13 that for t∗i−1 ≤ t ≤ t∗i
we have

min{ d∗i−1, d
∗
i } ≤ RN (t, t) ≤ max{d∗i−1, d

∗
i } +

1

4n
. (3.37)

Consider first the approximation problem. Let 0 < α < 1 < β and K,L
be as in Lemma 3.9. Using (3.27) and (3.37) we obtain that for sufficiently
large n

(
radave(App, Nn, σ

2)
)2

=

∫ 1− Lσ√
n
− 1
n

0
RN (t, t) dt +

∫ 1

1− Lσ√
n
− 1
n

RN (t, t) dt
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≤
(

1− Lσ√
n
− 1

n

)(
βσ

2
√
n

+
1

4n

)
+

(
Lσ√
n

+
1

n

)(
σ√
n

+
1

4n

)

≈ βσ

2
√
n
. (3.38)

On the other hand,

(
radave(App, Nn, σ

2)
)2
≥

∫ 1

Kσ√
n

+ 1
n

RN (t, t) dt

≥
(

1− Kσ√
n
− 1

n

)
ασ

2
√
n
≈ ασ

2
√
n
. (3.39)

Since (3.38) and (3.39) hold for arbitrary α and β satisfying 0 < α < 1 < β,
(a) follows.

We now turn to the integration problem. Let 0 ≤ s ≤ t ≤ 1, t∗j−1 ≤ s ≤
t∗j , t

∗
i−1 ≤ t ≤ t∗i , 1 ≤ j ≤ i ≤ n. Due to Theorem 3.13 we have

RN (s, t) (3.40)

=





s−a∗j−1

t−a∗j−1
·RN (t, t) j = i,

s−a∗j−1

t∗j−a∗j−1
· t
∗
i−1−a∗i−1

t−a∗i−1
·RN (t, t) j = i+ 1,

s−a∗j−1

t∗j−a∗j−1
· t
∗
i−1−a∗i−1

t−a∗i−1
·∏i−1

k=j+1

t∗
k−1
−a∗

k−1

t∗
k
−a∗

k−1
·RN (t, t) otherwise,

where the sequence {a∗i }ni=0 is defined by (3.29) for information operator Nn.
From Lemma 3.8(i) it follows that

t∗i − a∗i
t∗i+1 − a∗i

=
c∗i

c∗k + 1/n
≤ γ =

σ
√
n

1 + σ
√
n
, ∀i . (3.41)

Using (3.37), (3.40), (3.41), Lemmas 3.8(i) and 3.9(ii), we get that for β > 1
and L > −1/2 ln(β − 1), for sufficiently large n

RN (s, t) ≤ γi−j−1RN (t, t)

≤ γn(t−s) ·
{ βσ

2
√
n

+ 1
4n for 0 ≤ t ≤ 1− Lσ√

n
− 1

n ,
σ√
n

+ 1
4n for 1− Lσ√

n
− 1

n ≤ t ≤ 1 .

Hence, for large n

(
radave(Int, Nn, σ

2)
)2

= 2

∫ 1

0

∫ t

0
R(s, t) ds dt
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≤ 2

(
βσ

2
√
n

+
1

4n

)∫ 1− Lσ√
n
− 1
n

0

∫ t

0
γn(t−s) ds dt

+ 2

(
σ√
n

+
1

4n

)∫ 1

1− Lσ√
n
− 1
n

∫ t

0
γn(t−s) ds dt

= 2

(
βσ

2
√
n

+
1

4n

)
1

n ln 1/γ

{
1− Lσ√

n
− 1

n
+
γ(n−Lσ√n−1) − 1

n ln 1/γ

}

+ 2

(
σ√
n

+
1

4n

)
1

n ln 1/γ

{
Lσ√
n

+
1

n
+
γn − γ(n−Lσ√n−1)

n ln 1/γ

}

= (∗) .
Since

1

n ln 1/γ
=

1

n ln (1 + (σ
√
n)−1)

≈ σ√
n

and γn−Lσ
√
n−1 → 0 as n→ +∞, then

(∗) ≈ βσ2

n
+

2σ3L

n
√
n
≈ βσ2

n
,

which gives the upper bound on radave(Int, Nn, σ
2).

To show the lower bound, we use Lemma 3.8(ii) and Lemma 3.9(i). Let
0 < α < 1 and K > α/(1 − α2). Then for sufficiently large n we have

t∗i−1 − a∗i−1

t∗i − a∗i−1

≥ δ =
ασ
√
n

1 + ασ
√
n
, ∀i ≥ Kσ√n+ 1,

and

RN (t, t) ≥ ασ

2
√
n
, ∀t ≥ Kσ√

n
+

1

n
.

From this and (3.40) we obtain that for large n

RN (s, t) ≥ δn(t−s) ασ
2
√
n
, t ≥ s ≥ Kσ√

n
+

2

n
,

and, as a consequence,

(
radave(Int, Nn, σ

2)
)2
≥ σ√

n

∫ 1

Kσ√
n

+ 2
n

∫ t

0
δn(t−s) ds dt

=
ασ√
n

1

n ln 1/δ

{
1− Kσ√

n
− 2

n
+

1

n ln 1/δ

(
δn − δ(Kσ

√
n+2)

)}

≈ α2σ2

n
.



3.8. OPTIMAL INFORMATION 199

This shows the lower bound on radave(Int, Nn, σ
2) and completes the proof

of the theorem.

Lower bounds

Using (3.29), (3.30), and the formulas (3.36) we can easily show that for
exact information the actual values of the minimal errors are equal to

rave
n (App, 0) =

1√
2(3n+ 1)

≈ 1√
6n
, (3.42)

rave
n (Int, 0) =

1√
3(2n+ 1)

≈ 1

2
√

3n
. (3.43)

Furthermore, the optimal sample points are given by ti = 3i/(3n + 1) for
function approximation and ti = 2i/(2n + 1) for integration, 1 ≤ i ≤ n.
This shows that in the exact information case Nn is nearly optimal. Almost
optimality of Nn in the “noisy” case, σ2 > 0, follows from the following
theorem.

Theorem 3.15 For any n and σ2 we have

rave
n (App, σ2) ≥

(
σ

6
√
n
− σ2

3n

)1/2

≈ 1√
6

(
σ2

n

)1/4

and

rave
n (Int, σ2) ≥

(
σ2

3(n+ σ2)

)1/2

≈ 1√
3

(
σ2

n

)1/2

.

To prove the bound on rave
n (App, σ2), we need the following lemma.

Lemma 3.10 Let N be an arbitrary information of the form N(f) =
[f(t1), . . . , f(tn)]. Then for any 0 ≤ a < t < b ≤ 1 we have

RN (t, t) ≥ σ2ψ(t)

σ2 + sψ(t)

where

ψ(t) =
(t− a)(b− t)

b− a
and s is the number of points ti satisfying a < ti < b.
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Proof Let {ai} and {bi} be the sequences defined by (3.29) and (3.30).
Observe first that for any k we have

ak ≤ tk −
σ2(tk − a)

σ2 + s1(tk − a)
, (3.44)

where s1 = s1(k) is the number of points ti, i ≤ k, satisfying a < ti. Indeed,
(3.44) can be easily shown by induction on s1. If s1 = 0 then tk ≤ a and
ak ≤ a. For s1 ≥ 1 we have from (3.29) and from the inductive assumption
applied for ak−1 that

ak = tk −
σ2(tk − ak−1)

σ2 + tk − ak−1
≤ tk −

σ2(tk − a)

σ2 + s1(tk − a)
.

In a similar way we can show that for any k

bk ≥ tk +
σ2(b− tk)

σ2 + s2(b− tk)
(3.45)

where s2 = s2(k) is the number of points ti, i ≥ k, satisfying ti < b.

Now, let r = max{ i ≥ 0 : tr ≤ t }. Due to (3.44) we have

ar ≤ t− σ2(t− a)

σ2 + s1(t− a)
=: amax (3.46)

where s1 = s1(r). Hence, if r = n then s1 = s and

RN (t, t) ≥ t − amax ≥
σ2ψ(t)

σ2 + sψ(t)
.

For r < n, from (3.45) we ontain

br+1 ≥ t − σ2(b− t)
σ2 + s2(b− t) =: bmin (3.47)

where s2 = s2(r + 1). Since s1 + s2 = s, (3.46) and (3.47) yield

RN (t, t) ≥ (t− amax)(bmin − t)
bmin − amax

=
σ2ψ(t)

σ2 + sψ(t)
,

as claimed.

Proof of Theorem 3.15 We start with the problem App. Let N be an
arbitrary information operator consisting of observations at ti, 1 ≤ i ≤ n.
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Divide the unit interval on k equal subintervals (ui−1, ui) , 1 ≤ i ≤ k, where
ui = i/k. Let si be the number of the points ti belonging to the ith interval,
and let ψi(t) = (t − ui−1)(ui − t)/(ui − ui−1). Then, for ui−1 < t < ui we
have ψi(t) ≤ 1/4(ui − ui−1) = 1/(4k). This, (3.27), and Lemma 3.10 yield
that the radius of N can be estimated as follows:

(
radave(App, N, σ2)

)2
≥

k∑

i=1

∫ ui

ui−1

σ2ψi(t)

σ2 + si/(4k)
dt =

2σ2

3k

k∑

i=1

1

si + 4kσ2

=: Ω(s1, . . . , sk) .

The function Ω, when defined on the set {s1, . . . , sk ≥ 0 | ∑k
i=1 si ≤ n}, has

its minimum at si = n/k ∀i. Hence,

Ω(s1, . . . , sk) ≥ Ω(n/k, . . . , n/k︸ ︷︷ ︸
k

) =
2σ2k

3(n+ 4σ2k2)
.

Letting k1 = max{1, l}, where l is the largest integer satisfying l ≤ kopt =√
n/(2σ), we obtain

(
radave(App, N, σ2)

)2
≥ 2σ2k1

3(n+ 4σ2k2
1)
≥ 2σ2(kopt − 1)

3(n+ 4σ2k2
opt)

=
σ

6
√
n
− σ2

3n
,

which proves the desired lower bound on rave
n (App, σ2).

To show the bound on rave
n (Int, σ2), we use the general results of Section

3.8.1. When applied to the integration problem in the Wiener space, those
results read as follows.

Suppose that the class of permissible functionals consists of all L with
‖L‖2w =

∫
C0 L2(f)w(df) ≤ 1, i.e., Λ = Λall. Then the minimal radius

corresponding to observations with variance σ2 equals

(
rave
n (Int,Λallσ2)

)2
=

σ2

n+ σ2

∫

F
Int2(f)w(df).

Since for Lt(f) = f(t) is ‖Lt‖2w = t, we have Λstd ⊂ Λall. This, (3.28), and

∫

C0
Int2(f)w(df) =

∫ 1

0

∫ 1

0
min{s, t} ds dt =

1

3
,

yield

(
rave
n (Int,Λstdσ2)

)2
≥
(
rave
n (Int,Λallσ2)

)2
=

σ2

3(n+ σ2)
,
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as claimed. 2

Theorems 3.14, 3.15, and the formulas (3.42), (3.43) yield that information
Nn consisting of noisy observations of function values at equidistant points
is almost optimal, for both approximation and integration problems. That
is, the errors obtained by applying Nn together with the smoothing spline
algorithm are at most

√
3 times larger than optimal. We summarize this in

the following corollary.

Corollary 3.5 For any σ2 ≥ 0 we have

rave
n (App, σ2) ≈ 1√

6n
+ pn

(
σ2

4n

)1/4

and

rave
n (Int, σ2) ≈ 1

2
√

3n
+ qn

(
σ2

n

)1/2

as n→ +∞, where pn, qn ∈ [1/
√

3, 1]. 2

It seems interesting to compare these results with those of Section 3.8.1.
More precisely, we want to see whether the class Λstd is as powerful as Λall.
Clearly, Λstd ⊂ Λall.

As we noticed in the proof of Theorem 3.15, for the integration problem
we have rave

n (Int,Λallσ2) � σ/
√
n (σ2 ≥ 0). Hence, for σ2 the classes Λstd

and Λall give similar minimal errors, while for exact information Λall is much
more powerful than Λstd.

Due to NR 3.20, for approximation the corresponding radius satisfies
rave
n (App,Λall, σ2) � 1/

√
n+σ lnn/

√
n. The situation is then quite opposite.

We have rave
n (App,Λall, 0) � rave

n (App,Λstd, 0), while for σ2 > 0

rave
n (App,Λall, σ2)

rave
n (App,Λstd, σ2)

�
(
σ2

n

)1/4

lnn.

This will not change when we replace Λstd by the class of functionals of the
form L̃t(f) = t−1/2f(t) for which ‖L̃t‖w = 1 ∀t ∈ (0, 1]; see E 3.36.

Notes and Remarks

NR 3.18 Most of Section 3.8.1 is based on Plaskota [78] and [81]. Theorem 3.12
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is new.

NR 3.19 In the average case setting, we assume that noise of different observations
is uncorrelated, e.g., x ∼ N (0, σ2I). As we already mentioned, in the worst case
the uncorrelated noise corresponds to noise bounded in the maximum norm, e.g.,
‖x‖Y = ‖x‖∞ ≤ δ. Lemma 2.15 says that for such noise the worst case radius does
not tend to zero with n. This stands in contrast with the average case where the
radius can be reduced to an arbitrary small level.

NR 3.20 Consider the problem of approximating multivariate functions f ∈ F =
C0...0
r1...rd

in the norm of G = L2((0, 1)d), with respect to the Wiener sheet measure

µ = wr1...rd . That is S : C0...0
r1...rd → L2((0, 1)d), S(f) = f . As mentioned in

NR 3.10, the abstract Wiener space corresponding to wr1...rd is {H,F} with H =
W 0...0
r1+1...rd+1. Recall that SCµS

∗ = SHS
∗
H . Due to NR 2.30, the eigenvalues of

SHS
∗
H are given as

λj �
(

lnk−1 j

j

)2(r+1)

as j → +∞,

where r = min{r1, . . . , rd} and k is the number of such i that ri = r. The results
of Section 3.8.1 yield that for σ2 > 0 we have

(
rave
n (σ2)

)2 �
{

σ2 ln2k n
n r = 0,

σ2 1
n r ≥ 1,

and (rave
n (0))

2 � (ln2(k−1)(r+1) n)n−(2r+1).

NR 3.21 There are many papers dealing with integration or approximation in
Wiener type spaces, based on exact information. The first papers on this subject
are due to Suldin [102] [103] who analyzed integration with respect to the classical
Wiener measure on C0. Other positions include, e.g., Sacks and Ylvisaker [87]
[88] [89], Wahba [115], Lee [46], and Lee and Wasilkowski [48]. The multivariate
case with exact information was studied, e.g., by Papageorgiou and Wasilkowski
[70], Ritter et al. [86], Wasilkowski [119], Wasilkowski and Woźniakowski [122],
Woźniakowski [127] [128] [129].

The results on noisy information of Section 3.8.2 are based on Plaskota [79].

NR 3.22 We now give a concrete application of the correspondence theorem of
Section 3.6.3. We let F to be a Hilbert space,

F = W 0 = { f : [0, 1]→ R | f(0) = 0, f–abs. cont., f ′ ∈ L2(0, 1) },

with the inner product 〈f1, f2〉F =
∫ 1

0 f1(t)f2(t) dt. Consider the problem of ap-
proximating the integral Int(f) in the worst case setting with E being the unit ball



204 CHAPTER 3. AVERAGE CASE SETTING

of F . Information consists of n function evaluations and the noise is bounded in the
Euclidean norm,

∑n
i=1 x

2
i ≤ δ2. As we know, {W 0,C0} is an abstract Wiener space

and the classical Wiener measure w is the corresponding to it Gaussian measure
on C0. Hence, we can apply Theorem 3.7 and Corollary 3.5 to get that for this
problem the minimal radius is given as

rwor
n (Int, δ) ≈ 1

2
√

3n
+ q̃n

δ√
n

where q̃n ∈ [1/
√

3,
√

2]. These bounds are attained by the 1/2–smoothing spline
algorithm using noisy function values at equidistant points.

NR 3.23 We assume that each value f(ti) is observed with the same variance σ2.
One may consider a model in which f(ti) is observed with variance σ2

i where σi’s
are possibly different. It is easy to verify that in this case Theorem 3.13 remains
valid provided that σ2 is in the formulas (2.5) and (2.6) replaced by σ2

i . However,
formulas for rave

n (σ2
1 , . . . , σ

2
n) are unknown.

NR 3.24 The problems App and Int with F = C0
r and µ being the r–fold Wiener

measure wr (r ≥ 1) were studied in Plaskota [79]. It was shown that if the class Λ
consists of function values or derivatives of order at most r, then

rave
n (App, r, σ2) � σ√

n
+

(
1

n

)r+1/2

and

rave
n (Int, r, σ2) � σ√

n
+

(
1

n

)r+1

.

These bounds are attained by information

Nr
n(f) = [ f (r)(t∗1), f (r)(t∗2), . . . , f (r)(t∗n) ] (3.48)

where t∗i = i/n, 1 ≤ i ≤ n; see E 3.38.
One can show, see Plaskota [84], that for integration the same bound can be

obtained using only function values. However, this fact does not apply to the
function approximation problem, which follows from more general results of Ritter
[85]. He considered numerical differentiation, S(f) = Difk(f) = f (k) (0 ≤ k ≤ r),
with respect to the same r–fold Wiener measure. Assuming that only observations
of function values are allowed, he showed that

rave
n (Difk, r, σ

2) �
(
σ√
n

) 2(r−k)+1
2r+2

+

(
1

n

)r+1/2

.

In particular, for approximation from noisy function values (σ2 > 0), the minimal
radius has the exponent (2r + 1)/(2r + 2) which is much worse than 1/2. Hence,
for function approximation, noisy information about rth derivatives is much more
powerful than information about function values.
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Exercises

E 3.30 Let a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and let λ′i, λi, 1 ≤ i ≤ m, be such that for all
1 ≤ r ≤ m,

∑r
i=1 λ

′
i ≤

∑r
i=1 λi. Show that then

∑m
i=1 aiλ

′
i ≤

∑m
i=1 aiλi.

E 3.31 Show that the lower bound in (3.22) is achieved if

n∑

i=s

η∗∗i ≤
n∑

i=s

1

σ2
i

, 1 ≤ s ≤ n,

where η∗∗ = (η∗∗1 , . . . , η∗∗n ) is the solution (3.18) of the problem (P(0, n)). On the
other hand, the upper bound in (3.22) is achieved if for all 0 ≤ q < r ≤ n the
solution η∗ of (P(q, r)) satisfies

r∑

j=s

η∗j ≥
r∑

j=s

1

σ2
j

, q + 1 ≤ s ≤ r.

E 3.32 Show that rave
n (σ2

1 , . . . , σ
2
n) is a strictly increasing function of each σ2

i .

E 3.33 Show that the sequence rave
n (σ2) of the minimal radii given by (3.23) is

convex, i.e.,

rave
n (σ2) ≤ rave

n−1(σ2) + rave
n+1(σ2)

2
∀n ≥ 1.

E 3.34 Consider the pair of problems (P1) and (P2) on page 186 with Σ = I and
δ2 = σ2. Suppose that the eigenvalues λi of the operator S∗HSH are λi = i−2, i ≥ 1.
Show that then

radwor(NΣ,∆)

rwor
n (δ)

� lnn and
radave(N∆,Σ)

rave
n (σ2)

�
√
n

lnn
,

where NΣ is the optimal information in the worst case (P1), and N∆ is the opti-
mal information in the average case (P2). Hence, Theorem 3.12 does not hold if
information N∗ is replaced by NΣ or N∆.

E 3.35 Suppose that for f ∈ C0 the values f(ti) are observed with variances σ2
i ,

1 ≤ i ≤ n, where σi’s are possibly different. Show that then the formula for the
conditional distribution given in Theorem 3.13 remains valid provided that σ2 is in
the formulas (3.29) replaced by σ2

i .

E 3.36 Consider the approximation problem in the Wiener space with the class
Λ̃std consisting of functionals of the form L(f) = t−1/2f(t), t ∈ [0, 1] (or equivalently,
assuming that observations of f(t) with the variance tσ2 are allowed). Show that
then

rave
n (App, Λ̃std, σ2) � rave

n (App,Λstd, σ2) � 1√
n

+

(
σ2

n

)1/4

.
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Hint: Consider the solution operator Sa : C0 → L2(a, 1), (Sa(f))(t) = f(t), where
a ∈ (0, 1). Observe that for any N and ϕ we have eave(Sa,N, ϕ) ≤ eave(App,N, ϕ).
To find a lower bound on eave(Sa,N, ϕ), use the technique from the proof of Theorem
3.15.

E 3.37 Let wr be the r–fold Wiener measure on C0
r, and let L(f) = f (k)(t), f ∈ C0

r,
with 0 ≤ k ≤ r. Show that

‖L‖2wr =

∫

C0
r

L2(f)wr(df) =
t2(r−k)+1

((r − k)!)
2

(2(r − k) + 1)
≤ 1 .

E 3.38 Let F = C0
r, µ = wr, and let Nr

n be information defined as in (3.48). Show
the inequalities:

radave(App, r + 1, N r+1
n ) ≤ radave(Int, r,Nr

n) ≤ radave(App, r,Nr
n) .

Use this and the previous exercise to obtain that for Λ consisting of function values
and derivatives of order at most r we have

rave
n (App, r, σ2) � σ√

n
� rave

n (Int, r, σ2) ,

for all r ≥ 1 and σ2 > 0.

3.9 Complexity

In this section we deal with the average problem complexity. Recall that any
problem is defined by the solution operator S : F → G, probability measure
µ on F , and the class Λ of permissible functionals.

As in the worst case setting, we assume that approximations are obtained
by executing a program. The program is defined in Section 2.9. The only
difference is in the interpretation of the information statement. Namely,

I( d |L, f, σ2 )

now means that to the real variable d is assigned a value of the real Gaussian
random variable whose mean element is L(f) and variance equals σ2. The
cost of executing this statement is c(σ2) where, as before, c is a nonnega-
tive and nonincreasing cost function which assumes positive values for small
σ2 > 0.

We recall that the program specifies not only how information is col-
lected, but also which primitive operations are to be performed. The prim-
itive operations are: arithmetic operations and comparisons over R, ele-
mentary linear operations over G, and logical operations over the Boolean
values.
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Let P be a program which is a realization of an algorithm ϕ using in-
formation operator N. The (average) cost of computing an approximation
with the program P equals

costave(P) =

∫

Y
cost(P; y)µ1(dy)

where, as before, cost(P; y) is the cost of computing ϕ(y), and µ1 is the a
priori distribution of noisy information y on Y ,

µ1(B) =

∫

F
πf (B)µ(df) (3.49)

(compare with Section 3.2 ).

The definition of costave(P) yields the (average) algorithm complexity,
compave(N, ϕ), and the problem complexity, Compave(ε). Namely,

compave(N, ϕ) = inf { costave(P) | P is a realization of ϕ using N },

and for ε ≥ 0,

Compave(ε) = inf { compave(N, ϕ) | {N, ϕ} such that eave(N, ϕ) ≤ ε }

(inf ∅ = +∞).

Our aim now is to obtain general bounds on the average complexity of
linear problems with Gaussian measures. We assume that

• S is a continuous linear operator acting between a separable Banach
space F and a separable Hilbert space G, and

• µ is a zero mean Gaussian measure on F .

We first show an auxiliary result about relations between nonadaptive
and adaptive information.

3.9.1 Adaption versus nonadaption, II

In Section 3.7.2 we compared the radii of adaptive and nonadaptive infor-
mation. Theorem 3.9 says that for any adaptive information N there exists
y ∈ Y such that the average radius of the nonadaptive information Ny is not
greater than the average radius of N. We now prove a stronger result.
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Let N = {Ny,Σy}y∈Y be an arbitrary information operator. The average
complexity of N is given as

comp(N) =

∫

Y

n(y)∑

i=1

c(σ2
i (y1, . . . , yi−1) ) dy.

Clearly, if N is nonadaptive then we simply have comp(N) =
∑n
i=1 c(σ2

i ).

For a ∈ R and y(1), y(2) ∈ Y,, let N′ = N′(y(1), y(2), a) be an information
operator defined based on N in the following way. Denote by ni the length
of y(i) and by y1 the first component of a vector y. Let

Y ′ = { y ∈ Rn1 | y1 ≤ a } ∪ { y ∈ Rn2 | y1 > a },

and for y ∈ Y ′,

{N ′y,Σ′y } =

{
{Ny(1) ,Σy(1) } if y1 ≤ a,
{Ny(2) ,Σy(2) } if y1 > a.

Finally, we set N′ = {N ′y,Σ′y}y∈Y ′ . Observe that information N′ is almost
nonadaptive since it uses only at most two nonadaptive information opera-
tors. It turns out that the class of such information operators is as powerful
as the class of all adaptive information operators. Namely, we have the
following theorem.

Theorem 3.16 Let N = {Ny,Σy}y∈Y be an adaptive information opera-
tor. Then there exist y(1), y(2) ∈ Y and a ∈ R, such that for the information
N′ = N′(y(1), y(2), a) we have

comp(N′) ≤ comp(N) and radave(N′) ≤ radave(N).

Proof Let ω be the a priori distribution of the variable y → comp(Ny) =
∑n(y)
i=1 c(σ2

i (y1, . . . , yi−1) ) on R, i.e.,

ω(B) = µ1( {y ∈ Y | comp(Ny) ∈ B} ), ∀B–Borel set of R

where µ1 is given by (3.49). Clearly,

comp(N) =

∫

R
T ω(dT ). (3.50)
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The measure µ1 can be decomposed with respect to the mapping y →
comp(Ny) as

µ1(·) =

∫

R
µ1(·|T )ω(dT ),

where µ1(·|T ) is a probability measure on Y which is supported on the set
YT = {y | comp(Ny) = T }, for all T such that YT 6= ∅. This, (3.1) and
Theorem 3.2 yield

(radave(N))2 =

∫

Y
(r(ν2(·|y)) )2 µ1(dy) =

∫

R
ψ(T )ω(dT ) (3.51)

where

ψ(T ) =

{ ∫
Y (r(ν2(·|y) )2 µ1(dy|T ) if YT 6= ∅,

+∞ otherwise.
(3.52)

Here ν2(·|y) = µ2(S−1(·)|y) is the conditional distribution of S(f) given y,
and r(·) is the radius of a measure.

We now show that it is possible to select real numbers 0 ≤ T1 ≤ T2 < +∞
and 0 ≤ α∗ ≤ 1 such that

α∗ T1 + (1− α∗)T2 ≤
∫

R
T ω(dT ) (3.53)

and

α∗ ψ(T1) + (1− α∗)ψ(T2) ≤
∫

R
ψ(T )ω(dT ). (3.54)

To this end, let T0 =
∫
R T ω(dT ) and ψ0 =

∫
R ψ(T )ω(dT ). If such numbers

did not exist, for any T > T0 the graph of ψ on the interval [0, T0] would lie
above the line passing through the points (T0, ψ0) and (T, ψ(T )), i.e.,

ψ(R) > ψ̃βT (R) = βT (R − T0) + ψ0, ∀R ∈ [0, T0],

where βT = (ψ(T )−ψ0)/(T − T0). Let β = infT>T0 βT . Then β > −∞ and
for all T ≥ 0 we have ψ(T ) ≥ ψ̃β(T ). Moreover, the last inequality “≥” can
be replaced by “>” on the interval [0, T0] or on [T0,+∞). Hence, we obtain

∫

R
ψ(T )ω(dT ) >

∫

R
ψ̃β(T )ω(dT ) = ψ0 =

∫

R
ψ(T )ω(dT ),

which is a contradiction.
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Let T1, T2 and α∗ satisfy (3.53), (3.54). We now choose two vectors y(j),
j = 1, 2, in such a way that comp(Ny(j)) = Tj and

∫

F
(r(ν2(·|y(j)) ))2 µ2(df |z(j)) ≤ ψ(Tj),

as well as the number a such that

∫ a

−∞
exp

(
−x2

2σ2∗

)
dx = α∗

where σ2
∗ = L1(CµL1) + σ2

1 is the variance of the Gaussian random vari-
able y1. From (3.50) to (3.54) it now follows that for the information N′ =
N′(y(1), y(2), a) we have

comp(N′) = α∗ comp(Ny(1)) + (1− α∗)comp(Ny(2))

≤
∫

R
T ω(dT ) = comp(N)

and

(
radave(N′)

)2
= α∗

(
radave(Ny(1))

)2
+ (1− α∗)

(
radave(Ny(2))

)2

≤ α∗ ψ(T1) + (1− α∗)ψ(T2) ≤
∫

R
ψ(T )ω(dT )

= (radave(N))2 ,

as claimed. 2

We now make the following observation. Assume without loss of generality
that comp(Ny(1)) ≤ comp(N) and radave(Ny(2)) ≤ radave(N) (if this were not

true, it would be possible to select y(1) = y(2)). Let 0 < p < 1. Then for
α∗ ≥ p we have

comp(Ny(1)) ≤ comp(N) and radave(Ny(1)) ≤ 1√
p

radave(N),

while for α∗ < p

radave(Ny(2)) ≤ radave(N) and comp(Ny(2)) ≤ 1

1− p comp(N).

This yields the following corollary.
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Corollary 3.6 Let 0 < p < 1. For any adaptive information N =
{Ny}y∈Y there exists y∗ ∈ Y such that

comp(Ny) ≤
1

1− p comp(N) and radave(Ny) ≤
1√
p

radave(N) . 2

In particular, one can take p = 1/2 to get

comp(Ny) ≤ 2 · comp(N) and radave(Ny) ≤
√

2 · radave(N) .

3.9.2 General bounds

We are now ready to present general bounds on the average ε–complexity of
linear problems with Gaussian measures. Let

IComp(ε) = inf { comp(N) | N–adaptive, and there exists ϕ

such that eave(N, ϕ) ≤ ε }

be the ε–information complexity, and let

ICompnon(ε) = inf { comp(N) | N–nonadaptive, and there exists ϕ

such that eave(N, ϕ) ≤ ε }

be the corresponding quantity for nonadaptive information.
We start with the following theorem which corresponds to Theorem 2.19

of the worst case setting.

Theorem 3.17 (i) For any 0 < p < 1 we have

Comp(ε) ≥ (1− p) ICompnon

(
ε√
p

)
.

(ii) Let ρ ≥ 1. Let Nε be nonadaptive information using n(ε) observations
and such that comp(N) ≤ ρ ICompnon(ε). Then

Comp(ε) ≤ ρ · ICompnon(ε) + (2n(ε) − 1) g.

Proof (i) follows immediately from Corollary 3.6 since it yields

Comp(ε) ≥ IComp(ε) ≥ (1− p) ICompnon

(
ε√
p

)
.
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To show (ii) observe that for the spline algorithm we have eave(Nε, ϕspl) =
radave(Nε). Since ϕspl is linear, the complexity of ϕspl using Nε equals
comp(Nε) + (2n(ε)− 1)g. This completes the proof. 2

Theorem 3.17 immediately yields the following corollary.

Corollary 3.7 If the assumptions of Theorem 3.17 are fulfilled and, ad-
ditionally,

ICompnon(ε) = O(ICompnon(p−1/2ε) ) and n(ε) = O(ICompnon(ε) ),

then
Comp(ε) � ICompnon(ε) as ε→ 0+. 2

Recall that the assumption n(ε) = O(ICompnon(ε)) is satisfied when the
cost function is bounded from below by a positive constant, c(σ2) ≥ c0 >
0. The second assumption, ICompnon(ε) = O(ICompnon(p−1/2ε)), means
that ICompnon(ε) increases at most polynomially in 1/ε as ε → 0+. This
condition can often be replaced by semiconvexity of ICompnon(

√
ε). Namely,

we have the following result.

Lemma 3.11 Suppose that the function ε→ ICompnon(
√
ε) is semiconvex,

i.e., there exist ε0 ≥ 0, 0 < α ≤ β, and a convex function h : [0,+∞) →
[0,+∞] such that

α · h(ε) ≤ ICompnon(
√
ε) ∀ ε ≥ 0,

and
ICompnon(

√
ε) ≤ β · h(ε) ∀ 0 ≤ ε ≤ ε0.

Then
IComp(ε) ≥ α

β
· ICompnon(ε) ∀ 0 ≤ ε ≤ ε0.

Proof Let N = {Ny}y∈Y be arbitrary information with radius radave(N) ≤
ε ≤ ε0. Let

ψ(y) = (r(µ2(·|y)) )2 .

Define the probability measure ω on R as

ω(B) = µ1( { y ∈ Y | ψ(y) ∈ B } ), ∀B–Borel set of R.
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Due to convexity of h and the inequality

comp(Ny) ≥ ICompnon
(√

ψ(y)

)
≥ α · h(ψ(z) ),

we have

IComp(N) =

∫

Y
comp(Ny)µ1(dy) ≥ α ·

∫

Y
h(ψ(z))µ1(dz)

= α ·
∫

R
h(x)ω(dx) ≥ α · h

(∫

R
xω(dx)

)

= α · h
(
(radave(N))2

)
≥ α

β
· ICompnon( eave(N) )

≥ α

β
· ICompnon(ε).

Since N was arbitrary, the lemma follows. 2

Similarly to the worst case setting, the main tool for deriving ε–complexity
will be the T th minimal (average) radius which is defined as

R(T ) = inf

{
rave
n (σ2

1 , . . . , σ
2
n)
∣∣∣ n ≥ 1,

n∑

i=1

c(σ2
i ) ≤ T

}
.

Knowing R(T ) we can find its inverse function,

IComp
non

(ε) = inf {T | R(T ) ≤ ε }

which, similarly to Lemma 2.16, satisfies

lim
α→0+

IComp
non

(ε− α) ≥ ICompnon(ε) ≥ IComp
non

(ε).

These inequalities allow to evaluate ICompnon(ε).

Notes and Remarks

NR 3.25 First results on adaption versus nonadaption in the average case setting
were obtained by Wasilkowski [118] who studied exact information, see also Traub
et al. [108, Sect. 5.6 of Chap. 6]. The results on adaptive information with noise
have been taken mainly from Plaskota [80].
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NR 3.26 In terms of IComp(ε) and ICompnon(ε), the results of Theorem 3.16
mean that for any ε and 0 < p < 1, at least one of the two following inequalities
holds:

IComp(ε) ≥ ICompnon

(
ε√
p

)

or
IComp(ε) ≥ (1− p) ICompnon(ε).

It turns out that this estimate is sharp. More precisely, it was proven in Plaskota
[81] that for exact information (i.e. for the cost function c ≡ const > 0) the
following theorem holds.

Let the nonzero solution operator S : F → G and the Gaussian measure µ
with dim suppµ = +∞ be given. Then there exists a class Λ ⊂ F ∗ of permissible
information functionals such that:

(i) For any α, β > 0 satisfying α+ β > 1, and for any ε0 > 0, there exists ε < ε0

such that

IComp(ε) < ICompnon

(
ε√
α

)
and IComp(ε) < β · ICompnon(ε).

(ii) For any γ > 0 and ε0 > 0 there exists ε < ε0 such that

IComp(ε) < ICompnon

(
ε

γ

)
.

(iii) For any γ > 0 and ε0 > 0 there exists ε < ε0 such that

IComp(ε) < γ · ICompnon(ε).

Exercises

E 3.39 Let

h(ε) = inf { α IComp(
√
ε1) + (1− α) IComp(

√
ε2) |

0 ≤ ε1 ≤ ε ≤ ε2, αε1 + (1− α)ε2 = ε },
and let cmin = infx≥0 c(x). Show that the function h(ε) is convex and

h(ε) ≤ IComp(
√
ε) ≤ h(ε) + cmin ∀ε ≥ 0.

E 3.40 Suppose that the function T → R2(T ) is semiconvex, i.e., there exist T0 ≥
0, 0 < α ≤ β, and a convex function h : [0,+∞)→ [0,+∞) such that

α · h(T ) ≤ R2(T ) ∀T ≥ 0,

and
R2(T ) ≤ β · h(T ) ∀T ≥ T0.

Show that then for any information N with comp(N) ≤ T we have

radave(N) ≥
√
α

β
R(T ) ∀T ≥ T0.
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3.10 Complexity of special problems

In this section we analyze the ε–complexity of the problems considered in
Section 3.8.

3.10.1 Linear problems with Gaussian measures

We begin with the problem defined in Section 3.8.1. That is, S : F → G is
an arbitrary continuous linear operator, µ is a zero mean Gaussian measure
and the class Λ consists of linear functionals bounded by 1 in the µ–norm.
The technique of evaluating Comp(ε) will be similar to that used in Section
2.10.1 where the corresponding problem in the worst case setting was studied.
Therefore we only sketch some proofs.

For a given cost function c, we let c̃(x) = c(x−1), 0 < x < +∞. We
assume that the function c̃ is concave or convex, and c(0) = +∞.

We recall that {ξi}dimG
i=1 is the complete orthonormal system of eigenele-

ments of SCµS
∗, λ1 ≥ λ2 ≥ · · · ≥ 0 are the corresponding eigenvalues, and

K∗i = λ
−1/2
i S∗ξi. The function Ω is given by (3.13).

Lemma 3.12 The T th minimal radius is equal to

R(T ) =
√

inf Ω(η1, . . . , ηn)

where the infimum is taken over all n and ηi ≥ 0, 1 ≤ i ≤ n, satisfying
(a1) for c̃–concave

n∑

i=1

c̃(ηi) ≤ T,

(b1) for c̃–convex

n c̃

(
1

n

n∑

i=1

ηi

)
≤ T.

Moreover, if the infimum is achieved for some n∗ and η∗ = (η∗1 , . . . , η
∗
n∗),

then
R(T ) = radave( {NT ,ΣT } )

where
(a2) for c̃–concave

ΣT =
[

1/
√
η∗1, . . . , 1/

√
η∗n∗

]
, NT = [K∗1 , . . . ,K

∗
n∗ ],
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(b2) for c̃–convex

ΣT =
[

1/
√
η∗0 , . . . , 1/

√
η∗0︸ ︷︷ ︸

n∗

]
, NT = [L∗1, . . . , L

∗
n∗ ],

where η∗0 = 1/n∗
∑n∗
i=1 η

∗
i and L∗i ’s are as in Theorem 3.10 with σ2

i = 1/η∗0
∀ i.

Proof The proof goes as the proof of Lemma 2.17. If c̃ is concave then for
any n and η1, . . . , ηn satisfying (3.14) we have

∑n
i=1 c̃(ηi) ≤

∑n
i=1 c̃(1/σ

2
i ).

This yields

R2(T ) = inf

{
(rave
n (σ2

1 , . . . , σ
2
n))2

∣∣∣ n ≥ 1,
n∑

i=1

c(σ2
i ) ≤ T

}

= inf

{
Ω(η1, . . . , ηn)

∣∣∣ n ≥ 1,
n∑

i=1

c̃(ηi) ≤ T
}
.

On the other hand, for convex c̃ we have
∑n
i=1 c̃(ηi) ≥ n c̃(η0) where η0 =

1/n
∑n
i=1 ηi. Hence,

R2(T ) = inf



 (rave

n (σ2, . . . , σ2

︸ ︷︷ ︸
n

))2
∣∣∣ n ≥ 1, n c(σ2) ≤ T





= inf

{
Ω(η1, . . . , ηn)

∣∣∣ n ≥ 1, n c̃

(
1

n

n∑

i=1

ηi

)
≤ T

}
.

The rest of the lemma follows from Theorem 3.10. 2

Consider the cost function c = clin. That is, clin(σ2) = σ−2 for σ2 > 0,
and clin(0) = +∞. This cost function possesses a similar property as in the
worst case – the quality of n observations of L(f) with precisions σ2

i depends
only on the total cost

∑n
i=1 σ

−2
i , and not on the number n of them. Due to

Lemma 3.12 we have

R2(clin;T ) =

(∑n
i=1 λ

1/2
i

)2

T + n
+

∞∑

j=n+1

λj (3.55)

where n = n(T ) is the largest integer satisfying

n∑

i=1

λ
1/2
i ≤ λ1/2

n (T + n). (3.56)



3.10. COMPLEXITY OF SPECIAL PROBLEMS 217

Observe that R(clin;T ) is well defined since for large n the condition (3.56)
is not satisfied. We also have that ψ(T ) = R2(clin;T ) is a strictly convex
function. To see this, for n ≥ 1 we let

Tn =
n∑

j=1


λ

1/2
j

λ
1/2
n

− 1


 (3.57)

(if λn = 0 then Tn = +∞). Then n = n(T ) iff T ∈ [Tn, Tn+1). On each
interval (Tn, Tn+1) the function ψ(T ) is convex. Hence, for the convexity of
ψ on [0,+∞) it suffices that ψ and dψ/dT are continuous at Tn. Indeed,
due to (3.57) we have

ψ(T+
n ) = λn(n+ Tn) +

∞∑

j=n+1

λj

= λn(n− 1 + Tn) +
∞∑

j=n

λj = ψ(T−n )

and
dψ

dT
(T+
n ) = −λn =

dψ

dT
(T−n ).

Convexity of R2(clin;T ) implies convexity of ICompnon(clin;
√
ε). Hence,

due to Theorem 3.11 we have

IComp(clin; ε) = ICompnon(clin; ε) = inf {T ≥ 0 | R(T ) ≤ ε }.

If the number n = n(T ) defined by (3.56) satisfies n(T ) = O(T ) (T → +∞),
then IComp(clin; ε) is attained by information that uses O(T ) observations,
and the ε-complexity behaves as IComp(clin; ε).

Observe that the condition n(T ) = O(T ) means that zero is not an at-

traction point of the sequence n−1∑n
j=1

(
λ

1/2
j /λ

1/2
n − 1

)
. When this is the

case, we can show that clin is the “worst” cost function – a result correspond-
ing to Lemma 2.18 of the worst case setting.

Lemma 3.13 Let c be an arbitrary cost function. Let σ2
0 be such that

c(σ2
0) < +∞. If there exists a > 0 such that for sufficiently large n

1

n

n∑

j=1


λ

1/2
j

λ
1/2
n

− 1


 ≥ a , (3.58)
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then for small ε > 0 we have

Comp(c; ε) ≤ M · Comp(clin; ε)

where M = M(c, σ2
0) = a−1d2 a σ2

0e(c(σ2
0) + 2g).

Proof Let n0 be such that (3.58) holds for all n ≥ n0. Let ε0 satisfy
ε0 ≤ R(clin; an0) and ICompnon(clin; ε0) ≥ a. We shall show that the required
inequality holds for all ε < ε0. To this end, we proceed similarly to the proof
of Lemma 2.18.

We choose information N for which radave(N) = ε and comp(clin;N) =
ICompnon(clin; ε). Due to the condition (3.58), we can assume that N uses
n = bICompnon(clin; ε)/ac observations with the same variances σ2, σ−2 =

ICompnon(clin; ε)/n. Let k = b2aσ2
0c. Then for the information Ñ which

repeats k times the same observations as N but with variances σ̃2, σ−2 =
σ−2/k, we have radave(Ñ) = radave(N) and

comp(c; Ñ) ≤ K n c̃

(
ICompnon(clin; ε)

k n

)

≤ k n c̃(2a/k) ≤ a−1k c(σ2
0) ICompnon(clin; ε).

Hence,

Comp(c; ε) ≤ a−1k c(σ2
0) Comp(clin; ε) + (2 k n− 1)g

≤ a−1k (c(σ2
0) + 2g) Comp(clin; ε),

as claimed. 2

We note that the condition (3.58) holds for many sequences {λj} of interest.
For instance, for λj = j−p with p > 1 we have

lim
n→∞

1

n

n∑

j=1


λ

1/2
j

λ
1/2
n

− 1


 =

{
p/(2 − p) 1 < p < 2,
+∞ p ≥ 2.

Hence, we can take a = 1. This means, in particular, that Comp(clin; ε) can
be achieved by using no more than bComp(clin; ε)c observations.

There are however sequences {λj} for which (3.58) is not satisfied, and
consequently the T th minimal radius cannot be achieved by information
using O(T ) observations. An example is given in E.3.42.
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Clearly, when the cost function is bounded from below by a positive con-
stsnt, the lower bound (modulo a constant) on the ε–complexity is provided
by Compnon(cexa; ε) where cexa ≡ 1 is the cost function for exact information.
In this case, letting n = n(ε) ≥ 0 to be the minimal n for which

∞∑

i=n+1

λi ≤ ε2,

we have

n(ε)− 1 ≤ IComp(cexa; ε) ≤ n(ε) = ICompnon(cfix; ε).

Note that ICompnon(cexa;
√
ε) is a semiconvex, but not a strictly convex

function.

Assume now that the cost function is given as

cq(σ
2) =

{
(1 + σ−2)q σ2 > 0,
+∞ σ2 = 0,

where q ≥ 0.

Note that for q = 0 we have exact information. Assuming (3.58), for q >
1 we have Comp(q; ε) � Comp(1; ε). Therefore in the following calculations
we restrict ourselves to 0 < q ≤ 1. Using Lemma 3.12 we obtain

R(q;T )2 =

(
1

T

)1/q
(

n∑

i=1

λri

)1/r

+
∞∑

j=n+1

λj (3.59)

where r = q/(1 + q) and n = n(T ) is the largest integer satisfying

(
1 +

n−1∑

i=1

(
λi
λn

)r)1/r

−
(
n−1∑

i=1

(
λi
λn

)r)1/r

≤ T 1/q.

Furthermore, R(q;T ) is attained by observing the functionals K ∗1 , . . . ,K
∗
n

with variances

σ2
i =


λ1/(1+q)

i

(
T∑n
j=1 λ

r
j

)1/q

− 1



−1

, 1 ≤ i ≤ n.
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Consider now a problem for which the eigenvalues

λj �
(

lns j

j

)p

where p > 1 and s ≥ 0. Recall that such a behavior of the eigenvalues can
be observed for the function approximation with respect to the Wiener sheet
measure, see NR 3.10. Then we have

R(q, p, s;T ) �





(
1
T

)1/q̃
(p− 1)q̃ > 1,

(
1
T

)p−1
(lnT )(s+1)p (p− 1)q̃ = 1,

(
1
T

)p−1
(lnT )sp 0 ≤ (p− 1)q̃ < 1,

as T → +∞, where q̃ = min{1, q}. We check that R(q, p, s;T )2 is a semi-
convex function of T and that the sequence {λj} satisfies (3.58). Hence,
Compnon(q, p, s;

√
ε) is also semiconvex and we obtain the following formu-

las for the ε–complexity.

Theorem 3.18

Compave(q, p, s; ε) �





(
1
ε

)2q̃
(p− 1)q̃ > 1,

(
1
ε

)2/(p−1) (
ln 1

ε

)(s+1)p/(p−1)
(p− 1)q̃ = 1,

(
1
ε

)2/(p−1) (
ln 1

ε

)sp/(p−1)
0 ≤ (p− 1)q̃ < 1,

as ε→ 0. 2

The situation is then as for the corresponding problem of the worst case
setting (see Theorem 2.20). That is, the complexity may behave, roughly
speaking, in only two different ways: as for q = 1 (i.e. for the “worst” cost
function), or as for q = 0 (exact information). Indeed, for (p − 1)q̃ > 1
we have Comp(q, p, s; ε) � Comp(1, p, s; ε), while for (p − 1)q̃ < 1 we have
Comp(q, p, s; ε) � Comp(0, p, s; ε). Furthermore, for p < 2, i.e., when the
eigenvalues tend to zero sufficiently slowly, the behavior of Comp(q, p, s; ε)
is independent of q.
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3.10.2 Approximation and integration on the Wiener space

We pass to the approximation and integration problems of Section 3.8.2.
Recall that both problems are defined on the Wiener space of continuous
functions and information consists of noisy observations of function values.
In that section we proved tight bounds on the minimal errors rave

n (App, σ2)
and rave

n (Int, σ2) where σ2 ≥ 0. They allow to find bounds on the complexity
in the case of observations with fixed variance σ2

0 or, in other words, when
the cost function is cfix(σ2) = c0 > 0 for σ2 ≥ σ2

0 , and cfix(σ2) = +∞ for
σ2 < σ2

0 . Namely, we have R(cfix;T ) = rave
n (σ2

0) with n = n(T ) = bT/c0c,
and due to Corollary 3.5,

Compnon(App, cfix; ε) ≈ c0

(
1

6ε2
+ p4

n

σ2
0

4ε4

)

and

Compnon(Int, cfix; ε) ≈ c0

(
1

2
√

3 ε
+ q2

n

σ2
0

ε2

)

where pn, qn ∈ [1/
√

3, 1]. Since for both problems Compnon(cfix;
√
ε) is a

semiconvex function, we obtain the following theorem.

Theorem 3.19 For the cost function cfix with σ2
0 ≥ 0 we have

Compave(App, cfix; ε) � 1

ε2
+
σ2

0

ε4

and

Compave(Int, cfix; ε) � 1

ε
+
σ2

0

ε2

where the constants in the “�” notation do not depend on σ2
0. 2

It turns out that similar bounds can be proven for the cost function clin(σ2) =
σ−2. Indeed, the upper bound on Comp(clin; ε) is provided by Comp(cfix; ε)
with σ2

0 = 1 = c0, while the lower bound follows from the following lemma.

Lemma 3.14 For all T we have

R(App, clin;T )2 ≥ 1

6
√
T
− 1

6T
≈ 1

6
√
T

and

R(Int, clin;T )2 ≥ 1

3(1 + T )
≈ 1

3T

as T → +∞.
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Proof Let N be an arbitrary nonadaptive information using observations at
ti’s with variances σ2

i , 1 ≤ i ≤ n, and such that comp(clin;N) =
∑n
i=1 σ

−2
i ≤

T .

Consider first the approximation problem. Proceeding exactly as in the
proof of Lemma 3.10 we can show the following generalization of that lemma.
Namely, for any 0 ≤ a < t < b ≤ 1, the covariance kernel of the conditional
distribution, RN (t, t), satisfies

RN (t, t) ≥ ψ(t)

1 + Tabψ(t)
, (3.60)

where ψ(t) = (t − a)(b − t)/(b − a), Tab =
∑
σ−2
i , and the summation is

taken over all i such that ti ∈ (a, b).

We now use (3.60) to obtain the lower bound on R(App, clin;T ). To this
end, we divide the unit interval on k equal subintervals (ui−1, ui), 1 ≤ i ≤ k.
For 1 ≤ i ≤ n, let Ti =

∑
j∈Ai σ

2
j where

Ai = { j | 1 ≤ j ≤ n, tj ∈ (ui−1, ui) }.

Denoting ψi(t) = (t−ui−1)(ui−t)/(ui−ui−1) and applying (3.27) and (3.60)
we obtain

(radave(App,N))2 ≥
k∑

i=1

∫ ui

ui−1

ψi(t)

1 + Ti/(4k)
dt =

2

3k

k∑

i=1

1

Ti + 4k
.

The last quantity, as a function of the nonnegative arguments T1, . . . , Tk,∑k
i=1 Ti ≤ T , is minimized for Ti = T/k. Hence, for any k

(radave(App,N))2 ≥ 2k

3(T + 4k2)
.

Taking k = b
√
T/4c we obtain the desired bound.

For the integration we have

(radave(Int,N))2 ≥ λ1

1 + T

where λ1 =
∫
F Int2(f)w(df) = 1/3. This completes the proof 2.

Thus we have proven the following fact.
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Corollary 3.8 For S ∈ {App, Int} we have

Compave(S, clin; ε) � Compave(S, cfix; ε) as ε→ 0+.

Notes and Remarks

NR 3.27 Most of Section 3.10.1 is based on Plaskota [80]. Section 3.10.2 is original.

NR 3.28 We can apply Theorem 3.18 to the multivariate approximation with re-
spect to the Wiener sheet measure – the problem formally defined in NR 3.20. We
obtain

Compave(ε) �





(
1
ε

)2q̃
q̃ > (r + 1/2)−1,(

1
ε

)1/(r+1/2) (
ln 1

ε

)k(r+1)/(r+1/2)
q̃ = (r + 1/2)−1,(

1
ε

)1/(r+1/2) (
ln 1

ε

)(k−1)(r+1)/(r+1/2)
q̃ < (r + 1/2)−1,

where k and r are as in NR 3.20, and q̃ is as in Theorem 3.18.

NR 3.29 Some complexity results for the function approximation and integration
with respect to the r–fold Wiener measure can be derived from Plaskota [79], see
also NR 3.24. Namely, suppose that the class Λ consists of function values and
derivatives of order at most r, and that the cost function c = cfix, i.e., observations
are performed with the same variance σ2

0 ≥ 0 and with cost c0. Then

Comp(App; ε) �
(σ0

ε

)2

+

(
1

ε

)1/(r+1/2)

and

Comp(Int; ε) �
(σ0

ε

)2

+

(
1

ε

)1/(r+1)

.

The ε–complexity in the case when only observations of function values are allowed,
or for other cost functions, is not known.

NR 3.30 We recall that for the solution operator S being a functional we have the
correspondence Theorem 3.7. It says that for the corresponding problems the worst
case and average case radii of the same information are equal, modulo a constant√

2. We can formulate an analogous correspondence theorem about the worst and
average complexities.

Let {H,F} be an abstract Wiener space and µ the associated with it Gaussian
measure on F . Let the solution operator S : F → R be a continuous linear func-
tional. Let the class Λ of permissible functionals be given. Consider the problem of
finding the ε–complexity in the two settings:
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P1: The worst case setting with respect to E = {f ∈ H | ‖f‖H ≤ 1}, noise
bounded in the weighted Euclidean norm,

∑n
i=1(yi − Li(f))2/δ2

i ≤ 1, and a
cost function cw(δ),

P2: The average case setting with respect to the measure µ, independent noise
with (yi − Li(f)) ∼ N (0, σ2

i ), and a cost function ca(σ2).

If for δ2 = σ2 is cw(δ) = ca(σ2) then

(ICompnon)
wor

(
√

2 ε) ≤ (ICompnon)
ave

(ε) ≤ (ICompnon)
wor

(ε).

If, moreover, (ICompnon)
ave

(
√
ε) is semiconvex and (ICompnon)

ave
(
√

2ε) behaves
as (ICompnon)ave (ε), then

Compwor(ε) � Compave(ε) as ε→ 0+.

For instance, the results of Section 3.10.2 can be applied to get complexity
results for the corresponding problem in the worst case setting (compare also with
NR 3.22).

Exercises

E 3.41 Show that the condition
∑∞

j=1 λ
1/2
j < +∞ implies

lim
n→∞

1

n

n∑

j=1

(
λ

1/2
j

λ
1/2
n

− 1

)
= +∞.

That is, for such eigenvalues Lemma 3.13 can be applied.

E 3.42 Let 1/2 < p < 1. Let an = n−p and Pn = n−1
∑n

i=1 ai/an, n ≥ 1. For
α1 > α2 > · · · → 0, let 0 = n0 < n1 < · · · be the sequence of integers defined
inductively by the condition

Pni−1

(
ni−1

ni

)1−p
− ni−1

ni
< αi

(P0 = 0). Finally, for n ≥ 1 we let λn = a2
ni , where i is the unique positive integer

such that ni−1 < n ≤ ni. Show that for any n satisfying

n∑

i=1

λ
1/2
i ≥ λ1/2

n (Ti + n)

with Ti = αini, we have n/Ti ≥ 1/αi → +∞ as i→ +∞.

E 3.43 Let 0 < q ≤ 1. Show that Compnon(q, p, s;
√
ε) is not a strictly convex

function of ε.
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E 3.44 Show that for the cost function

c1(σ2) =

{
1 + σ−2 σ2 > 0,
0 σ2 = 0,

we have

R(c1;T )2 =
1

T
·
(

n∑

i=1

λ
1/2
i

)2

+

∞∑

j=n+1

λj

where n = n(T ) is the largest integer satisfying

n∑

i=1

λ
1/2
i ≤ λ1/2

n

(
T + 1

2

)
.
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Chapter 4

First mixed setting

4.1 Introduction

In the previous two sections, we studied settings in which we have exclu-
sively deterministic assumptions on the problem elements f and information
noise x (worst case setting), or exclusively stochastic assumptions (average
case setting). In the first case we analyze the worst peformance of algo-
rithms, while in the other we are interested in the average performance. The
deterministic and stochastic assumptions can be combined to obtain mixed
settings.

In this chapter we study the first mixed setting. We want to approximate
values S(f) of a solution operator, for elements f belonging to a set E ⊂ F .
Information about f is given with random noise. That is, a nonadaptive
or adaptive information operator is defined as in the average case setting of
Chapter 3. The error of an algorithm ϕ that uses information N is given as

ew−a(N, ϕ) = sup
f∈E

√∫

Y
‖S(f)− ϕ(y)‖2πf (dy),

where Y is the set of all possible values y of noisy information, and πf = N(f)
is the distribution of y for the element f .

This setting has been extensively studied in statistics. Therefore it is
often called statistical estimation and the problem of minimizing the error
over a class of algorithms – the minimax (statistical) problem. As this setting
is one of several settings we study in this monograph, in order to keep our
terminology consistent we use the name mixed or worst–average case setting
which is justified by the definition of error.

227
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In the mixed settings, the complexity results are not as rich as in the
worst or average settings. The reason for that lies in the technical difficulty.
For instance, even for apparently simple one–dimensional problems, optimal
algorithms turn out to be nonlinear (nonaffine) and they are actually not
known exactly.

This chapter consists of three sections. In Section 4.2, we study approx-
imation of a linear functional over a convex set E. We consider nonadaptive
linear information with Gaussian noise. It turns out that, although op-
timal algorithms are nonaffine, we lose at most 11, 1 . . .% by using affine
algorithms. Hence, once more affine approximations prove to be (almost)
optimal. Optimal affine algorithms are constructed. These results are ob-
tained by using the concept of a hardest one–dimensional subproblem, and
by establishing a relation between the worst-average and worst case settings.
In particular, it turns out that appropriately celebrating the levels of random
noise in one setting and deterministic noise in the other setting, we get the
same optimal affine algorithm.

If E is the unit ball in a Hilbert norm, there are also close relations
between the worst-average and the corresponding average case settings. This
enables us to show almost equivalence of the three settings. In any of them
the same smoothing spline algorithm is almost optimal.

The situation becomes much more complicated when the solution oper-
ator is not a functional. This case is considered in Section 4.3. We present
only some special results about optimal algorithms when, roughly speaking,
information is given “coordinatewise”. In particular, we show optimality of
the least squares when E = Rd. For arbitrary information, optimal algo-
rithms are unknown, even for problems defined on Hilbert spaces.

4.2 Affine algorithms for linear functionals

For approximating a linear functional in the worst and average case settings,
optimal algorithms often turn out to be linear or affine. In this section, we
investigate whether a similar result holds in the mixed worst–average case
setting.

To begin with, we consider a one–dimensional problem. We shall see
that even in this simple case the situation is rather complicated.
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4.2.1 The one–dimensional problem

Consider the problem of approximating a real parameter f ∈ [−τ, τ ] from
data y = f + x where x is distributed according to the zero mean one-
dimensional Gaussian measure with variance σ2 ≥ 0. That is, we formally
have S : R→ R, S(f) = f , and N(f) = N (f, σ2). Observe that the problem
of approximating a linear functional S : F → R from data y = S(f) + x,
x ∼ N (0, σ2), and for f ∈ E–a balanced and convex set, reduces to this case.
Indeed, then we approximate g = S(f) ∈ R from information y = g+x where
|g| ≤ τ = supf∈E S(f).

To avoid the trivial case, we assume τ > 0. Clearly, for σ2 = 0 we have
exact information. For any f the algorithm ϕ(y) = y gives exact value of
S(f) with probability 1 and its error is zero. For σ2 > 0, the error of any
algorithm ϕ : R→ R is positive and given as

ew−a(N, ϕ) = ew−a(τ, σ2;ϕ)

= sup
‖f‖≤τ

√
1√

2πσ2

∫

R
|f − ϕ(f + x)|2 exp{−x2/(2σ2)} dx.

Consider first linear algorithms. That is, assume that ϕ is of the form
ϕ(y) = c y for all y ∈ R. Let

rlin(τ, σ2) = inf { ew−a(τ, σ2;ϕ) | ϕ – linear }
be the minimal error of linear algorithms.

Lemma 4.1 For any τ and σ2 we have

rlin(τ, σ2) = σ ·
√

τ2

τ2 + σ2
.

The optimal coefficient copt = copt(τ, σ
2) of a linear algorithm is unique and

given as

copt(τ, σ
2) =

τ2

τ2 + σ2
.

Proof We have already noticed that the lemma is true for σ2 = 0. Let
σ2 > 0. Then for any linear algorithm ϕ(y) = cy and f ∈ R we have

(ew−a(τ, σ2;ϕ))2 = sup
|f |≤τ

1√
2πσ2

∫

R
|f − ϕ(f + x)|2 e−x2/(2σ2) dx

= sup
|f |≤τ

f2(1− c)2 + σ2c2 = τ2(1− c)2 + σ2c2.
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The lemma now follows by taking the minimum of the last expression over
c ∈ R. 2

Hence, the optimal coefficient copt is determined uniquely and it is a function
of σ/τ , i.e., copt(τ, σ

2) = copt(1, σ
2/τ2). For the minimal error we have

rlin(τ, σ2) = τ · rlin(1, σ2/τ2). (4.1)

Furthermore, for σ2 → 0 we have rlin(τ, σ2) ≈ σ, and for σ2 → ∞ we have
rlin(τ, σ2)→ τ .

Obviously, the linear algorithm y → copty is optimal also in the class of
affine algorithms. However, if we consider arbitrary algorithms, then it is
not difficult to see that we can do better.

Example 4.1 Observe that for large |y|, |y| > τ + σ2/τ , we have copty /∈
[−τ, τ ], and τ sqn(y) provides better approximation to any f from [−τ, τ ]
than copty. Hence, for the nonlinear algorithm

ϕnon(y) =

{
copt(τ, σ

2) y |y| ≤ τ + σ2/τ,
τ · sgn(y) |y| > τ + σ2/τ,

we have ew−a(τ, σ2;ϕnon) < rlin(τ, σ2). 2

The fact that nonlinear algorithms are better than linear ones should be
contrasted to the results of worst and average case settings where, for the
corresponding problems, linear algorithms are optimal, see E 2.13 and E
3.19.

It turns out, however, that we never gain much. Namely, let

rarb(τ, σ2) = inf { ew−a(τ, σ2;ϕ) | ϕ – arbitrary }

be the minimal error of arbitrary algorithms.

Theorem 4.1 We have

lim
σ2/τ2→0

rlin(τ, σ2)

rarb(τ, σ2)
= 1 = lim

σ2/τ2→∞
rlin(τ, σ2)

rarb(τ, σ2)
.

Furthermore, there exists an absolute constant κ1 such that

1 ≤ rlin(τ, σ2)

rarb(τ, σ2)
≤ κ1 ∀ τ, σ2.
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Proof Without loss of generality we can restrict ourselves to the case τ = 1.
Indeed, setting f̃ = f/τ , x̃ = x/τ , and for arbitrary ϕ, ϕ̃(y) = ϕ(τy)/τ , we
get ew−a(τ, σ2;ϕ) = τew−a(1, σ2/τ2; ϕ̃). Hence,

rarb(τ, σ2) = τ · rarb(1, σ2/τ2).

This and (4.1) yield

rlin(τ, σ2)

rarb(τ, σ2)
=

rlin(1, σ2/τ2)

rarb(1, σ2/τ2)
.

To obtain the first limit in the theorem it suffices to show rarb(1, σ2) ≈ σ.
To this end, observe that for any ϕ we have

(ew−a(1, σ2;ϕ))2 ≥ 1

2

∫ 1

−1

{
1√

2πσ2

∫

R
(f − ϕ(y))2e−

(y−f)2

2σ2 dy

}
df

=
1

2

1√
2πσ2

∫

R

{∫ 1

−1
(f − ϕ(y))2e−

(y−f)2

2σ2 df

}
dy.(4.2)

The integral in the last parenthesis is minimized by

ϕ1(y) =

∫ 1
−1 xe

− (y−x)2

2σ2 dx

∫ 1
−1 e

− (y−x)2

2σ2 dx

= y − σ

∫
xe−x

2/2dx∫
e−x2/2dx

where the integrals are taken from (y − 1)/σ to (y + 1)/σ. Put ϕ = ϕ1 and
change variables in (4.2), y = f + σu. After some calculations we get

(ew−a(1, σ2;ϕ))2 ≥ σ2 · 1

2

∫ 1

−1

{
1√
2π

∫

R
ψ2

1(f, u, σ2) e−u
2/2 du

}
df

where

ψ1(f, u, σ2) =

∫
(u− x) e−x

2/2dx∫
e−x2/2dx

,

the integrals taken from u+ (f − 1)/σ to u+ (f + 1)/σ. Observe now that
for |f | ≤ a < 1 and |u| < A < +∞, the function ψ1(f, u, σ2) converges
uniformly to u as σ2 → 0. Hence,

lim
σ2→0

1

2

∫ 1

−1

{
1√
2π

∫

R
ψ2

1(f, u, σ2)e−u
2/2du

}
df

=
1

2

∫ 1

−1

{
1√
2π

∫

R
u2e−u

2/2du

}
df = 1.
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Consequently, rarb(1, σ2) ≈ σ, as claimed.

On the other hand, the error of ϕ satisfies

(ew−a(1, σ2;ϕ))2

≥ 1

2

1√
2πσ2

∫

R
(f − ϕ(y))2e−

(y−f)2

2σ2 + (f + ϕ(y))2e−
(y+f)2

2σ2 dy (4.3)

where f is arbitrary from [−1, 1]. This is minimized by

ϕ2(y) =
a− − a+

a− + a+
f, a± = e−

(y±f)2

2σ2 . (4.4)

Putting ϕ = ϕ2 in (4.3) we obtain

(ew−a(1, σ2;ϕ))2 ≥ f2 ψ(f/σ) (4.5)

where

ψ(x) = e−x
2/2

√
2

π

∫ ∞

0

e−u
2/2

cosh(ux)
du.

Take f = 1. Then

(ew−a(1, σ2;ϕ))2 ≥ ψ(1/σ) ≥ e−
1

2σ2

cosh(1/
√
σ)

√
2

π

∫ √σ

0
e−u

2/2 du

which tends to 1 as σ2 →∞. This yields the second limit of the theorem.

It remains to show existence of κ1. For σ2 ≥ 1 we have rlin(1, σ2) ≤ 1
and rarb(1, σ2) ≥

√
ψ(1), where the last inequality follows from (4.5) and

monotonicity of ψ. On the other hand, for σ2 < 1 we have rlin(1, σ2) ≤ σ
and rarb(1, σ2) ≥ σ

√
ψ(1), where this time the last inequality follows from

(4.5) by taking f = σ. Thus, for any σ2

rlin(1, σ2)

rarb(1, σ2)
≤ 1√

ψ(1)

and we can take κ1 = ψ−1/2(1). 2

Let us now define the constant

κ∗1 = sup
τ,σ2

rlin(τ, σ2)

rarb(τ, σ2)
. (4.6)

We showed that 1 < κ∗1 ≤ ψ−1/2(1) = 1.49... . Actually, the value of κ∗1 is
known much more precisely, see NR 4.2.
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4.2.2 Almost optimality of affine algorithms

We pass to the general problem. We assume that the functional S is defined
on a linear space F . We want to approximate S(f) for f belonging to a
convex set E ⊂ F based on linear information with Gaussian noise. That is,
we have at disposal information y = N(f) +x ∈ Rn where N : F → Y = Rn
is a linear operator and the noise x ∼ N (0, σ2Σ). The symmetric matrix
Σ ∈ Rn×n is assumed to be positive definite. It induces the inner product
〈·, ·〉Y in Rn, 〈y, z〉Y = 〈Σ−1y, z〉2.

We denote by radw−a
aff (N;E) and radw−a

arb (N;E) the minimal errors of
affine and arbitrary algorithms over E,

radw−a
aff (N;E) = inf { ew−a(N, ϕ;E) | ϕ – affine },

radw−a
arb (N;E) = inf { ew−a(N, ϕ;E) | ϕ – arbitrary }.

Algorithms that attain the first and second infimum will be called optimal
affine and optimal, respectively.

We need the following fact.

Lemma 4.2 Consider the one–dimensional problem of Section 4.2.1 with
f ∈ [−τ, τ ] and data y = f + x, x ∼ N (0, σ2). Suppose we allow algorithms
which additionally use some (independent of y) “pure noise” data t ∈ T
where T = Rk and t ∼ ω = N (0, σ2I), say. Then we cannot make use of t
and best affine and arbitrary algorithms use y alone.

Proof This is the consequence of a more general fact. Namely, suppose that
for the corresponding class A of algorithms which use only y, there exists a
least favorable probability distribution µ on E for which

radave(N,A;µ) = radw−a(N,A;E). (4.7)

Let ϕ : Y × T → G be an arbitrary algorithm using also t, such that
ϕ(·, t) ∈ A, ∀t. Denote

e2(f, t) =

∫

Y
(S(f)− ϕ(N(f) + x, t) )2 π(dx) .

Then, using the mean value theorem we obtain

(ew−a(N;ϕ(·, ·)) )2 = sup
f∈E

∫

T
e2(f, t)ω(dt) ≥

∫

E

∫

T
e2(f, t)ω(dt)µ(df)

=

∫

T

∫

E
e2(f, t)µ(df)ω(dt) ≥

∫

E
e2(f, t∗)µ(df)

≥ (radave(N,A;µ))2 ≥ (radw−a(N,A;E) )2.
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For the one–dimensional problem under consideration the least favorable
µ satisfying (4.7) exists. For affine algorithms it puts equal mass at ±τ ,
µ({−τ}) = µ({τ}) = 1/2, which follows from the fact that the error of any
linear algorithm is attained at the end points. For arbitrary algorithms, µ
is concentrated on a finite set of points, see NR 4.1. 2

Consider now the case where E is an interval. That is, E = I = {αf−1 +
(1− α)f1 | 0 ≤ α ≤ 1 } for some f−1, f1 ∈ F .

Lemma 4.3 Let E be the one–dimensional set, E = I(f−1, f1). Let h =
(f1 − f−1)/2 and f0 = (f1 + f−1)/2.

(i) If N(h) = 0 then

radw−a
aff (N, I) = radw−a

arb (N; I) = |S(h)|

and the optimal algorithm is ϕ ≡ S(f0).

(ii) If N(h) 6= 0 then

radw−a
aff (N; I) = |S(h)| rlin

(
1,

σ2

‖N(h)‖2Y

)
,

radw−a
arb (N; I) = |S(h)| rarb

(
1,

σ2

‖N(h)‖2Y

)
,

and the optimal affine algorithm is given as

ϕaff(y) = S(f0) + copt

(
1,

σ2

‖N(h)‖2Y

)
S(h)

‖N(h)‖Y

〈
y −N(f0),

N(h)

‖N(h)‖Y

〉

Y

where rlin(·, ·), rarb(·, ·) and copt(·, ·) are as in Lemma 4.1.

Proof (i) Since for any f ∈ I we have N(f) = N(f0), information consists
of pure noise only. Hence, in view of Lemma 4.2, such information is useless.
The optimal algorithm is the center of S(I) and the formula for the minimal
error follows.

(ii) For f ∈ I, let α = α(f) be defined by f = f0 + αh. Clearly, f ∈ I iff
|α| ≤ 1. Transform the data y = N(f) + x to

z =
Σ−1/2(y −N(f0))

‖N(h)‖Y
= αw + x′,
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where w = (Σ−1/2N(h))/‖N(h)‖Y and

x′ =
Σ−1/2x

‖N(h)‖Y
∼ N

(
0,

σ2

‖N(h)‖Y
I

)
.

We now choose Q to be such an orthogonal matrix that Qw = e1 (the first
versor). Then the problem of approximating S(f) from data y is equivalent
to that of approximating s(α) = S(f0) + αS(h), −1 ≤ α ≤ 1, from data

ỹ = Qz = [α+ x̃1, x̃2, . . . , x̃n] ∈ Rn

where x̃i are independent, x̃i ∼ N (0, σ2/‖N(h)‖2Y ), 1 ≤ i ≤ n. We see
that only the first component of ỹ is not pure noise. From Lemma 4.2 it
follows that we cannot make use of x̃2, . . . , x̃n to reduce the error, and we
can restrict ourselves to data ỹ1 = α+ x̃1.

Thus we have reduced the original problem to the one dimensional prob-
lem of approximating s(α) from ỹ1 = α+ x̃1. The formulas for the minimal
errors now follow from Lemma 4.1. The optimal affine algorithm is given as

ϕaff(y) = S(f0) + S(h) copt

(
1,

σ2

‖N(h)‖2Y

)
ỹ1.

To complete the proof, observe that

ỹ1 = 〈Qz, e1〉2 = 〈z,Q−1e1〉2 = 〈z, w〉2

=

〈
Σ−1/2(y −N(f0))

‖N(h)‖Y
,
Σ−1/2N(h)

‖N(h)‖Y

〉

2

=
1

‖N(h)‖Y

〈
y −N(f0),

N(h)

‖N(h)‖Y

〉

Y

. 2

We now find optimal affine algorithms for arbitrary convex set E. For δ ≥ 0,
let

r(δ) = sup {S(h) | h ∈ bal(E), ‖N(h)‖Y ≤ δ }
(bal(E) = (E−E)/2). Recall that r(δ) is the worst case radius of information
Nδ(f) = {N(f) + x | ‖x‖Y ≤ δ} with respect to E, r(δ) = radwor(Nδ;E).
Let ϕδ be the worst case optimal affine algorithm for information Nδ. We
know from Section 2.4 that it exists and it is optimal among all algorithms,
radwor(Nδ;E) = ewor(Nδ, ϕδ;E). Moreover, ϕδ is of the form

ϕδ = gδ + dδ 〈·, wδ〉Y
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where gδ ∈ R, wδ ∈ Rn with ‖wδ‖Y = 1, and dδ ≥ 0 is an arbitrary number
such that r(γ) ≤ r(δ) +dδ(γ− δ), ∀γ. The set of all such dδ will be denoted
by ∂r(δ). (Compare with Theorem 2.6.)

Observe that taking δ2 = σ2, we obtain an algorithm which is close
to optimal affine in the mixed worst–average case. Indeed, for any affine
ϕ = g + d 〈·, w〉Y with ‖w‖Y = 1, we have

|S(f)− ϕ(N(f) + x)|2
= |S(f)− ϕ(N(f))|2 − 2 dS(f) 〈w,Σ−1x〉2 + d2〈w,Σ−1x〉22.

If we integrate this over x ∼ π = N (0, σ2Σ), the second component will
vanish and the third one will become σ2d2. Hence,

ew−a(N, ϕ;E) = sup
f∈E

√∫

Rn
|S(f)− ϕ(N(f) + x)|2 π(dx)

=
√

sup
f∈E
|S(f)− ϕ(N(f))|2 + σ2 d2. (4.8)

Since ewor(N, ϕ;E) = supf∈E |S(f)− ϕ(N(f))| + δ d, for δ2 = σ2 we have

1√
2

ewor(N, ϕ;E) ≤ ew−a(N, ϕ;E) ≤ ewor(N, ϕ;E).

In particular, this implies

ew−a(N, ϕδ;E) ≤
√

2 · radw−a(N;E) (δ2 = σ2).

It turns out that for appropriately chosen δ the algorithm ϕδ is strictly
optimal affine.

Theorem 4.2 Let σ2 > 0. Suppose that there exist δ = δ(σ) > 0 and
dδ ∈ ∂r(δ) such that

dδ =
δ r(δ)

σ2 + δ2
. (4.9)

Then the algorithm ϕδ is optimal affine in the mixed worst–average setting
and

radw−a
aff (N;E) = ew−a(N, ϕδ;E) =

σ r(δ)√
σ2 + δ2

.
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Proof For ε > 0, let h = (f1 − f−1)/2 ∈ bal(E), f1, f−1 ∈ E, be such that
‖N(h)‖Y ≤ δ and S(h) ≥ r(δ)− ε. Let I = I(f−1, f1). Then

sup
f∈E
|S(f)− ϕδ(N(f))| ≤ sup

f∈I
|S(f)− ϕδ(N(f))| + ε.

This and (4.8) yield

(ew−a(N, ϕδ ;E))2 = sup
f∈E
|S(f)− ϕδ(N(f))|2 + σ2d2

δ

≤ ( sup
f∈I
|S(f)− ϕδ(N(f))|+ ε )2 + σ2d2

δ .

Since ε can be arbitrarily small, the last inequality and the formula (4.9) for
dδ give

(ew−a(N, ϕδ;E))2 ≤ sup
f∈I
|S(f)−N(f)|2 + σ2d2

δ

= (r(δ) − δ dδ)2 + σ2d2
δ =

σ2 r2(δ)

σ2 + δ2
. (4.10)

On the other hand, the error over E is not smaller than the error over
the interval I. Using the formula for radw−a(N; I) given in Lemma 4.3 we
obtain

radw−a
aff (N;E) ≥ radw−a

aff (N; I) ≥ σ (r(δ)− ε)√
σ2 + δ2

,

and since ε is arbitrary,

radw−a
aff (N;E) ≥ σ r(δ)√

σ2 + δ2
. (4.11)

The theorem now follows from (4.10) and (4.11). 2

Hence, under the assumption (4.9), the optimal algorithm in the mixed set-
ting turns out to be optimal in the worst case with appropriately chosen
δ.

Observe that in the proof we also showed that the minimal linear worst–
average error over E equals the minimal linear worst–average error over the
hardest one–dimensional subset I ⊂ E. We emphasize this important fact
in the following corollary.
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Corollary 4.1 If there exist δ = δ(σ) and dδ ∈ ∂r(δ) satisfying (4.9)
then

radw−a
aff (N;E) = sup

I⊂E
radw−a

aff (N; I).

Furthermore, if the worst case radius r(δ) is attained at h∗ = (f∗1 −f∗−1)/2 ∈
bal(E), f ∗1 , f

∗
−1 ∈ E, then the interval I∗ = I(f∗−1, f

∗
1 ) is hardest possible,

i.e., radw−a
arb (N;E) = radw−a

arb (N; I∗). 2

We note that if E is not only convex but also balanced, then the optimal
affine algorithm ϕδ is linear and the hardest one–dimensional subclass is
symmetric about zero.

It is now natural to ask when the crucial assumption (4.9) is satisfied.

Lemma 4.4 Suppose that for the worst case radius we have r ′(0+) > 0.
If

sup
h∈bal(E)

‖N(h)‖Y < +∞ (4.12)

then for any σ2 > 0 there exists δ = δ(σ) > 0 and d ∈ ∂r(δ) which satisfy
(4.9).

Proof Since r(γ) is a concave function of δ, the set { (γ, d) | γ ≥ 0, d ∈
∂r(γ) } forms a continuous curve. The assumption (4.12) implies that for
sufficiently large γ the radius r(γ) is constant, which means that for large
γ we have ∂r(γ) = {0}. We also have ∂r(0) = r ′(0+). On the other hand,
the function γ → γr(γ)(σ2 + γ2)−1 is nonnegative, continuous and it takes
zero for γ = 0. Hence, these two curves must have nonempty intersection at
some γ > 0, as claimed. 2

Clearly, the condition (4.12) (and consequently also (4.9)) is satisfied if, for
instance, the space F can be equipped with a norm with respect to which
E is a bounded set and N : F → Rn is a continuous operator. Sometimes it
may happen that Theorem 4.2 applies although (4.12) does not hold.

Example 4.2 Consider the integration problem over the class E of peri-
odic 1–Lipschitz functions f : [0, 1] → R as in Example 2.8. The informa-
tion is given as yi = f(i/n) + xi, 1 ≤ i ≤ n, where xi are independent and
xi ∼ N (0, σ2).
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Recall that then r(γ) = γ/
√
n + 1/(4n). The worst case optimal algo-

rithm is independent of γ and equals ϕlin(y) = n−1∑n
i=1 yi. We check that

(4.9) holds for δ = δ(σ) = 4σ2√n. Hence, Theorem 4.2 yields that the
algorithm ϕlin is optimal linear also in the mixed case for any σ and

radw−a
aff (N;E) =

√
σ2

n
+

1

16n2
.

The hardest one–dimensional subclass is [−h∗, h∗] where

h∗ = 4σ2 +
1

2n
−
∣∣∣∣t−

2i− 1

2n

∣∣∣∣ ,
i− 1

n
≤ t ≤ i

n
, 1 ≤ i ≤ n.

In this example, suph∈bal(E) ‖N(h)‖2 = +∞ and (4.12) does not hold. 2

We now pass to arbitrary algorithms. The just proven relations between the
mixed and worst case settings enable us to show the following result.

Theorem 4.3 If (4.9) holds then

1 ≤ radw−a
aff (N;E)

radw−a
arb (N;E)

≤ κ∗1 (4.13)

where κ∗1 is defined by (4.6). Furthermore, radw−a
aff (N;E) ≈ radw−a

arb (N;E) as
σ2 → 0+.

Proof Due to Lemma 4.3, (4.13) holds for E being an interval. This and
Corollary 4.1 yield

radw−a
aff (N;E) = sup

I⊂E
radw−a

aff (N;E)

≤ κ∗1 · sup
I⊂E

radw−a
arb (N; I) ≤ κ∗1 · radw−a

arb (N;E).

We now prove the remaining part of the theorem. We can assume without
loss of generality that r′(δ) > 0 since otherwise information is useless. Then,
in view of Lemma 4.3 and Theorem 4.1, we have to show that it is possible
to select δ = δ(σ2) and dδ in such a way that σ2/δ2 converges to 0 or to +∞,
as σ2 → 0+. Indeed, if this were not true, we would have δ → 0+. However,
as

σ2

δ2
=

r(δ)

δ dδ
− 1,
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the limit

lim
δ→0+

σ2

δ2
=

{
0 if r(0) = 0,
+∞ if r(0) > 0,

as claimed. 2

Thus, we have shown that nonaffine algorithms can only be slightly better
than affine algorithms. Moreover, optimal affine algorithm is asymptotically
optimal among arbitrary algorithms.

We end this section by considering a special case where E is the unit ball
in a separable Hilbert space F and the functional S as well as the operator
N are continuous. That is, S = 〈·, fS〉F and N = [〈·, f1〉F , . . . , 〈·, fn〉F ] for
some fS and fi from F . Obviously, the condition (4.12) is satisfied and all
results of this section are valid. However, in this special case we can obtain
more specific results. To do this, we will refer to the average case setting
rather than to the worst case.

Suppose that F̃ ⊃ F is such a separable Banach space that S and N
can be extended to a continuous functional S̃ and continuous operator Ñ =
[L̃1, . . . , L̃n] defined on F̃ . Suppose also that the pair {F, F̃ } is an abstract
Wiener space, and let µ be the corresponding to it zero mean Gaussian
measure. As always, we denote by Cµ the correlation operator of µ. Consider
the problem of approximating S̃(f) in the average case setting with respect
to the measure µ, based on information y = Ñ(f) + x, x ∼ N (0, σ2Σ).

Lemma 4.5 For any linear algorithm ϕlin we have

ew−a(N, ϕlin;E) = eave(N, ϕlin;µ).

Proof Indeed, denoting ϕlin = d〈·, w〉Y , ‖w‖Y = 1, we obtain

(eave(N, ϕlin;µ))2 =

∫

F̃

∫

Rn
(S̃(f)− ϕlin(Ñ(f) + x) )2 π(dx)µ(df)

=

∫

F̃
(S̃(f)− ϕlin(Ñ(f)) )2µ(df) + σ2d2.

Recall now that for any continuous functional L defined on F̃ we have∫
F̃ L

2(f)µ(df) = ‖fL‖2F where fL ∈ F is the representer of L in F , see

Section 3.3.2. Since K = S̃(·) − ϕlin(Ñ(·)) is a continuous functional in F̃
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and fK = fS − d
∑n
i=1 wifi, we get

(eave(N, ϕlin;µ))2 = ‖fS − d
n∑

i=1

wifi‖2 + σ2d2

= sup
‖f‖F≤1

(S(f)− ϕlin(N(f)) )2 + σ2d2

= (ew−a(N, ϕlin;E))2,

as claimed. 2

Observe that the space F̃ satisfying the desired assumptions always exists.
For instance, it can be constructed as follows. LetW be the space spanned by
fS, f1, . . . , fn and let W⊥ be the orthogonal complement of W . Let {fj}j>n
be a complete orthonormal basis of W⊥. Define F̃ as the closure of F with
respect to the norm

‖f‖2
F̃

= ‖fW‖2F +
∞∑

j=n+1

λjα
2
j , f = fW +

∞∑

j=n+1

αjfj,

where {λj} is a positive sequence with
∑∞
j=n+1 λj < +∞. Then {F, F̃ } is

an abstract Wiener space. Furthermore, it is easy to see that S̃(f) = S(fW )
and Ñ(f) = N(fW ).

Existence of F̃ together with Lemma 4.5 and the formulas for the optimal
algorithm in the average case given at the beginning of Section 3.5 yields
the following result.

Theorem 4.4 Let E be the unit ball in a separable Hilbert space F , and let
S and N be continuous linear. Then, in the mixed worst–average setting, the
optimal affine algorithm is linear, unique, and given as ϕlin(y) = 〈y, w〉2
where w is the solution of (σ2Σ + GN )w = N(fS) and the matrix GN =
{〈fi, fj〉F }ni,j=1. Furthermore,

radw−a
aff (N;E) =

√
‖fS‖2F − 〈w,N(fS)〉2. 2

In the Hilbert case, the hardest one–dimensional subproblem can also be
shown explicite. Indeed, we know from Theorem 3.4 that the average case
approximation of S(f) with respect to the measure µ is as difficult as the
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average case approximation with respect to the measure µK∗ whose mean
element is zero and correlation operator

AK∗(L) =
〈L,K∗〉µ
‖K∗‖2µ

CµK
∗, L ∈ F ∗,

K∗ = S − 〈w,N(·)〉2. Furthermore, in both cases the algorithm ϕlin is
optimal. Note that µK∗ is concentrated on the one–dimensional subspace
V = span{CµK∗}. Hence, due to Lemma 4.5, ϕlin is also optimal linear in
the mixed setting with the set EK∗ = {αCµK∗ ∈ V | |α|‖K∗‖µK∗ ≤ 1 }, and
ew−a(N, ϕlin;EK∗) = ew−a(N, ϕlin;E). Since

‖K∗‖2µK∗ = K∗(AK∗K
∗) = ‖K∗‖2µ = ‖CµK∗‖2F ,

we have EK∗ = [−h∗, h∗] where

h∗ =
CµK

∗

‖CµK∗‖F
=

fS −
∑n
j=1wjfj

‖fS −
∑n
j=1wjfj‖F

,

and EK∗ ⊂ E. The interval [−h∗, h∗] is thus the hardest one–dimensional
subproblem.

4.2.3 A correspondence theorem

The relations between the mixed worst–average and other settings discovered
in Section 4.2.2 yield the following correspondence theorem.

Let S be a linear functional on a linear space F . Let information about
f be given as y = N(f) + x. Consider the problem of approximating S(f)
from data y in the following three settings.

P1: Mixed worst-average setting with a convex set E ⊂ F and the noise
x ∼ N (0, σ2Σ).

P2: Worst case setting with a convex set E ⊂ F and the noise bounded by
‖x‖Y =

√
〈Σ−1x, x〉2 ≤ δ.

P3: Average case setting with a Gaussian measure µ defined on F and
x ∼ N (0, σ2Σ).

We denote by ϕσ the optimal affine algorithm in the mixed setting (P1).
Recall that ew−a(N, ϕσ ;E) ≤ κ∗1 radw−a

arb (N;E).
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Theorem 4.5 (i) Suppose the condition (4.9) is satisfied and δ2 = σ2.
Then ewor(N, ϕσ;E) ≤

√
2 radwor(N;E) and

1

κ∗1
√

2
· radwor(N;E) ≤ radw−a

arb (N;E) ≤ radwor(N;E).

(ii) Suppose the measure µ is induced by the abstract Wiener space {H,F},
and E is the unit ball of H. Then eave(N, ϕσ ;µ) = radave(N;µ) and

1

κ∗1
· radave(N;µ) ≤ radw−a

arb (N;E) ≤ radave(N;µ). 2

We can say even more. For any σ2 ∈ [0,+∞] there is δ = δ(σ) ∈ [0,+∞]
such that the algorithm ϕδ is optimal affine in the mixed setting (P1) and
in the worst case setting (P2) (with convention that ϕ∞ is a constant).
And vice versa. For any δ ∈ [0,+∞] there is σ2 = σ2(δ) ∈ [0,+∞] (σ2 =
δ(r(δ)/dδ−δ)) such that the algorithm ϕσ is optimal affine for (P1) and (P2).
Since ϕσ is also optimal affine in the average case (P3), similar relations hold
between the worst case (P2) and average case (P3).

Example 4.3 Consider the abstract Wiener space {H,F} where H = W 0
r+1

and F = C0
r (r ≥ 0), and corresponding to it r–fold Wiener measure wr (see

Example 3.4). Suppose we want to approximate a functional S ∈ F ∗, e.g.,
S(f) =

∫ 1
0 f(t) dt, from noisy information y = N(f) + x, where

N(f) = [ f(t1), f(t2), . . . , f(tn) ].

We know that in the average case (P3) with µ = wr, the unique optimal
algorithm is the smoothing spline algorithm. It is given as ϕσ(y) = S(s(y))
where s(y) is the natural polynomial spline of order r which belongs to W 0

r

and minimizes
∫ 1

0
(f (r+1)(t))2 dt +

1

σ2
·
n∑

j=1

(yi − f(ti))
2

(for σ2 = 0, s(y) interpolates data yi exactly, s(y)(ti) = yi, ∀i). Hence, this
algorithm is unique optimal affine in the mixed setting (P1) with E being
the unit ball of H, and close to optimal among arbitrary algorithms in the
mixed and worst settings (P1) and (P2).

Let {ϕσ} be the family of smoothing spline algorithms where σ runs from
zero to infinity. These are all optimal affine algorithms in any of the three
cases, for different δ or σ2, respectively.
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Notes and Remarks

NR 4.1 The one–dimensional problem of Section 4.2.1 was studied by many au-
thors. Bickel [5], Casella and Strawderman [8], Levit [49] looked for optimal nonlin-
ear algorithms. It is known that the optimal algorithm is the Bayes estimator with
respect to the least favorable distribution on [−τ, τ ]. This least favorable distri-
bution is concentrated on a finite number of points. Moreover, for τ/σ sufficiently
small, τ/σ < 1.05, it assigns mass 1/2 each to ±τ . Hence, in this case the algorithm
ϕ2 defined by (4.4) with f = τ is optimal and

(rarb(τ, σ2))2 = τ2 e−
1
2 (τ/σ)2 1√

2π

∫ ∞

0

e−u
2/2

cosh(uτ/σ)
du.

As τ/σ increases, the number of points also increases and the least favorable prior
“tends” to uniform distribution.

NR 4.2 The fact that the ratio rlin(τ, σ2)/rarb(τ, σ2) is bounded from above by
a finite constant was pointed out by Ibragimov and Hasminski [25] who studied
the case N = I and convex and balanced E. Donoho et al. [14] and Brown and
Feldman [7] independently precisely calculated the value of κ∗1. It is 1.11... .

NR 4.3 Li [50] and Speckman [97] showed optimal properties of smoothing splines
for approximating functionals defined on Hilbert spaces. The main line of proving
results of Section 4.2.2 for arbitrary convex class E follows Donoho [12] who con-
sidered also some other error criteria. (However, we did not assume that the worst
case radius is always attained.) The result about asymptotic optimality of affine
algorithms and special results for the Hilbert case seem to be new. Lemma 4.5 was
pointed to me by K. Ritter in a conversation.

Exercises

E 4.1 Suppose we want to approximate f ∈ [−τ, τ ] based on n independent obser-
vations of f , yi = f + xi where xi ∼ N (0, σ2). Show that then the sample mean,
ϕn(y) = n−1

∑n
j=1 yj , is an asymptotically optimal algorithm,

ew−a(ϕn) =
σ√
n
≈ radw−a

arb (n), as n→ +∞,

where radw−a
arb (n) is the corresponding nth minimal error of arbitrary algorithms.

E 4.2 Consider the problem of E 4.1 with f ∈ R (τ = +∞) and observations
with possibly different variances, xi ∼ N (0, σ2

i ), 1 ≤ i ≤ n. Show that then the
algorithm

ϕ(y) =

∑n
i=1 σ

−2
i yi∑n

i=1 σ
−2
i

is optimal among arbitrary algorithms and its error equals (
∑n

i=1 σ
−2
i )−1/2.
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E 4.3 Consider the problem of approximating values of a linear functional S with
F = Rn, based on information y = f + x, x ∼ N (0, σ2I). Show that for a convex
and balanced class E ⊂ Rn we have

radw−a
aff (N;E) = σ · sup

f∈E

√
S2(f)

σ2 + ‖f‖2F
.

E 4.4 Prove the uniqueness of the optimal affine algorithm ϕδ(σ2) of Theorem 4.2
(if it exists).
Hint: Consider first E being an interval.

E 4.5 Show that for the one–dimensional problem of Section 4.2.1 with E = R the
condition (4.9) is not satisfied.

E 4.6 Show that in the Hilbert case the number σ2(δ) is determined uniquely.
Moreover, in the worst case setting, the regularization parameter γ = γ(δ) equals
σ2(δ).

E 4.7 Let F be a separable Hilbert space. Consider approximation of a nonzero
functional S = 〈·, s〉F , from information y = N(f) + x where

N = [ 〈·, f1〉F , . . . , 〈·, fn〉F ],

〈fi, fj〉F = δij , and x ∼ N (0, σ2I).
Denote by s1 the orthogonal projection of s onto span{f1, . . . , fn} and by s2 its

orthogonal complement. Show that

δ(σ2) =

(
σ2

1+σ2

)
‖s1‖F

√(
σ2

1+σ2

)2

‖s1‖2F + ‖s2‖2F
for 0 ≤ σ2 ≤ +∞,

and

σ2(δ) =
δ ‖s2‖F√

1− δ2 ‖s1‖F − δ ‖s2‖2
for 0 ≤ δ < ‖s1‖F

‖s‖F
,

σ2(δ) = +∞ for δ ≥ ‖s1‖F /‖s‖F . Hence, in particular, the regularization parameter
γ(δ) = σ2(δ) ≈ δ‖s2‖F/‖s1‖F as δ → 0+.

E 4.8 Show that in the general case σ2(δ) → 0 as δ → 0+ and the convergence is
at least linear.

E 4.9 Prove Corollary 4.1 (and consequently also Theorem 4.3) in the Hilbert case
using only Lemma 4.5 and Theorem 3.4.
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4.3 Approximation of operators

In this section, we present some results about approximation of linear oper-
ators in the mixed worst-average case setting.

4.3.1 Ellipsoidal problems in Rn

Suppose we want to approximate a vector f = (f1, . . . , fn) ∈ Rn which is
known to belong to a rectangle

E = R(τ) = { f ∈ Rn | |fi| ≤ τi, 1 ≤ i ≤ n }

where τ = (τ1, . . . , τn) ∈ Rn, τi ≥ 0 ∀i. Information y about f is given
coordinatewise, i.e., yi = fi + xi, 1 ≤ i ≤ n, where xi are independent and
xi ∼ N (0, σ2

i ).

Lemma 4.6 For the rectangular problem we have

radw−a
lin (N,R(τ)) =

√√√√
n∑

i=1

r2
lin(τi, σ2

i ) =

√√√√
n∑

i=1

σ2
i τ

2
i

σ2
i + τ2

i

,

radw−a
arb (N,R(τ)) =

√√√√
n∑

i=1

r2
arb(τi, σ2

i ),

and the (unique) optimal linear algorithm is given as ϕτ (y) = (ciy1, . . . , cnyn)
where

ci = copt(τi, σ
2
i ) =

τ2
i

σ2
i + τ2

i

, 1 ≤ i ≤ n.

Proof Indeed, in this case the error of any algorithm ϕ = (ϕ1, . . . , ϕn),
ϕi : Rn → R, can be written as

(ew−a(N, ϕ;R(τ)) )2 = sup
f∈R(τ)

∫

Rn

n∑

i=1

(fi − ϕi(f + x))2 π(dx)

=
n∑

i=1

(
sup
|fi|≤τi

∫

R
(fi − ϕi(f + x) )2 πi(dx)

)

where πi = N (0, σ2
i ). Hence, the optimal (linear or nonlinear) approximation

is coordinatewise. Moreover, as yi’s are independent, optimal ϕi’s use yi only.
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The lemma now follows from results about the one–dimensional problem
given in Lemma 4.1. 2

It turns out that such a “coordinatewise” algorithm is optimal linear over
a larger set than the rectangle. Indeed, observe that the squared error of
ϕτ at any f ∈ Rn is

∑n
i=1(1 − ci)2f2

i + σ2
i c

2
i . Since for f ∈ R(τ) this error

is maximized at f = τ , the algorithm ϕτ is optimal also over the set of f
satisfying the inequality

n∑

i=1

(1− ci)2f2
i ≤

n∑

i=1

(1− ci)2τ2
i .

Taking into account the formulas for ci we get that this set is ellipsoidal,

E(τ) =

{
f ∈ Rn

∣∣∣
n∑

i=1

f2
i /a

2
i ≤ 1

}

where

a2
i = a2

i (τ) = (1 + τ 2
i /σ

2
i )

2 ·
n∑

j=1

τ2
j

(1 + τ2
j /σ

2
j )2

, 1 ≤ i ≤ n.

Moreover, E(τ) is the largest set for which ϕτ is optimal linear. Hence, we
have the following corollary.

Corollary 4.2 Let E ⊂ Rn. Suppose there is τ ∗ ∈ Rn such that

R(τ∗) ⊂ E ⊂ E(τ ∗). (4.14)

Then the algorithm ϕτ∗ is optimal linear over E and

radw−a
lin (N;R(τ ∗)) = radw−a

lin (N;E) = radw−a
lin (N; E(τ ∗)). 2

In words, R(τ ∗) is the hardest rectangular subproblem contained in E. The
notion of the hardest rectangular subproblem thus corresponds to the hardest
one–dimensional subproblem for approximating functionals.

The condition (4.14) is satisfied by many sets. The most important
example are ellipsoids. In this case, the formulas for τ ∗, and consequently
for the minimal error, can be found explicite. Namely, we have the following
theorem.
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Theorem 4.6 Let E be an ellipsoid,

E =

{
f ∈ Rn

∣∣∣
n∑

i=1

f2
i /b

2
i ≤ 1

}

where b1 ≥ b2 ≥ · · · ≥ bn > bn+1 = 0. Let

τ∗i =





σi

√√√√bi
(

1+
∑k

j=1
σ2
j /b

2
j∑k

j=1
σ2
j /bj

)
− 1 1 ≤ i ≤ k,

0 k + 1 ≤ i ≤ n,
where k is the smallest positive integer satisfying

bk+1 ≤
∑k
j=1 σ

2
j /bj

1 +
∑k
j=1 σ

2
j /b

2
j

.

Then the “coordinatewise” algorithm ϕτ∗ is (unique) optimal linear,

radw−a
lin (N;E) = ew−a(N, ϕτ∗ ;E) =

√√√√√
k∑

j=1

σ2
j −

(
∑k
j=1 σ

2
j /bj)

2

1 +
∑k
j=1 σ

2
j/b

2
j

.

Furthermore,
radw−a

lin (N;E) ≤ κ∗1 · radw−a
arb (N;E)

and ϕτ∗ is asymptotically optimal among arbitrary algorithms, i.e.,

radw−a
lin (N;E) ≈ radw−a

arb (N;E) as σ2
i → 0+, 1 ≤ i ≤ n.

Proof Observe first that τ ∗ is well defined. Indeed, the definition of k
implies

1 +
∑k
j=1 σ

2
j /b

2
j∑k

j=1 σ
2
j /bj

>
1 +

∑k
j=1 σ

2
j

bk
(
1 +

∑k−1
j=1 σ

2
j /b

2
j

)
+ σ2

k/bk
=

1

bk

(
∑0

1 = 0), which means that bi(1 +
∑k
j=1 σ

2
j /b

2
j)/(

∑k
j=1 σ

2
j /bj)− 1 > 0 ∀i.

Using the standard technique we find that R(τ ∗) is the (unique) hardest
rectangular subproblem contained in E. We can also easily check that E ⊂
E(τ∗). Indeed, for 1 ≤ i ≤ k we have ai(τ

∗) = bi, while for k + 1 ≤ i ≤ n we
have

ai(τ
∗) =

∑k
j=1 σ

2
j /bj

1 +
∑k
j=1 σ

2
j /b

2
j

≥ bk+1 ≥ bi.



4.3. APPROXIMATION OF OPERATORS 249

Due to Corollary 4.2, the algorithm ϕτ∗ is thus optimal linear, and the radius
radw−a

lin (N;E) = ew−a
lin (N, ϕτ∗ ;E) can easily be calculated.

As rlin(τi, σ
2
i ) ≤ κ∗1rarb(τi, σ

2
i ), in view of Lemma 4.6 we have

radw−a
lin (N;E) = radw−a

lin (N;R(τ ∗) )

≤ κ∗1 · radw−a
arb (N;R(τ ∗) ) ≤ κ∗1 · radw−a

arb (N;E).

We also have rlin(τi, σ
2
i ) ≈ rarb(τi, σ

2
i ) as σ2

i /τ
2
i → 0. Hence, to complete the

proof it suffices to observe that σ2
i /(τ

∗
i )2 → 0 as all σi‘s decrease to zero.

2

Another characterization of problems whose difficulty is determined by the
difficulty of the hardest rectangular subproblem is given as follows.

We shall say that a set E is orthosymmetric iff (f1, . . . , fn) ∈ E implies
(s1f2, . . . , snfn) ∈ E, for all choices of si ∈ {+1,−1}. A set E is quadrati-
cally convex iff

Q(E) = { (f 2
1 , . . . , f

2
n) | f ∈ E }

is convex. Examples of orthosymmetric and quadratically convex sets include
rectangles, ellipsoids, and lp–bodies with p ≥ 2,

E =

{
f ∈ Rn

∣∣∣
n∑

i=1

|fi|p/|ai|p ≤ 1

}
.

Lemma 4.7 Let E be a bounded convex set of Rn. If E is orthosymmetric
and quadratically convex then the condition (4.14) holds, i.e.,

radw−a(N;E) = sup
τ∈E

radw−a(N;R(τ) ).

Proof Let τ ∗ be the maximizer of radw−a(N;R(τ) ) over τ ∈ E. As E is
orthosymmetric and convex, R(τ ∗) ⊂ E and it is the hardest rectangular
subproblem contained in E. We need to show that E ⊂ E(τ ∗).

For xi ≥ 0 ∀i, let

ψ(x1, . . . , xn) = (radw−a(N;R(
√
x1, . . . ,

√
xn)) )2 =

n∑

i=1

σ2
i xi

σ2
i + xi

.

Denoting by ∂A the boundary of a set A, we have that P = Q( ∂E(τ ∗) ) is a
hyperpline which is adjacent to the set

B = {x | ψ(x) ≥ (radw−a(N;R(τ ∗)) )2 }.
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As Q(E) is convex and the interiors of Q(E) and Q(B) have empty intersec-
tion, both sets are separated by P . Hence, Q(E) ⊂ Q(E(τ ∗)) which implies
E ⊂ E(τ∗)), as claimed.

4.3.2 The Hilbert case

We now apply the obtained results to get optimal algorithms for some prob-
lems defined on Hilbert spaces. We assume that S is a compact operator
acting between separable Hilbert spaces F and G. We want to approximate
S(f) for f from the unit ball E ⊂ F . Information is linear with Gaussian
noise, i.e., y = N(f)+x whereN = [〈·, f1〉F , . . . , 〈·, fn〉F ] and x ∼ N (0, σ2Σ),
Σ > 0. As always, 〈·, ·〉Y = 〈Σ−1(·), ·〉2.

We will also assume that the operators S∗S and N∗N , where N ∗ is
meant with respect to the inner products 〈·, ·〉F and 〈·, ·〉Y , have a common
basis of eigenelements. Denote this basis as {ξi}i≥1 and the corresponding
eigenvalues as λi and ηi,

S∗S ξi = λi ξi, N∗N ξi = ηi ξi, i ≥ 1,

where λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 and limj→∞ λj = 0.

Our aim is to find the optimal linear algorithm and its error. It is clear
that we can restrict our considerations to such ϕ that ϕ(Rn) ⊂ S(F ) since
otherwise we would project ϕ onto S(F ) to obtain a better algorithm. We
write ϕ in the form ϕ(y) =

∑
j ϕj(y)S(ξj) where ϕj : Rn → R and the

summation is taken over all j ≥ 1 with λj > 0. As the elements S(ξj) are
orthogonal and ‖S(ξj)‖2 = λj , for such ϕ we have

(ew−a(N, ϕ))2

= sup
‖f‖F≤1

∫

Rn

∥∥∥
∑

j

(〈f, ξj〉F − ϕj(y) )S(ξj)
∥∥∥

2
πf (dy)

= sup∑
i
〈f,ξi〉2F≤1

∑

j

∫

Rn
λj ( 〈f, ξj〉F − ϕj(y) )2 πf (dy).

We now change variables as follows. Let I = { i1, i2, . . . , im } (i1 < i2 <
· · · im) be the set of all indices i ≥ 1 such that ηi > 0. Clearly, m ≤ n.
For j ∈ I, let qj = Nξj/

√
ηj. Then the vectors qj are orthonormal in Rn

with respect to the inner product 〈·, ·〉Y , and Σ−1/2qj are orthonormal with
respect to 〈·, ·〉2. Let Q be an othogonal n×n matrix whose m first columns
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are Σ−1/2qij , and let

D1 = diag
{
η
−1/2
i1

, . . . , η
−1/2
im , 1, . . . , 1︸ ︷︷ ︸

n−m

}
.

Setting ỹ = D1Q
TΣ−1/2y we transform the data y = N(f) + x to ỹ =

M(f) + x̃, where

M(f) =
[
〈f, ξi1〉F , . . . , 〈f, ξim〉F , 0, . . . , 0︸ ︷︷ ︸

n−m

]

and x̃j are independent,

x̃ ∼ π̃ = N
(
0, σ2diag

{
η−1
i1
, . . . , η−1

im
, 1, . . . , 1︸ ︷︷ ︸

n−m

})
.

(Compare with analogous transformation in Section 3.4.2). Denoting ϕ̃(ỹ) =
ϕ(y) and fj = 〈f, ξj〉F we obtain

(ew−a(N, ϕ))2 = sup∑
i
f2
i ≤1

∑

j

∫

Rn
λj(fj − ϕ̃j(M(f) + x̃) )2 π̃(dx̃).

Changing the variables once more to hj =
√
λjfj, tj =

√
λjx̃j for 1 ≤ j ≤ m,

tj = x̃j for m+ 1 ≤ j ≤ n, and denoting

ψj(y1, . . . , yn) =
√
λj · ϕ̃j

(
y1/
√
λi1 , . . . , ym/

√
λim , ym+1, . . . , yn

)
,

we finally get that the squared error (ew−a(N, ϕ))2 equals

sup∑
i
h2
i /λi≤1

∑

j

∫

Rn
(hj − ψj(hi1 + t1, . . . , him + tm, tm+1, . . . , tn) )ω(dt)

where

ω = N
(

0, σ2 · diag
{
λi1/ηi1 , . . . , λim/ηim , 1, . . . , 1︸ ︷︷ ︸

n−m

})
.

Observe that information about h = (h1, h2, . . . ) ∈ l2 is now given coordi-
natewise. Thus we can apply the whole machinery with rectangular sub-
problems which are now given as R(τ) = {h ∈ l2 | |hi| ≤ τi, i ≥ 1 } where
τ ∈ l2 is in the ellipsoid

∑
i τ

2
i /λi ≤ 1.
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It is not difficult to see that the hardest τ ∗ is given as follows. Let

s = min { i ≥ 0 | ηi+1 = 0 or λi+1 = 0 }. (4.15)

Then τ∗i = 0 for i ≥ s+ 2, and τ ∗1 , . . . , τ
∗
s+1 is the maximizer of

s∑

j=1

σ2
j τ

2
j

σ2
j + τ2

j

+ τ2
s+1

over the ellipsoid
∑s+1
i=1 τ

2
i /λi ≤ 1 (if λs+1 = 0 then τs+1 = 0 and the

summation is taken from 1 to s), where the noise levels σ2
j = σ2λj/ηj .

Solving this maximization problem, we obtain the following formulas.
Let k be the smallest integer satisfying k ∈ {1, 2, . . . , s} and

√
λk+1 ≤

σ2 ∑k
j=1(

√
λjηj)

−1

1 + σ2
∑k
j=1 η

−1
j

, (4.16)

or k = s+ 1 if such a number does not exist. We have two cases:

(i) If 1 ≤ k ≤ s then

(τ∗i )2 =





σ2 λi
ηi

(
√
λi

(
1+σ2

∑k

j=1
η−1
j

σ2
∑k

j=1
(
√
λjηj)−1

)
− 1

)
1 ≤ i ≤ s,

0 i ≥ s+ 1.
(4.17)

(ii) If k = s+ 1 then

(τ∗i )2 =





σ2 λi
ηi

( √
λi√
λs+1

− 1

)
1 ≤ i ≤ s,

λs+1 − σ2
√
λs+1

∑s
j=1

(√
λj−
√
λs+1

ηj

)
i = s+ 1,

0 i ≥ s+ 2.
(4.18)

Now we can check that the “coordinatewise” algorithm ϕτ∗ is optimal not
only for the hardest rectangular subproblem R(τ ∗), but also for the ellipsoid∑s+1
j=1 h

2
j/λj ≤ 1. The minimal linear error is then equal to the error of ϕτ∗

and nonlinear algorithms can be only slightly better. We summarize our
analysis in the following theorem.

Theorem 4.7 Suppose the operators S∗S and N∗N have a common or-
thonormal basis of eigenelements {ξi} and the corresponding eigenvalues are
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λi and ηi, respectively, λ1 ≥ λ2 ≥ · · · ≥ 0. Let s and k be defined by (4.15)
and (4.16).

(i) If 1 ≤ k ≤ s then

radw−a
lin (N) = σ ·

√√√√√
k∑

j=1

λj
ηj
−
σ2
(∑k

j=1(
√
λjηj)−1

)2

1 + σ2
∑k
j=1 η

−1
j

.

(ii) If k = s+ 1 then

radw−a
lin (N) =

√√√√λs+1 + σ2
s∑

j=1

(
√
λj −

√
λs+1)2

ηj
.

In both cases, the optimal linear algorithm is given as

ϕlin(y) =
s∑

j=1

σ2(τ∗j )2

σ2 + ηj(τ∗j )2
zj S(ξj)

where τ ∗j are given by (4.17) and (4.18), and zj = η−1
j 〈N(ξj),Σ

−1y〉2, 1 ≤
j ≤ s.

For nonlinear algorithms we have radw−a
arb (N) ≤ κ∗1 radw−a

lin (N). 2

These rather complicated formulas take much simpler form when S is the
identity operator in Rd. More precisely, suppose we approximate a vector
f ∈ Rd, ‖f‖2 ≤ 1, from information yi = 〈f, fi〉2 + xi, 1 ≤ i ≤ n, where
x ∼ N (0, σ2Σ) and the vectors fi span the space Rd. (If the last assumption
is not satisfied then radw−a(N) = 1.) It is clear that then the orthonormal
eigenvectors ξi of N∗N are also the eigenvectors of S∗S = I and λi = 1
∀i. From Theorem 4.7 we obtain that the minimal error depends only on∑d
i=1 η

−1
i = trace((N ∗N)−1) and equals

radw−a
lin (N) = σ ·

√
trace(N ∗N)−1)

1 + σ2 trace( (N ∗N)−1)
.

The hardest rectangular subproblem is independent of σ2 and given as

R(τ∗) =

{
f =

d∑

i=1

αiξi ∈ Rd
∣∣∣ |αi| ≤ τ∗i , 1 ≤ i ≤ d

}
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where τ ∗i = η−1
i /trace( (N ∗N)−1). Hence, the optimal linear algorithm is

ϕlin(y) =
1

1 + σ2 trace( (N ∗N)−1)

d∑

j=1

zjξj

where zj = η−1
j 〈N(ξj),Σ

−1y〉2. In particular, if N is the identity and Σ is

a diagonal matrix (with elements η−1
j , 1 ≤ j ≤ d), then z = y and ϕlin(y) =

(1 + σ2trace( (N ∗N)−1) )−1 y.
We see that the optimal linear algorithm is in this case not a smooth-

ing spline since the latter puts different coefficients, cj = (1 + γ/ηj)
−1, for

different j. Thus, in the mixed worst–average case the situation changes as
compared to worst and average settings where, in the Hilbert case, smooth-
ing splines are optimal algorithms.

The assumption that S∗S and N∗N have a common basis of eigenele-
ments was essential. When this is not satisfied, optimal (or almost optimal)
algorithms are known only for some special problems. We now present one
of them, for other results see NR 4.5.

Suppose we approximate values of a linear operator S defined on F = Rd,
for all elements f ∈ Rd, i.e., E = Rd. Information N is assumed to be
arbitrary. It turns out that in this case the optimal algorithm are the least
squares, even in the class of arbitrary algorithms. Indeed, the (generalized)
least squares algorithm is defined as ϕls(y) = SN−1PN (y) where PN is the
orthogonal projection (with respect to 〈·, ·〉Y ) in Rn onto N(Rd). From the
proof of Theorem 3.6 we know that for any f

∫

Rn
‖S(f)− ϕls(N(f) + x) ‖2 π(dx) = σ2 trace(S(N ∗N)−1S∗).

Hence, (ew−a(N, ϕls))
2 = σ2trace(S(N ∗N)−1S∗). On the other hand, a lower

bound on radw−a(N;Rd) can be obtained by calculating the average radius
of the same information with respect to the measure µλ = N (0, λI). Using
Corollary 3.1 we obtain

(radave(N;µλ))2 = λ · trace(SS∗) −
d∑

j=1

λ ‖S(ξj)‖2
1 + σ2/(ηjλ)

=
d∑

j=1

σ2λ

σ2 + ηjλ
‖S(ξj)‖2.
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Now, letting λ→ +∞ we get

(radw−a
arb (N;Rd))2 ≥ lim

λ→∞
(radave(N;µλ))2

= σ2
d∑

j=1

‖S(ξj)‖2
ηj

= σ2
d∑

j=1

‖SN−1(Nξj/
√
ηj)‖2

= σ2 trace(S(N ∗N)−1S∗).

Hence, we have proven the following theorem.

Theorem 4.8 Let E = F = Rd and dimN(F ) = d. Then the generalized
least squares ϕls are optimal among arbitrary algorithms and

radw−a
arb (N;Rd) = σ

√
trace(S(N ∗N)−1S∗).

Notes and Remarks

NR 4.4 Section 4.3.1 is based on the results of Donoho et al. [14] where the model
with infinitely many observations is studied. Corollary 4.2 is however new. The
proof of Lemma 4.7 is also different. Results of Section 4.3.2 seem to be new.

Asymptotic optimality of linear algorithms for ellipsoidal problems was first
shown by Pinsker [76].

NR 4.5 The model with “coordinatewise” observations turns out to be the limiting
model in curve estimation. This fact together with results of Section 4.3.1 can be
used to derive results about optimal algorithms for some other problems. We now
give one example.

Suppose we want to approximate a function f : [0, 1] → R in L2–norm from

the class E = EP = { f ∈ Wr |
∫ 1

0 (f (r)(t))2 dt ≤ P 2 }, based on noisy values of f
at equidistant points, yi = f(i/n) + xi, 0 ≤ i ≤ n, and x ∼ N (0, σ2I) (σ2 > 0).
In the statistical literature, this is called a nonparametric regression model and was
studied, e.g., in Golubev and Nussbaum [19], Nussbaum [67], Speckman [98], Stone
[100] (see also the book of Eubank [15]). It is known that for this problem the
minimal error is asymptotically (as n→∞) achieved by a version of the smoothing
spline algorithm, and that this minimal error satisfies

radw−a
arb (n) � n−

r
2r+1 .

The asymptotic constant Γ in the “�” notation was evaluated by Nussbaum [67]
who showed that

Γ = γ(r)σ
2r

2r+1P
1

2r+1
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where γ(r) = (2r + 1)1/(4r+2)(r/π(r + 1))r/(2r+1) is Pinsker’s constant. The main
idea of proving this result is as follows. As for large n, the L2–norm of a func-
tion f essentially equals ‖f‖n = (n−1

∑n
i=1 f

2(i/n) )1/2, we can consider the er-
ror with respect to the seminorm ‖ · ‖n instead of the L2–norm. The set En =
{ (f(0), f(1/n), . . . , f((n− 1)/n), f(1) ) | f ∈ EP } is an ellipsoid. Hence, the origi-
nal problem can be reduced to that of approximating a vector v ∈ En ⊂ Rn from
information y = v+x where x ∼ N (0, σ2I). If we find the coordinates of En (which
is the main difficulty in this problem), results of Section 4.3.1 can be applied.

Golubev and Nussbaum [19] showed that we cannot do much better by per-
forming observations at other than equidistant points.

NR 4.6 Recently, Donoho and Johnstone [13] (see also Donoho et al. [11]) de-
veloped a new algorithm for approximating functions from their noisy samples at
equidistant points. The algorithm is nonlinear. It uses the wavelet transform and
relies on translating the empirical wavelet coefficients towards the origin by an
amount

√
2 log(n)σ/

√
n. Surprisingly enough, such a simple algorithm turns out

to be nearly optimal for estimating many classes of functions, including standard
Hölder and Sobolev classes, but also more general Besov and Triebel bodies.

More precisely, suppose that f is in the unit ball of the Besov space Bs
p,r or

Triebel space F sp,q . Then the minimal errors of arbitrary and linear algorithms using
n noisy samples are given as

radw−a
arb (n) � n−k and radw−a

lin (n) � n−k
′
,

where

k =
s

s+ 1/2
and k′ =

s+ (1/p− − 1/p)

s+ 1/2 + (1/p− − 1/p)
,

p− = max{p, 2}, correspondingly. Hence, for p < 2, no linear algorithm can achieve
the optimal rate of convergence.

For information on Besov and Triebel spaces see, e.g., Triebel [110].

NR 4.7 The computational complexity in the mixed worst–average case setting is
studied very rarely. There are still two main difficulties that yet have to be overcome
before finding concrete complexity formulas.

The first difficulty lies in obtaining optimal information. As optimal algorithms
are not known exactly even for problems defined in Hilbert spaces, results on optimal
information are rather limited. (For some special cases see NR 4.5 and E 4.13 4.14.)

The second difficulty is in the problem of adaptive information. For instance, we
do not know sufficient conditions under which adaption does not help. Ibragimov
and Hasminski [24] and Golubev [20] proved that in the nonparametric regression
model the equidistant design is asymptotically optimal even in the class of adaptive
designes. This is however no longer valid if we consider the integration problem.
Namely, one can show that adaption can significantly help for multivariate integra-
tion over convex and balanced classes of functions, see Plaskota [84].
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Exercises

E 4.10 Show that the number k in Theorem 4.6 can equivalently be defined as the
largest integer satisfying 1 ≤ k ≤ n and

bk <

∑k
j=1 σ

2
j /bj

1 +
∑k

j=1 σ
2
j /b

2
j

.

E 4.11 Let E be the lp–body with 1 ≤ p < 1. Show that then the condition (4.14)
is not satisfied and, in particular, E is not quadratically convex.

E 4.12 Suppose the least squares algorithm ϕls is applied for S = I and E being
the unit ball of Rd. Show that

ew−a(N, ϕls) ≈ radw−a
arb (N) as trace( (N∗N)−1)→ 0.

E 4.13 Consider the problem of approximating a vector f from the unit ball of Rd.
Let rn(σ1, . . . , σn) (0 < σ2

1 ≤ · · · ≤ σ2
n) be the minimal error that can be attained

by linear algorithms that use n (n ≥ d) independent observations yi = 〈f, fi〉2 + xi
with Gaussian noise, xi ∼ N (0, σ2

i ), where ‖fi‖2 ≤ 1, 1 ≤ i ≤ n. Show that

rn(σ1, . . . , σn) = min

√√√√
∑d
i=1 η

−1
i

1 +
∑d

i=1 η
−1
i

where the minimum is taken over all ηi ≥ 0 such that

n∑

j=r

ηj ≤
n∑

j=r

σ−2
j , 1 ≤ r ≤ n. (4.19)

In particular, for n = d we have

rn(σ1, . . . , σn) =

√√√√
∑d
i=1 σ

2
i

1 +
∑d

i=1 σ
2
i

.

What is the optimal information?
Hint: To obtain the upper bound and optimal information, use Lemma 2.14.

E 4.14 Consider the optimal information problem as in E 4.13, but with E = Rd
and arbitrary solution operator S : Rd → G. Let λ1 ≥ · · · ≥ λd ≥ 0 be the
eigenvalues of S∗S. Show that

rn(σ1, . . . , σn) = min

√√√√
d∑

i=1

λi
ηi
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where the minimum is taken over all ηi ≥ 0 satisfying (4.19). In particular, for
equal variances σ2

i = σ2 we have

rn(σ) =
σ√
n
·
d∑

i=1

λ
1/2
i .

Find the optimal information.



Chapter 5

Second mixed setting

5.1 Introduction

When we vary stochastic and deterministic assumptions on the problem
elements f and noise x, the mixed average-worst case setting will appear
quite naturally as the fourth possible way of treating problems with noisy
information. In this setting, we assume some probability distribution µ
on the domain F of the solution operator S. The information operator is
defined as in the worst case of Chapter 2. That is, N(f) is a set of finite real
sequences. The error of an algorithm ϕ that uses information y ∈ N(f) is
given as

ea−w(N, ϕ) =

√∫

F
sup
y∈N(f)

‖S(f)− ϕ(y)‖2 µ(df).

As the mixed average–worst setting seem to be of less importance than
the other settings, it is studied very rarely. Nevertheless, it leads to inter-
esting and nontrivial theoretical problems.

The main results of this chapter concern approximating of functionals
and are presented in Section 5.2. It turns out that in this case the mixed
average–worst setting can be analyzed similarly to the worst–average setting,
although they seem to be completely different. Assuming that the informa-
tion noise is bounded in a Hilbert norm, we establish a close relation between
the average–worst and a corresponding average case settings. Namely, opti-
mal linear algorithms in both settings belong to the same class of smoothing
spline algorithms. Moreover, the minimal achievable errors differ only by a
small constant and can be (almost) attained by the same algorithm. Using
once more the concept of hardest one–dimensional subproblem, we also show

259
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that for approximating functionals nonlinear algorithms cannot be much bet-
ter than linear algorithms.

The relation between the average-worst and average settings together
with relations established in the previous sections, enables us to formulate a
theorem about (almost) equivalence of all four corresponding settings in the
case when the solution operator is a linear functional.

In Section 5.3, we present some results about approximating of operators.
In particular, we show that for sufficiently small noise level, the least squares
are the optimal linear algorithm.

5.2 Linear algorithms for linear functionals

In this section, we construct almost optimal algorithms for the case when the
solution operator S is a linear functional. To do this, we use ideas similar
to those of the worst–average setting.

5.2.1 The one–dimensional problem

Suppose we want to approximate a real random variable f which has zero
mean normal distribution with variance λ > 0, f ∼ N (0, λ). We assume
that instead of f we know only its noisy value y = f + x where |x| ≤ δ.
That is, the information operator N(f) = [f − δ, f + δ]. In this case, the
error of an algorithm ϕ is given as

ea−w(N, ϕ) = ea−w(λ, δ;ϕ)

=

√
1√
2πλ

∫

R
sup
|x|≤δ

|f − ϕ(f + x)|2 exp{−f 2/(2λ)} df .

We note that the general problem with N = S reduces to this case. Indeed,
as µ is Gaussian, we have S(f) ∼ N (0, S(CµS)). Then we approximate
g = S(f) ∈ R based on information y = g + x where |x| ≤ δ.

First, we consider linear algorithms. Let

rlin(λ, δ) = inf { ea−w(λ, δ;ϕ) | ϕ – linear }.

Lemma 5.1 For any λ and δ we have

rlin(λ, δ) =





δ δ2 ≤ 2
πλ,√

λδ2(1−2/π)
λ+δ2−2δ(2λ/π)1/2

2
πλ < δ2 < π

2λ,√
λ π

2λ ≤ δ2 .
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The optimal coefficient copt = copt(λ, δ) of linear algorithms is unique and
given as

copt(λ, δ) =





1 δ2 ≤ 2
πλ,

λ−δ
√

2λ/π

λ+δ2−2δ
√

2λ/π

2
πλ < δ2 < π

2λ,

0 π
2λ ≤ δ2 .

Proof For a linear algorithm ϕ(y) = c y and f ∈ R we have

sup
|x|≤δ

|f − ϕ(f + x)|2 = sup
|x|≤δ

|(1− c)f − cx|2

= (1− c)2f2 + c2 δ2 + 2 δ | (1− c) c | |f | .

Taking the integral over f we get

ea−w(λ, δ;ϕ) = (1− c)2λ + c2δ2 + 2δ|(1 − c)c|
√

2λ

π
.

To obtain the desired result it is now enough to minimize the obtained
expression with respect to c. 2

Observe that the optimal coefficient copt is determined uniquely and it is a
function of δ2/λ, i.e., copt(λ, δ) = copt(1, δ/

√
λ). Furthermore,

rlin(λ, δ) =
√
λ · rlin(1, δ/

√
λ) . (5.1)

It is clear that we can do better by using nonlinear algorithms.

Example 5.1 Let λ > 0 and δ2 ≥ λπ/2. Then the nonlinear algorithm

ϕnon(y) =





y + δ y < −δ,
0 −δ ≤ y ≤ δ,
y − δ δ < y,

has smaller error than the optimal linear one ϕlin ≡ 0. Indeed, it is easy to
check that for any f we have

sup
|x|≤δ

|f − ϕnon(f + x)|2 = min { |f |2, 4δ2 },

while for ϕ ≡ 0 the above quantity equals |f |2. Hence, ea−w(λ, δ;ϕnon) <
ea−w(λ, δ; 0). 2



262 CHAPTER 5. SECOND MIXED SETTING

However, as in the first mixed setting, we never gain much. Indeed, let

rarb(λ, δ) = inf { ea−w(λ, δ;ϕ) | ϕ – arbitrary }.

Theorem 5.1 We have

lim
δ/
√
λ→0

rlin(λ, δ)

rarb(λ, δ)
= 1 = lim

δ/
√
λ→∞

rlin(λ, δ)

rarb(λ, δ)
.

Furthermore, there exists an absolute constant κ2 such that

1 ≤ rlin(λ, δ)

rarb(λ, δ)
≤ κ2 ∀λ, δ.

Proof Due to the same argument as in the proof of Theorem 4.1, we can
assume without loss of generality that λ = 1.

To obtain a lower bound on the error of ϕ, note that

sup
|x|≤δ

|f − ϕ(f + x)|2 ≥ 1

2

(
|f − ϕ(f + δ)|2 + |f − ϕ(f − δ)|2

)
.

From this we get

(ea−w(1, δ;ϕ) )2

≥ 1√
2π

∫

R

1

2
( |f − ϕ(f + δ)|2 + |f − ϕ(f − δ)|2 ) e−f

2/2 df

=
1√
8π

∫

R
(y − ϕ(y)− δ)2 e−(y−δ)2/2 + (y − ϕ(y) + δ)2 e−(y+δ)2/2 df .

For each y, the last integrand is minimized by

ϕ∗(y) = y − δ
a− − a+

a− + a+

where a− = e−(y−δ)2/2 and a+ = e−(y+δ)2/2. Hence, setting ϕ = ϕ∗

and performing some elementary transformations we finally arrive at the
following bound:

ea−w(1, δ;ϕ) ≥ δ2 ψ(δ) (5.2)

where

ψ(δ) = e−δ
2/2

√
2

π

∫ +∞

0

exp{−y2/2}
cosh{δ y} dy .
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Observe that for all δ

ψ(δ) ≥
√

2

π

∫ +∞

δ
exp{−y2/2} dy .

This, (5.2) and Lemma 5.1 yield

lim
δ→0

rlin(1, δ)

rarb(1, δ)
= 1 .

The second limit of the theorem follows from the fact that for any ϕ and
|f | ≤ δ we have sup|x|≤δ |f − ϕ(f + x)| ≥ |f − ϕ(0)|. This yields

ea−w(1, δ;ϕ) ≥ 1√
2π

∫ δ

−δ
( f − ϕ(0) )2 e−f

2/2 df

≥ 1√
2π

∫ δ

−δ
f2 e−f

2/2 df −→ 1 ,

as δ → +∞.

Since the inequality rarb(λ, δ) ≤ rlin(λ, δ) is obvious, it remains to show
existence of κ2. To this end, observe that the function ψ is decreasing.
Hence, from (5.2) and Lemma 5.1 we get that for δ ∈ [0, 1]

rlin(1, δ)

rarb(1, δ)
≤ δ2

δ2 ψ(δ)
≤ 1

ψ(1)
.

On the other hand, for δ ∈ (1,+∞) we have

rlin(1, δ)

rarb(1, δ)
≤ 1

rarb(1, 1)
≤ 1

ψ(1)
.

Hence, we can take κ2 = 1/ψ(1). 2

As in the first mixed setting, we can define the constant

κ∗2 = sup
λ,δ

rlin(λ, δ)

rarb(λ, δ)
. (5.3)

From the proof of Theorem 5.1 we have that κ∗2 ≤ ψ−1/2(1) = 1.49 . . . .
The exact value of κ∗2 is however not known.
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5.2.2 Almost optimality of linear algorithms

We now consider a general case. That is, we assume that S is an arbitrary
continuous linear functional defined on a separable Banach space F , and
that µ is a zero mean Gaussian measure on F with correlation operator Cµ :
F ∗ → F . Information about f ∈ F is linear with noise bounded uniformly
in a Hilbert norm. That is, y = N(f) + x ∈ Rn where N = [L1, , . . . , Ln]
(Li ∈ F ∗) and ‖x‖Y =

√
〈Σ−1x, x〉2 ≤ δ, Σ = Σ∗ > 0. Let

rada−w
lin (N;µ) = inf { ea−w(N, ϕ;µ) | ϕ - linear }

rada−w
arb (N;µ) = inf { ea−w(N, ϕ;µ) | ϕ - arbitrary }

be the minimal errors of linear and arbitrary approximations with respect
to the measure µ.

Consider first the case where µ is concentrated on a one dimensional
subspace.

Lemma 5.2 Let h ∈ F and let µ be the zero mean Gaussian measure with
correlation operator

Cµ(L) = L(h)h, ∀L ∈ F ∗.

(i) If N(h) = 0 then

rada−w
lin (N;µ) = rada−w

arb (N, µ) = |S(h)|

and ϕ ≡ 0 is the optimal algorithm.

(ii) If N(h) 6= 0 then

rada−w
lin (N;µ) = |S(h)| rlin

(
1,

δ

‖N(h)‖Y

)
,

rada−w
arb (N;µ) = |S(h)| rarb

(
1,

δ

‖N(h)‖Y

)
,

and the optimal linear algorithm is given as

ϕ(y) = copt

(
1,

δ

‖N(h)‖Y

)
S(h)

‖N(h)‖Y

〈
y,

N(h)

‖N(h)‖Y

〉

Y

where rlin(·, ·), rarb(·, ·) and copt(·, ·) are as in Lemma 5.1.
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Proof (i) Since N(f) vanishes on span{h}, information consists of pure
noise only. Let ϕ : Rn → R be an arbitrary algorithm. Then, for any a ∈ Rn
with ‖a‖Y ≤ δ, the error of the constant algorithm ϕa ≡ ϕ(a) is not larger
than the error of ϕ. Hence, zero provides the best approximation and the

minimal error equals
√
S(CµS) = |S(h)|, as claimed.

(ii) Define the random variable α = α(f) by f = αh. Then α has stan-
dard Gaussian distribution. Similarly as in the proof of Lemma 4.3, let-
ting z = Σ−1/2y/‖N(h)‖Y , we can transform the data y = N(f) + x to
z = αw + x′ where w = Σ−1/2N(h)/‖N(h)‖Y and ‖x′‖2 ≤ δ/‖N(h)‖Y . Us-
ing an orthogonal matrix Q with Qw = e1 we get that the original problem
of approximating S(f) from data y is equivalent to that of approximating
s(α) = αS(h), α ∼ N (0, 1), from data

ỹ = Qz = [α+ x̃1, x̃2, . . . , x̃n]

where ‖x′‖2 ≤ δ/‖N(h)‖Y .

It is now easily seen that the ‘pure noise data’ ỹ2, . . . , ỹn do not count.
Indeed, for an arbitrary algorithm ϕ : Rn → R we can define another algo-
rithm ϕ0(ỹ) = ϕ(ỹ1, 0, . . . , 0︸ ︷︷ ︸

n−1

) which uses ỹ1 only. Then for any α ∈ R we

have (δh = δ/‖N(h)‖Y )

sup
‖x̃‖2≤δh

|s(α)− ϕ(ỹ)| ≥ sup
|x̃1|≤δh

|s(α)− ϕ(ỹ1, 0, . . . , 0︸ ︷︷ ︸
n−1

)|

= sup
‖x̃‖2≤δh

|s(α)− ϕ0(ỹ)|

and hence ea−w(ϕ) ≥ ea−w(ϕ0).

Thus, we have reduced the original problem to that of approximating
s(α) from ỹ1 = α + x̃1 where α ∼ N (0, 1) and |x̃1| ≤ δ/‖N(h)‖Y . The
formulas for the minimal errors and optimal linear algorithm now follow
from Lemma 5.1 and the fact that ỹ1 = 〈y,N(h)〉Y /‖N(h)‖2Y . 2

Assume now that the Gaussian measure µ is arbitrary. For σ2 ≥ 0, let ϕσ
be the optimal algorithm in the average case setting with the measure µ and
information y = N(f) + x where the noise x ∼ N (0, σ2Σ). Recall that ϕσ is
given as ϕσ(y) = 〈y, wσ〉2, where wσ is the only solution of (σ2Σ +GN )wσ =
N(CµS) belonging to (σ2Σ+GN )(Rn), and the matrix GN = {Li(CµLj)}i,j ;
see Section 3.5.
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It is easy to see that for σ2 = δ2 the algorithm ϕσ is almost optimal linear
in the mixed average-worst setting. Indeed, let ϕ = d〈·, w〉Y with ‖w‖Y = 1
and d ≥ 0 be a linear algorithm. Then the worst case error for f ∈ F equals

sup
‖x‖Y ≤δ

|S(f)− ϕ(N(f) + x)|2 = (|S(f)− d〈N(f), w〉Y | + δ d )2,

while the average case error for f equals
∫

Rn
|S(f)− ϕ(N(f) + x)|2 π(dx) = |S(f)− d〈N(f), w〉Y |2 + δ2d2.

Hence,
ewor(N, ϕ;µ) ≤ ea−w(N, ϕ;µ) ≤

√
2 · eave(N, ϕ;µ),

and consequently

ea−w(N, ϕσ ;µ) ≤
√

2 · rada−w(N;µ) (σ2 = δ2).

(Compare with the corresponding discussion in the worst-average case of
Section 4.2.2).

For an appropriately chosen σ the algorithm ϕσ turns out to be strictly
optimal linear. To show this, we first need some preliminary facts.

For σ ≥ 0, let Kσ = S − ϕσ(N(·) ). Recall that, in the average case set-
ting, the functional Kσ determines a family of one-dimensional subproblems
which are as difficult as the original problem, see Theorem 3.4 of Section
3.5. Define the function ρ : [0,+∞)→ (0,+∞] as

ρ(σ) =
‖Kσ‖µ

‖N(CµKσ)‖Y

for σ2 > 0, and ρ(0) = limσ→0+ ρ(σ).

Lemma 5.3 If N(CµS) 6= 0 then the function ρ(σ) is well defined for
all σ ≥ 0.

Proof We first show that for σ2 > 0 is N(CµKσ) 6= 0. Indeed, using the
formula for ϕσ we obtain

N(CµKσ) = N(CµS)−
n∑

j=1

wσ,jN(CµLj)

= N(CµS)−GNwσ = σ2Σwσ.
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As N(CµS) 6= 0, we also have wσ 6= 0 and consequently N(CµKσ) 6= 0, as
claimed.

Now, let us see what happens when σ → 0+. If the average radius
of exact information (σ = 0) is positive then N(CµKσ) = σ2Σwσ → 0 and
‖Kσ‖µ → ‖K0‖µ = ‖S−ϕ0N‖µ > 0, which means that limσ→0+ ρ(σ) = +∞.
Otherwise we have ‖K0‖µ = 0 and S =

∑n
j=1w0,jLj a.e. on F . This yields

‖Kσ‖2µ =
n∑

i,j=1

(w0 − wσ)i(w0 − wσ)jLi(CµLj)

= 〈GN (w0 − wσ), (w0 − wσ)〉2 = σ2〈Σwσ, w0 − wσ〉2.
As ‖N(CµKσ)‖2Y = σ4‖Σwσ‖2Y = σ4〈Σwσ, wσ〉2, in this case ρ takes the
form

ρ2(σ) =
〈Σwσ, (w0 − wσ)〉2
σ2〈Σwσ, wσ〉2

.

Let PN be the orthogonal projection in Rn onto X = GN (Rn) with respect
to the Euclidean inner product. As Σwσ ∈ X, we have (σ2PNΣ +GN )wσ =
N(CµS) = GNw0 which yields (w0 − wσ) = σ2G−1

N PNΣwσ. (For x ∈ X,
G−1
N x is the only element y ∈ X such that GNy = x.) Thus, we finally

obtain

ρ2(σ) =
〈Σwσ, G−1

N PNΣwσ〉2
〈Σwσ, wσ〉2

−→ 〈Σw0, G
−1
N PNΣw0〉2

〈Σw0, w0〉2
as σ → 0+. 2

We are ready to state the theorem about optimal linear algorithms.

Theorem 5.2 Let δ > 0.

(i) If δ ‖S‖µ ≥
√
π/2 ‖N(CµS)‖Y then the zero algorithm is optimal and

rada−w
lin (N;µ) = ‖S‖µ.

(ii) If δ ‖S‖µ <
√
π/2 ‖N(CµS)‖ then the optimal linear algorithm is ϕσ

where σ = σ(δ) ≥ 0 is the (existing) solution of

copt( 1, δ ρ(σ) ) =
1

1 + σ2ρ2(σ)
. (5.4)

Furthermore, for σ(δ) > 0 we have

rada−w
lin (N;µ) =

(
‖Kσ‖µ + ρ−1(σ)

√
〈Σwσ, wσ〉2

)
rlin(1, δρ(σ) ),

while for σ(δ) = 0 we have rada−w
lin (N;µ) = δ

√
〈Σw0, w0〉2.
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Proof (i) We can assume that N(CµS) 6= 0 (and consequently ‖S‖µ 6=
0) since otherwise the theorem is obvious. Let µS(·|g) be the conditional
measure of µ given g = PS(f) = f − S(f)CµS/‖S‖2µ. Due to Lemma 3.5,
µS(·|g) has the mean g and correlation operator

AS(L) =
L(CµS)

‖S‖2µ
CµS, ∀g a.e.

This, Lemma 5.2 and Lemma 5.1 give

rada−w
lin (N;µS(·|g) ) ≥ S(CµS)

‖S‖µ
rlin

(
1,

δ ‖S‖µ
‖N(CµS)‖Y

)
= ‖S‖µ.

Hence,

rada−w
lin (N;µ) ≥

√∫

PS(F )

(
rada−w

lin (N;µS(·|g))
)2

µP−1
S (dg) ≥ ‖S‖µ.

On the other hand, the error ‖S‖µ is achieved by ϕ ≡ 0. Hence, the zero
algorithm is optimal linear.

(ii) We first show that there exists σ = σ(δ) satisfying the equality (5.4).
Let ψl and ψr denote the left and right hand side of (5.4), respectively. As
wσ depends continuously on σ, ψl and ψr are continuous functions of σ on
(0,+∞). If ρ(0) < +∞, we also have continuity at 0. Hence, for existence of
σ(δ) it suffices that the function (ψl −ψr)(σ) takes positive and nonpositive
values. Indeed, for σ → +∞ we have wσ → 0 and ρ(σ)→ ‖S‖µ/‖N(CµS)‖Y .
Hence,

lim
σ→∞ copt(1, δ ρ(σ) ) = copt

(
1,

δ ‖S‖µ
‖N(CµS)‖Y

)
> copt

(
1,
√
π/2

)
= 0.

On the other hand, limσ→∞(1 + σ2ρ2(σ) )−1 = 0, which means that for
large σ is ψl(σ) > ψr(σ). If ρ(0) = +∞ then for small positive σ we have
ψl(σ) = 0 < ψr(σ). If ρ(0) < +∞ then ψl(0) ≤ 1 = ψr(0).

Hence, there always exists σ = σ(δ) ≥ 0 such that ψl(σ) = ψr(σ). Note
that σ(δ) = 0 only if ρ(0) < +∞ and copt(1, δρ(0)) = 1.

We now prove optimality of ϕσ . Assume first that σ(δ) > 0. Then

rada−w
lin (N;µ) ≥

√∫

PKσ (F )

(
rada−w

aff (N;µKσ(·|g) )
)2

µP−1
Kσ

(dg)
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where PKσ(f) = f − Kσ(f)CµKσ/‖Kσ‖2µ. As the measures µKσ(·|g) have
the same (independent of g) correlation operator

AKσ(L) =
L(CµKσ)

‖Kσ‖2µ
CµKσ ∀g a.e.,

and they differ only by the mean g, the minimal error of affine algorithms
over µKσ(·|g) is independent of g. That is,

rada−w
aff (N;µKσ(·|g) ) = rada−w

lin (N;µKσ)

where µKσ = µKσ(·|0). Now we can use Lemma 5.2 to get the affine algo-
rithm ϕg attaining rada−w

aff (N;µKσ(·|g)). We obtain

ϕg(y) = S(g) + copt

(
1,

δ

‖N(hσ)‖Y

)
S(hσ)

‖N(hσ‖Y

〈
y −N(g),

N(hσ)

‖N(hσ)‖Y

〉

Y

where hσ = CµKσ/‖Kσ‖µ. We find that

N(hσ) =
N(CµKσ)

‖Kσ‖µ
=

σ2 Σwσ
‖Kσ‖µ

,

‖N(hσ)‖Y = ρ−1(σ), and

S(hσ) =
S(CµKσ)

‖Kσ‖µ
=
‖Kσ‖2 + σ−2‖N(CµKσ)‖2Y

‖Kµ‖µ

(compare with the proof of Theorem 3.4). Hence,

ϕg(y) = S(g) + copt(1, δρ(σ) ) (1 + σ2ρ2(σ) ) 〈y, wσ〉2.

Since σ satisfies (5.4) and for all g ∈ PKσ(F ) is S(g)−〈wσ , N(g)〉2 = Kσ(g) =
0, we finally obtain

ϕg = 〈·, wσ〉2 = ϕσ.

Thus the same (linear) algorithm ϕσ minimizes the errors over µKσ(·|g), ∀g
a.e. Hence, ϕσ is optimal linear.

To find the error of ϕσ, observe that S(hσ) can be written as

S(hσ) =
(
‖Kσ‖µ + ρ−1(σ)

) √
〈Σwσ, wσ〉2.
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This and Lemma 5.2 give

ea−w(N, ϕσ ;µ) = rada−w
lin (N;µ) = rada−w

lin (N;µKσ)

= |S(hσ)| rlin(1, δ ρ(σ) )

=

(
‖Kσ‖µ + ρ−1(σ)

√
〈Σwσ, wσ〉2

)
rlin(1, δρ(σ) ).

Consider now the case when σ(δ) = 0. Proceeding as for σ(δ) > 0 we get
that for any γ > 0

rada−w
lin (N;µ) ≥ rada−w

lin (N;µKγ )

=
(
‖Kγ‖µ + ρ−1(γ)

) √
〈Σwγ , wγ〉2.

We have already noticed that in the case σ(δ) = 0 we have ρ(0) < +∞ and
copt(1, δρ(0)) = 1. In view of Lemma 5.1, this means that rlin(1, δρ(0)) =
δρ(0). We also have ‖K0‖µ = 0 which follows from the prove of Lemma 5.3.
Hence, letting γ → 0+ and using continuity arguments we get

rada−w
lin (N;µ) ≥

(
‖K0‖µ + ρ−1(0)

√
〈Σw0, w0〉2

)
rlin(1, δρ(0) )

= δ
√
〈Σw0, w0〉2. (5.5)

On the other hand, in the case σ(δ) = 0 we have S(f) = ϕ0(Nf), ∀f a.e.
Hence,

sup
‖x‖Y ≤δ

|S(f)− ϕ0(Nf)| = sup
‖x‖Y ≤δ

|〈w0, x〉2| = δ
√
〈Σw0, w0〉2.

This and (5.5) give optimality of ϕ0. The proof is complete. 2

Similarly to the average case setting, we can introduce a concept of a fam-
ily of one-dimensional subproblems. Any such a family is determined by
a functional K ∈ F ∗ and indexed by g ∈ PK(F ) where PK(f) = f −
K(f)CµK/‖K‖2µ. For given g, the subproblem relies on minimizing the
average-worst case error of linear algorithms with respect to the condi-
tional measure µ(·|g) whose mean is g and correlation operator AK(L) =
L(CµK)Cµ(K)/‖K‖2µ. (Equivalently, the subproblem relies on minimizing
the error with respect to µ using additional information that PK(f) = g.)
From the proof of Theorem 5.2 it follows that the subproblems determined
by the functional Kσ are as difficult as the original problem. Denoting as
before µK = µ(·|0), we have the following corollary.
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Corollary 5.1 Let σ = σ(δ) be defined by the equation (5.4). Then

rada−w
lin (N;µ) = sup

K∈F ∗
rada−w

lin (N;µK) = rada−w
lin (N;µKσ). 2

For arbitrary algorithms, we can show a result corresponding to Theorem
4.3 of the first mixed setting.

Theorem 5.3 We have

1 ≤ rada−w
lin (N;µ)

rada−w
arb (N;µ)

≤ κ∗2

where κ∗2 is defined by (5.3). Furthermore, rada−w
lin (N;µ) ≈ rada−w

arb (N;µ) as
δ → 0+.

Proof Take σ = σ(δ) such that the algorithm ϕσ is optimal linear. In view
of Lemma 5.2 we have

rada−w
lin (N;µKσ(·|g))

rada−w
arb (N;µKσ(·|g)) ≤ κ∗2 ∀ g a.e.

This and Theorem 5.2 yield that for an arbitrary algorithm ϕ

ea−w(N, ϕ;µ) =

√∫

PKσ (F )
(ea−w(N, ϕ;µKσ (·|g) ) )2 µP−1

Kσ
(dg)

≥ 1

κ∗2

√∫

PKσ (F )
(rada−w

lin (N;µKσ(·|g) ) )2 µP−1
Kσ

(dg)

=
1

κ∗2
rada−w

lin (N;µ) ,

which proves the first part of the theorem.

Let r0 be the error of exact information (δ = 0). To show rada−w
lin (N;µ) ≈

rada−w
arb (N;µ), it suffices to consider r0 = 0 since otherwise rada−w

lin (N;µ) →
r0 and rada−w

lin (N;µ) → r0 as δ → 0. However, r0 = 0 implies ρ(0) < +∞
and consequently δρ(σ(δ) ) → 0 as δ → 0+. Using again Lemma 5.2 and
Theorem 5.1 we obtain

rada−w
lin (N;µ)

rada−w
arb (N;µ)

≤ rlin(1, δρ(σ(δ)) )

rarb(1, δρ(σ(δ)) )
→ 1 as δ → 0+.

This completes the proof. 2

Thus nonlinear algorithms can be only slightly better than linear algorithms.
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5.2.3 A correspondence theorem

In Section 4.2.3 we established close relations between optimal approxima-
tion of functionals in the mixed worst-average setting and in the other set-
tings. In this section we show similar relations for the mixed average-worst
setting. They follow from the results of Section 5.2.2.

Let S be a continuous linear functional defined on a separable Banach
space F . Let µ be a zero mean Gaussian measure on F and Σ = Σ∗ > 0. Let
H ⊂ F be the associated with µ Hilbert space, so that {H,F1}, F1 = supp µ,
is an abstract Wiener space. We consider the problem of approximating S(f)
from noisy information y = N(f) + x in the following four settings.

P1: Mixed average-worst setting with the measure µ on F and the noise
‖x‖Y =

√
〈Σ−1x, x〉2 ≤ δ.

P2: Worst case setting with E being the unit ball in H and ‖x‖Y =√
〈Σ−1x, x〉2 ≤ δ.

P3: Average case setting with the measure µ and the noise x ∼ N (0, σ2Σ).

P4: Mixed worst-average setting with E being the unit ball in H and
x ∼ N (0, σ2Σ).

As always, we denote by ϕσ the optimal (linear) algorithm in the average case
setting. Recall that ϕσ can be interpreted as the smoothing spline algorithm,
ϕσ(y) = S(s(y) ) where s(y) is the minimizer of ‖f‖2

H + σ−2‖y −N(f)‖2Y in
H.

Theorem 5.4 Let σ2 = δ2. Then we have

ea−w(N, ϕσ;µ) ≤
√

2 rada−w
lin (N;µ) ≤ κ∗2

√
2 rada−w

arb (N;µ)

and

1

κ∗2
√

2
radwor(N;E) ≤ rada−w

arb (N;µ) ≤
√

2 radwor(N;E),

1

κ∗2
radave(N;µ) ≤ rada−w

arb (N;µ) ≤
√

2 radave(N;µ),

1

κ∗2
radw−a

arb (N;E) ≤ rada−w
arb (N;µ) ≤

√
2 radw−a

arb (N;E). 2
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We also showed that for any δ ∈ [0,+∞] we can find σ = σ(δ) ∈ [0 +∞]
such that the (smoothing spline) algorithm ϕσ (with convention ϕ∞ ≡ 0)
is optimal linear in the mixed setting (P1) and in the average case setting
(P3). Clearly, the inverse relation is also true. For any σ2 ∈ [0 +∞] there is
δ = δ(σ2) ∈ [0. +∞] such that ϕσ is optimal in both settings.

Taking together Theorems 5.4, 4.5, wnd 3.7, we obtain an almost equiv-
alence of all four settings for approximating linear functionals. Namely, if
only the set E is the unit ball induced by the measure µ, and δ2 = σ2, then
in all four settings:

• the minimal achievable errors are almost the same,

• the same algorithm ϕσ is almost optimal, and

• for varying δ and σ2, the optimal linear algorithms belong to the com-
mon class of smoothing spline algorithms.

Notes and Remarks

NR 5.1 The main results of this section come from Plaskota [82]. Theorem 5.4 is
new.

Exercises

E 5.1 Suppose we want to approximate a real parameter f ∼ N (0, λ) based on n

observations yi = f + xi with noise satisfying ‖x‖2 =
√∑n

j=1 x
2
i ≤ δ. Show that

the sample mean, ϕn(y) = n−1
∑n

j=1 yj , is an asymptotically optimal algorithm,

ea−w(ϕn) =
δ√
n
≈ rada−w

arb (n) as n→ +∞,

where rada−w
arb (n) is the corresponding nth minimal error of arbitrary algorithms.

E 5.2 Suppose that the noise in the problem of E 5.1 satisfies
∑n

j=1 x
2
j/δ

2
j ≤ 1.

Show that for the algorithm

ϕ(y) =

∑n
i=1 δ

−2
i yi∑n

i=1 δ
−2
i

we have

ea−w(ϕ) =

√
1∑n

i=1 δ
−2
i

≈ rada−w(N)

as λ→ +∞.
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E 5.3 Prove the uniqueness of the optimal linear algorithm of Theorem 5.2.
Hint: Consider first the case when µ is concentrated on a one-dimensional sub-
space.

E 5.4 Show that the solution σ = σ(δ) of (5.4) not only exists for any δ > 0, but
it is also determined uniquely.

E 5.5 Let µ be the standard Gaussian distribution on F = Rn, µ = N (0, I).
Consider approximation of a functional S from information y = f + x ∈ Rn where
‖x‖2 ≤ δ. Show that for δ ≥

√
π/2 the optimal algorithm is ϕ∞ ≡ 0, while for

δ <
√
π/2 it is given as ϕσ(y) = (1+σ2)−1S(y) where σ = σ(δ) =

√
1/copt(1, δ)− 1.

Furthermore, the error of ϕσ equals ‖S‖2 rlin(1, δ).

E 5.6 Let δ > 0. Show that the necessary and sufficient condition for the algorithm
ϕ0 to be optimal is that K0 = S − ϕ0N = 0 a.e. on F , and

δ2 π

2

〈Σw0, G
−1
N PNΣw0〉2

〈Σw0, w0〉2
≤ 1,

where w0, GN and PN are as in the proof of Lemma 5.3.

5.3 Approximation of operators

As we already noticed, we know very little about approximation of operators
which are not functionals. Here we present some very special results.

Suppose we approximate a vector f = (f1, . . . , fn) ∈ Rn whose coordi-
nates fi have independent normal distributions, fi ∼ N (0, λi) where λi > 0,
1 ≤ i ≤ n. That is, the joint probability distribution µ on Rn is zero mean
Gaussian and its correlation matrix is diagonal. Information about f is given
coordinatewise, yi = fi + xi where |xi| ≤ δi, 1 ≤ i ≤ n.

Lemma 5.4 We have

rada−w
lin (N) =

√√√√
n∑

i=1

r2
lin(λi, δi) ,

rada−w
arb (N) =

√√√√
n∑

i=1

r2
arb(λi, δi) ,

and the (unique) optimal linear algorithm is given as ϕ(c1y1, . . . , cnyn) where
ci = copt(λi, δi), 1 ≤ i ≤ n.
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Proof Let µi = N (0, λi). Due to independence of fi’s and xi’s, the error of
any algorithm ϕ = (ϕ1, . . . , ϕn) equals

(
ea−w(N, ϕ)

)2
=

n∑

i=1

(∫

R
sup
|xi|≤δi

(fi − ϕi(fi + xi) )2 µi(dfi)

)
.

Hence, the lemma follows from Lemma 5.1 about optimal algorithms for the
one-dimensional problem. 2

Recall that for δi ≤
√

2λi/π we have ci = 1 and rlin(λi, δi) = δi. Hence, for
sufficiently small noise (or for sufficiently large λi’s), the algorithm ϕ(y) = y
is optimal linear and its error equals (

∑n
i=1 δ

2
i )1/2. This observation can be

generalized as follows.
Consider the same problem but with noise x belonging to a set B ⊂ Rn,

i.e., N(f) = { f + x | x ∈ B }. Denote

ρ(B) = sup
x∈B
‖x‖2.

Lemma 5.5 Suppose the set B is convex and orthosymmetric. If there
exists x ∈ B such that ‖x‖2 = ρ(B) and |xi| ≤

√
2λi/π, 1 ≤ i ≤ n, then

the algorithm ϕ(y) = y is optimal linear and rada−w
lin (N) = ρ(B) . We also

have rada−w
lin (N) ≈ rada−w

arb (N) as ρ(B)→ 0.

Proof From convexity and orthosymmetry it follows that B includes the
rectangle R = {x ∈ Rn | |xi| ≤ |xi|, 1 ≤ i ≤ n }. Hence, from Lemma 5.4
we obtain

rada−w
lin (N) ≥

√√√√
n∑

i=1

|xi|2 = ρ(B).

On the other hand, for the identity algorithm we have ea−w(N, ϕ;E) = ρ(B).
To show the remaining part of the lemma, observe that for ρ(B)→ 0+

rada−w
arb (N) ≥

√√√√
n∑

i=1

r2
arb(λi, |xi|) ≈

√√√√
n∑

i=1

r2
lin(λi, |xi|) = rada−w

lin (N).

Hence, rada−w
arb (N) ≈ rada−w

lin (N), as claimed. 2

Thus the identity algorithm is optimal linear if the noise belongs to a convex
and orthosymmetric set B whose radius is sufficiently small. If E is an
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ellipsoid,
∑n
i=1 x

2
i /δ

2
i with δ1 ≥ · · · ≥ δn > 0, then x = (δ1, 0, . . . , 0︸ ︷︷ ︸

n−1

). In this

case, the sufficient condition for the identity algorithm to be optimal linear
is that δ1 ≤

√
2λ1/π.

In the end, let us consider the (generalized) least squares algorithm ϕls(y)
for linear problems S defined on Rd. We assume that the information op-
erator N is linear with N : Rd → Y = Rn, dimN(Rd) = d, and noise x is
bounded in a Hilbert norm, ‖x‖Y =

√
〈x, x〉Y ≤ δ. The Gaussian measure µ

on Rd has the mean zero and its correlation operator Cµ is positive definite.

Recall that ϕls = SN−1PN (where PN is the orthogonal projection onto
N(Rd) with respect to 〈·, ·〉Y ). For small noise level δ, in all three previously
analyzed settings ϕls is either optimal or close to optimal, see Theorems
2.12, 3.6, 4.8. The following theorem shows optimality properties of ϕls in
the average-worst setting. It can be viewed as a generalization of Lemma
5.5 for ellipsoidal B.

Theorem 5.5 Let g ∈ G be such that ‖g‖ = 1 and

‖S(N∗N)−1S∗g‖ = ‖S(N ∗N)−1S∗‖.

Then for sufficiently small δ,

δ2 ·
〈
S(N∗N)−1C−1

µ (N∗N)−1S∗g, g
〉
≤ 2

π
‖S(N∗N)−1S∗‖, (5.6)

the generalized least squares ϕls is an optimal linear algorithm and

rada−w
lin (N) = δ ·

√
‖S(N∗N)−1S∗‖ .

Furthermore, rada−w
lin (N) ≈ rada−w

arb (N) as δ → 0+.

Proof We shall use once more the concept of the one dimensional subprob-
lem. Namely, suppose that we have additional information that f is in the
subspace spanh where h = (N ∗N)−1S∗g. Due to Lemma 3.5, this corre-
sponds to changing the measure µ to µ̃ which is zero mean Gaussian and its
correlation operator equals

A =
〈·, h〉2 h
‖C−1

µ h‖2µ
= 〈·, h〉2 h,
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h = h/‖C−1
µ h‖µ. We obviously have rada−w

lin (N;µ) ≥ rada−w
lin (N; µ̃), and

using Lemma 5.2,

rada−w
lin (N; µ̃) = ‖S(h)‖ rlin

(
1,

δ

‖N(h)‖Y

)
.

As
‖N(h)‖2Y = 〈S(N∗N)−1S∗g, g 〉 = ‖S(N ∗N)−1S∗‖

and

‖C−1
µ h‖2µ = 〈h,C−1

µ h〉2 = 〈S(N∗N)−1C−1
µ (N∗N)−1S∗g, g〉,

the condition (5.6) is equivalent to δ/‖N(h)‖Y ≤
√

2/π. This means that

rada−w
lin (N; µ̃) = ‖S(h)‖ δ

‖N(h)‖Y
= δ · ‖S(N ∗N)−1S∗‖1/2.

On the other hand, we know that for the least squares we have

sup
‖x‖Y ≤δ

‖S(f)− ϕls(N(f) + x) ‖2 = δ2 · ‖S(N∗N)−1S∗‖

(compare this with the corresponding part of the proof of Theorem 2.12).
Since the last expression is independent of f , we obtain ea−w(N, ϕls;µ) =
δ ‖S(N∗N)−1S∗‖, and consequently rada−w

lin (N;µ) = ea−w(N, ϕls;µ).
To complete the proof, observe that for δ → 0+ we have

rada−w
lin (N;µ) = rada−w

lin (N; µ̃) ≈ rada−w
arb (N; µ̃) ≤ rada−w

arb (N;µ).

Thus rada−w
lin (N;µ) ≈ rada−w

arb (N;µ), as claimed.

Notes and Remarks

NR 5.2 All results of Section 5.3 are original.

Exercises

E 5.7 Suppose we approximate an operator S : F → G from information y =
[N(f) + x, t] where the noise (x, t) ∈ E. Prove that if E satisfies

(x, t) ∈ E =⇒ (x, 0) ∈ E, (5.7)

then the “pure noise” data t do not count. That is, the optimal algorithm uses
y(1) = N(f)+x only. Give an example showing that the condition (5.7) is essential.
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E 5.8 Consider approximation of f ∈ Rn where fi are independent and fi ∼
N (0, λi), based on information y = f + x, x ∈ E. Show that if the set E is
sufficiently large,

E ⊃ {x ∈ Rn | |xi|2 ≤ λi π/2, 1 ≤ i ≤ n },

then zero is the best linear algorithm. In particular, if E is an ellipsoidal set, E =
{x ∈ Rn | ∑n

j=1 x
2
j/δ

2
j ≤ 1}, then the sufficient condition for the zero algorithm to

be optimal linear is
∑n
j=1 λj/δ

2
j ≤ 2/π.

E 5.9 Consider the problem of approximating a vector f ∈ Rd whose distribution is
zero mean Gaussian with full support. Let rn(δ1, . . . , δn) (0 < δ1 ≤ · · · ≤ δn) be the
minimal error that can be attained by linear algorithms using n (n ≥ d) observations
yi = 〈f, fi〉2 + xi with noise

∑n
j=1 x

2
j/δ

2
j ≤ 1, where ‖fi‖2 ≤ 1, 1 ≤ i ≤ n. Denote

by λ1 ≥ · · · ≥ λd ≥ 0 the eigenvalues of S∗S. Show that for sufficiently small δi’s
we have

rn(δ1, . . . , δn) = min max
1≤i≤d

√
λi
ηi
,

where the minimum is taken over all ηi ≥ 0 satisfying

n∑

j=r

ηj ≤
n∑

j=r

δ−2
j , 1 ≤ r ≤ n.

In particular, for fixed noise levels, δi = δ ∀i, and large n we have

rn(δ) =
δ√
n
·

√√√√
d∑

j=1

λj .

Find the optimal information.
Hint: To get the optimal information, use Lemma 2.14.



Chapter 6

Asymptotic setting

6.1 Introduction

In Chapters 2 to 5 we were interested in finding a single information and
algorithm which minimize an error or cost of approximation. In this chapter
we study asymptotic behavior of algorithms. The aim is to construct a
sequence of algorithms, such that for any problem element f the error of
successive approximations vanishes as fast as possible, as the number of
observations increases to infinity.

A motivation for analyzing the asymptotic setting comes from real–life
computations. It suffices to mention only the Romberg algorithm for com-
puting integrals, or finite element methods (FEM) for solving partial differ-
ential equations. When dealing with these and other numerical algorithms,
we are usually interested in how fast they converge to a solution. Another
motivation comes from some negative results in the worst case setting.

Example 6.1 Consider a problem with one-to-one compact solution op-
erator S acting between separable Hilbert spaces F and G. Assume, for
simplicity, that information is exact and given as

Nn = [ 〈·, ξ1〉F , 〈·, ξ2〉F , . . . , 〈·, ξn〉F ] .

If we want to study the worst case and do not have any a priori knowledge
about ‖f‖F , then we have to assume that the worst case error is taken over
the whole space F . In this case, error of any algorithm is infinite.

On the other hand, for the corresponding to N n spline algorithm ϕnspl we
have

‖S(f)− ϕnspl(y
n)‖ ≤ ‖f‖F · sup { ‖S(h)‖ | ‖h‖F ≤ 1, h ∈ kerNn } ,

279
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for all f ∈ F and yn = Nn(f). Hence, If only the elements ξj are selected in
such a way that F = span {ξ1, ξ2, . . .}, the succesive approximations ϕnspl(y

n)
converge to S(f) with n→∞, and this convergence is independent of ‖f‖F .
Hence, although the worst case error is infinite, we can construct an algo-
rithm which converges to the solution. 2

We present two kinds of results dependent on wheather we have deterministic
or stochastic assumptions on the problem elements and information noise.
In both cases, we assume that the solution operator as well as information
is linear. We focus attention on relations between the asymptotic and worst
or average case settings, correspondingly.

This chapter consists of two sections. In Section 6.2, we study relations
between the asymptotic and worst case settings in the case when information
noise is bounded in a norm. We show that an upper bound on the rate of con-
vergence of algorithms is provided by the worst case radii radwor(Nn) taken
over the unit ball of F . It turns out that if F is a Banach space, this conver-
gence cannot be essentially beaten by any algorithm. More precisely, in any
ball of F we can find an element f such the for some information yn ∈ Nn(f),
n ≥ 1, the error ‖S(f)− ϕn(yn)‖ essentially behaves as radwor(Nn). Hence,
algorithms optimal in the worst case are also optimal in the asymptotic set-
ting. The assumption that F is a Banach space is crucial. We also consider
the problem of optimal information.

In Section 6.3, we assume that information noise is Gaussian and that
we have some Gaussian measure on F . In this case, we show relations
between the asymptotic and average case settings. Namely, we first prove
that the spline algorithm (which is optimal in the average case) gives the
best possible convergence. Any other algorithm can converge better only on
a set of measure zero.

Then we investigate the rate of convergence of the spline algorithm. We
show that this convergence can be characterized by the sequence of average
radii radave(Nn). Finally, we give results on optimal information.

6.2 Asymptotic and worst case settings

We start with the formal description of the asymptotic setting with deter-
ministic information noise.
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6.2.1 Information, algorithm and error

In the asymptotic setting, we are interested in the behavior of algorithms as
the number of observations increases to infinity. Therefore it is convenient
to define information and algorithm as infinite sequences. Namely, a non-
adaptive information operator N is a pair, N = {N,∆} where N : F → R∞
is an exact information operator,

N = [L1, L2, L3, . . . ],

and ∆ ∈ R∞ is a precision sequence,

∆ = [ δ1, δ2, δ3, . . . ].

For given N, by Nn and ∆n we denote the first n components of N and ∆.
In particular,

Nn(f) = [L1(f), L2(f), . . . , Ln(f) ].

We say that an infinite sequence y = [y1, y2, y3, . . .] ∈ R∞ is (noisy)
information about f ∈ F and write y ∈ N(f) iff for all n ≥ 1 the vector
xn = yn−Nn(f) is in the given set B(∆n, Nn(f)) ⊂ Rn of all possible values
of the nth information noise corresponding to exact information N n(f). Here
yn = [y1, . . . , yn] and B(∆n, Nn(f)) satisfy conditions of Section 2.7.1. That
is, 1. B(0, z) = {0}, 2. If ∆n ≤ ∆̄n then B(∆n, z) ⊂ B(∆̄n), z), and 3.
B(∆n, zn) = {x ∈ Rn | ∃a ∈ R, [x, a] ∈ B(∆n+1, zn+1) }.

Defining the nth information operator Nn = {Nn,∆n} as

Nn(f) = { yn ∈ Rn | yn −Nn(f) ∈ B(∆n, Nn(f)) },

we can equivalently say that y ∈ Rn is noisy information about f iff for all
n ≥ 1 the vector yn is the nth noisy information about f , yn ∈ Nn(f).

We will consider only the case when B(∆n, zn) = B(∆n) are unit balls in
some extended norms ‖·‖∆n of Rn. We recall that in this case the conditions
1.-3. imply

‖x‖∆n = min
t∈R
‖[x, t]‖∆n+1 , n ≥ 1, x ∈ Rn (6.1)

(see E 2.45).

We now pass to adaptive information. An adaptive information operator
is a family N = {Ny}y∈R∞ where Ny = {Ny,∆y} is nonadaptive information
with

Ny = [L1, L2(·; y1), . . . , Ln(·; y1, . . . , yn−1), . . . ]
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and
∆y = [ δ1, δ2(y1), . . . , δn(y1, . . . , yn−1), . . . ].

For adaptive N, a sequence y is called (noisy) information about f iff yn ∈
Nny (f), ∀n ≥ 1.

For a given solution operator S : F → G where F and G are normed
spaces, an approximation to S(f) is provided by an algorithm. By an
algorithm we mean a sequence of transformations, ϕ = {ϕn}n≥0, where
ϕn : Rn → G. (ϕ0 is a fixed element of G.) The nth error of approximating
S(f) based on (adaptive or nonadaptive) information y ∈ N(f) is defined by
the difference ‖S(f)− ϕn(yn)‖.

6.2.2 Optimal algorithms

Our first goal is to characterize the best possible behavior of the error ‖S(f)−
ϕn(yn)‖, f ∈ F , y ∈ N(f), for a fixed (adaptive) information operator N. A
crucial role in our analysis will play the nth (worst case) radii of nonadaptive
information Ny. They are given as the usual worst case radii of Nny with
respect to the unit ball of F ,

radwor
n (Ny) = inf

ϕn
sup
‖f‖F≤1

sup
z∈Ny(f)

‖S(f)− ϕn(zn)‖.

We assume that the solution operator S is linear. Recall that in this case
the following formula is valid:

radwor
n (Ny) = α · sup { ‖S(h)‖ | ‖h‖F ≤ 1, ‖Nn

y (h)‖∆n
y
≤ 1 } (6.2)

where α ∈ [1, 2] (comp. with Theorem 2.2).

Given N, it is not difficult to construct an algorithm for which the error
converges to zero at least as fast as the sequence radwor

n (Ny), for all f ∈ F
and y ∈ N(f). Namely, it suffices to consider the (ordinary) spline algorithm
ϕo = {ϕno }. It was first defined in Section 2.5.1 for nonadaptive information.
A natural generalization of this algorithm for adaptive N is as follows:

ϕno (yn) = S(sno (yn)), yn ∈ Nn(F ),

where sno (yn) is the ordinary spline, i.e.,

1. yn ∈ Nn(sno (yn)),

2. ‖sno (yn)‖F ≤ ρ · inf { ‖f‖F | yn ∈ Nn(f) }
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(ρ > 1). Proceeding as in the proof of Theorem 2.7 we show that

‖S(f)− ϕno (yn)‖ ≤ c(f) · diam(Nny ) ≤ 2 c(f) · radwor
n (Ny) (6.3)

where c(f) = max {1, 1+ρ
2 ‖f‖F }.

Corollary 6.1 For the algorithm ϕo, the error ‖S(f)−ϕno (yn)‖ converges
to zero at least as fast as the nth worst case radii radwor

n (Ny), for all f ∈ F
and y ∈ N(f). 2

As we know, the ordinary spline algorithm is usually nonlinear. It would
be nice to have a linear algorithm for which Corollary 6.1 also holds. More
precisely, we shall say that an algorithm ϕ = {ϕn} is linear iff the mappings
ϕn : Rn → G are linear for all n ≥ 1.

Lemma 6.1 Let information N be nonadaptive. Suppose that there exists
a linear algorithm ϕlin and M ≥ 1 such that for all n

ewor(Nn, ϕnlin) ≤ M · radwor
n (N).

Then for all f ∈ F and y ∈ N(f) we have

‖S(f)− ϕnlin(yn)‖ ≤ M ·max{ 1, ‖f‖F } · radwor
n (Nn).

Proof The lemma is obviously true for ‖f‖F ≤ 1. For ‖f‖F > 1, we have
that y′ = y/‖f‖F is noisy information about f ′ = f/‖f‖F , and ‖f ′‖F = 1.
Hence,

‖S(f)− ϕnlin(yn)‖ = ‖f‖F ‖S(f ′)− ϕnlin((y′)n)‖ ≤ M ‖f‖F radwor(Nn),

as claimed. 2

Lemma 6.1 can be applied, for instance, in the case when F is a Hilbert
space and the noise is always bounded uniformly in a Hilbert norm. Due
to Lemma 2.7, in this case the α–smoothing spline algorithm ϕα (with any
α ∈ (0, 1)) is almost optimal, and M = max {α−1/2, (1− α)−1/2}.

Are there algorithms for which convergence is better than radwor
n (Ny)?

We now give two examples showing that the answer depends on a particular
problem.
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Example 6.2 Let dimF ≥ 1, S be a continuous embedding, S(f) = f ,
and let N be the zero information, N = [0, 0, . . .]. Then radwor

n = ‖S‖F > 0,
∀n. Since we always have y = 0, any algorithm ϕ is just a sequence {ϕn} of
elements in G. Hence, the error can converge to zero for at most one element
of F .

Example 6.3 Let F = G be the space of Lipschitz functions f : [0, 1]→
R with the supremum norm. Let S be the identity. Suppose the nth ap-
proximation to f is based on data yn = [y1, . . . , yn] where yi = f(ti) + xi
and |xi| ≤ δi. It is easy to see that for any choice of the points tn, precisions
δn and mappings ϕn, the nth worst case error, ewor(Nn, ϕn), is at least 1.

Now, let tn and δn be given as

tn = (2i+ 1)/2k+1, δn = 2−(k+1), n ≥ 1,

where n = 2k + i, 0 ≤ i ≤ 2k − 1. Let the nth approximation ϕn(yn) be
given by the linear spline interpolating data yn. Then for any f ∈ F and
yn ∈ Nn(f) we have

‖f − ϕn(yn)‖∞ ≤ M/n,

where M = M(f) depends only on the Lipschitz constant for f . Hence, we
have at least linear convergence of the successive approximations to f , while
the radii radwor

n (N) do not converge at all. 2

In the last example, F is not a Banach space. The completeness of the space
F and continuity of information turn out to be crucial assumptions. That
is, assume additionally that

• S is a Banach space, and

• the linear functionals Li(·; y1, . . . , yi−1) forming information are con-
tinuous for all i ≥ 1 and y ∈ R∞.

Then {radwor
n (Ny)} establishes a lower bound on the speed of convergence

of the error ‖S(f)− ϕn(yn)‖. Namely, we have the following theorem.

Theorem 6.1 Let N and ϕ be an arbitrary information operator and al-
gorithm. Let τ(y), y ∈ R∞, be the family of infinite positive sequences such
that

τ(y) = [ τ1, τ2(y1), . . . , τn(yn−1), . . . ]
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and limn→∞ τn(y) = 0. Then the set

A =

{
f ∈ F

∣∣∣ ∀y ∈ N(f), lim sup
n→∞

‖S(f)− ϕn(yn)‖
τn(y) radwor

n (Ny)
< +∞

}

is boundary, i.e., it does not contain any ball in F . (Here 0/0 =∞.)

Proof Suppose to the contrary that A contains a closed ball B with radius
r, 0 < r ≤ 1. We shall show that then it is possible to find an element
f∗ ∈ B and information y∗ about f ∗ such that

lim sup
n→∞

‖S(f∗)− ϕ((y∗)n)‖
τn(y∗) radwor

n (Ny∗)
= +∞. (6.4)

1. We first construct by induction a sequence {fk}k≥1 ⊂ B, a sequence of
integers 0 = n0 < n1 < · · ·, and yk ∈ Nyk(fk), k ≥ 1, which satisfy the
following conditions:

ynkk+1 = ynkk ,

‖ynkk −Nnk
yk

(fk+1)‖∆nk
yk
≤

k∑

j=1

2−j ,

‖fk+1 − fk‖F ≤ (r/2)k,

for all k ≥ 1.

Let f1 be the center of B. Suppose that for some k ≥ 1 we have con-
structed f1, . . . , fk, n0 < · · · < nk−1, and y1, . . . , yk−1. We select yk =
[yk,1, yk,2, . . .] in such a way that yk,i = yk−1,i for 1 ≤ i ≤ nk−1, and

‖yi+1
k −N i+1

yk
(fk)‖∆i+1

yk
= ‖yik −N i

yk
(fk)‖∆i

yk
, i ≥ nk−1 + 1.

Note that in view of (6.1) this selection is possible. (For k = 1 we set
y1,i = Li(fk; y

i−1
1 ) so that y1 = Ny1(f1).) Clearly, yk is noisy information

about fk.

Now, we choose rk > 0 such that for ‖f − fk‖ ≤ rk is ‖S(f)− S(fk)‖ ≤
1/3 ‖S(fk) − S(fk−1)‖. (For k = 1 we choose r1 to be such that ‖S(f) −
S(f1)‖ ≤ 1/3 for ‖f −f1‖ ≤ r1.) Since fk ∈ B, there is an integer nk > nk−1

for which √
τnk(yk) ≤ min {rk, (r/2)k}
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and
‖S(fk)− ϕnk(ynkk )‖
τnk(yk) radwor

nk
(Nyk)

≤ 1

10
√
τnk(yk)

.

Due to (6.2) there exists hk ∈ F such that

(i) ‖Nnk
yk

(hk)‖∆nk
yk
≤
√
τnk(yk),

(ii) ‖hk‖F ≤
√
τnk(yk), and

(iii) ‖S(hk)‖ ≥ 1/4
√
τnk(yk) radwor

nk
(Nyk).

We now set fk+1 = fk + hk. Observe that for k = 1 we have

‖yn1
1 −Nn1

y1
(f2)‖∆n1

y1
= ‖Nn1

y1
(h1)‖∆n1

y1
≤
√
τn1(y1) ≤ 1/2,

while for k ≥ 2 we have

‖ynkk −Nnk
yk

(fk+1)‖∆nk
yk
≤ ‖ynkk −Nnk

yk
(fk)‖∆nk

yk
+ ‖Nnk

yk
(hk)‖∆nk

yk

≤ ‖ynk−1

k−1 −N
nk−1
yk−1 (fk)‖∆nk−1

yk−1

+
√
τnk(ynk)

≤
k∑

j=1

2−j .

Furthermore, ‖fk+1 − f1‖F ≤
∑k
j=1 ‖fj+1 − fj‖F ≤ r, so that fk+1 ∈ B.

This completes the construction.

2. The sequence {fk} satisfies the Couchy condition. Indeed, for any m > k
we have

‖fm − fk‖F ≤
m−1∑

j=k

‖fj+1 − fj‖F ≤
m−1∑

j=1

(r/2)j ≤ 2 (r/2)k.

Hence, there exists the limit f ∗ = limk→∞ fk ∈ B.
We now show a property of f ∗. Since ‖fk+1 − fk‖F ≤ rk, we have

‖S(fk+1)− S(fk)‖ ≤ 1/3 · ‖S(fk)− S(fk−1)‖, k ≥ 2. This gives for m > k

‖S(fm)− S(fk)‖ ≥ ‖S(fk+1)− S(fk)‖ −
m−1∑

j=k+1

‖S(fj+1)− S(fj)‖

≥

1−

m−1∑

j=k+1

(1/3)j−k


 ‖S(fk+1)− S(fk)‖

≥ 1/2 · ‖S(fk+1)− S(fk)‖.
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By letting m→ +∞ we get

‖S(f∗)− S(fk)‖ ≥ 1/2 · ‖S(fk+1)− S(fk)‖, k ≥ 1.

3. Define now the sequence y∗ ∈ R∞ as

y∗ = [ y1,1, . . . , y1,n1 , . . . , yk,nk−1+1, . . . , yk,nk , . . . ].

That is, (y∗)nk = ynkk , k ≥ 1, where yk ∈ R∞ are constructed in 1. We shall
show that y∗ is noisy information about f ∗. Indeed, for m > k we have

‖(y∗)nk −Nnk
y∗ (fm)‖∆nk

y∗

≤ ‖(y∗)nk −Nnk
y∗ (fk+1)‖∆nk

y∗
+

m−1∑

j=k+1

‖Nnk
y∗ (fj+1 − fj)‖∆nk

y∗

≤
k∑

j=1

2−j +
m−1∑

j=k+1

‖Nnj
y∗ (hj)‖∆nj

y∗
≤

m−1∑

j=1

2−j ≤ 1.

Letting m → +∞ and using continuity of N nk
y∗ , we find that ‖(y∗)nk −

Nnk
y∗ (f∗)‖∆nk

y∗
≤ 1. This in turn yields y∗ ∈ Nny∗(f∗) for all n ≥ 1, i.e., y∗ is

noisy information about f ∗.

Finally, for k ≥ 1 we obtain

‖S(f∗)− ϕnk((y∗)nk‖
≥ ‖S(f∗)− S(fk)‖ − ‖S(fk)− ϕnk((y∗)nk)‖
≥ 1/2 · ‖S(fk+1)− S(fk)‖ − 1/10 ·

√
τnk(y

∗) radwor
nk

(Ny∗)

≥ 1/40 ·
√
τnk(y∗) radwor

nk
(Ny∗),

which implies (6.4) and contradicts f ∗ ∈ B. The proof is complete. 2

Observe that the sequences τ(y), y ∈ R∞, can be selected in such a way
that they converge to zero arbitrarily slowly. This means that the speed of
convergence of the radii {radwor

n (Ny)} cannot be essentially beaten by any
algorithm ϕ. In this sense, the optimal convergence rate is given by that of
the radii, and the (ordinary) spline algorithm ϕo is optimal.

We now give an additional example which should explain the role of τ(y).



288 CHAPTER 6. ASYMPTOTIC SETTING

Example 6.4 Let F = G be a separable, infinite dimensional Hilbert
space with the orthonormal basis {ξi}i≥1. Let S be given as Sξi = λiξi,
i ≥ 1, where |λ1| ≥ |λ2| ≥ · · · > 0. Finally, let information N be exact with
N = [〈·, ξ1〉F , 〈·, ξ2〉F , . . .]. In this case we have radwor

n (N) = |λn+1|. On the
other hand, for the algorithm ϕ = {ϕn} where ϕn(yn) =

∑n
i=1 yiλiξi, we

have

‖S(f)− ϕn(yn)‖ =

√√√√
∞∑

i=n+1

〈f, ξi〉2Fλ2
i ≤ |λn+1|

√√√√
∞∑

i=n+1

〈f, ξi〉2F

which converges to zero faster than |λn+1|. However, due to Theorem 6.1,
for a dense set of f the ratio ‖S(f)−ϕn(yn)‖/|λn+1| tends to zero arbitrarily
slowly.

6.2.3 Optimal information

Let Λ ⊂ F ∗ be a given class of continuous functionals. Let N be the class
of nonadaptive (exact) information operators N = [L1, L2, . . . ] with the
functionals Li ∈ Λ, i ≥ 1. Suppose the precision sequence is fixed, ∆ =
[δ1, δ2, . . .], and we want to select information N ∈ N in such a way as
to maximize the speed of convergence of the error ‖S(f) − ϕno (yn)‖ where
y ∈ N(f) and N = {N,∆}.

Due to Theorem 6.1, the error cannot tend to zero essentially faster than
the sequence of the nth minimal worst case radii {rwor

n (∆)} where

rwor
n (∆) = inf

N∈N
radwor

n (Nn,∆n), n ≥ 1

(compare with the definition in Section 2.8). (Actually, this kind of conver-
gence connot be beaten even when the information functionals are selected
adaptively.) We shall show that it is often possible to construct information
N ∈ N for which that convergence is achieved.

We assume that the extended norms ‖·‖∆n satisfy the following condition.
Let n ≥ 1, [δ1, . . . , δn] ∈ Rn be a precision vector, and let {pi}ni=1 be a
permutation of {1, 2, . . . , n}. Then

‖[x1, . . . , xn]‖[δ1 ,...,δn] = ‖[xp1 , . . . , xpn ]‖[δp1 ,...,δpn ], ∀[x1, . . . , xn] ∈ Rn.
(6.5)

This condition expresses the property that the power of information does
not depend on the order of peforming n nonadaptive observations. Indeed,
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for two information operators N1 = {[L1, . . . , Ln], [δ1, . . . , δn]} and N2 =
{[Lp1 , . . . , Lpn ], [δp1 , . . . , δpn ]} we have [y1, . . . , yn] ∈ N1(f) if and only if
[yp1 , . . . , ypn ] ∈ N2(f). Clearly, (6.5) holds, for instance, for the weighted
sup or Euclidean norms.

Let η > 1. For any n ≥ 1, let information Nn ∈ N be such that

radwor
n (Nn,∆) ≤ η · rwor

n (∆).

Define
N∆ = [N1

1 , N
2
2 , N

4
4 , . . . , N

2k

2k , . . . ]

where, as always, Nn
n denotes the first n functionals of Nn. The following

theorem yields in many cases optimality of N∆.

Theorem 6.2 Suppose the precision sequence ∆ = [δ1, δ2, . . .] satisfies

δ1 ≥ δ2 ≥ δ3 ≥ · · · ≥ 0. (6.6)

Then for information N∆ = {N∆,∆} and the ordinary spline algorithm ϕo
we have

‖S(f)− ϕno (yn)‖ ≤ K(f) · rwor
dn+1

4
e(∆), f ∈ F, y ∈ N∆(f),

where K(f) = η ·max {2, (1 + ρ) ‖f‖F }.

Proof For n ≥ 1, let k = k(n) be the largest integer satisfying n ≥∑k
i=0 2i = 2k+1−1. Then all the functionals of N 2k

2k
are contained in Nn

∆ and,
due to (6.6), these functionals are observed more precisely using information

N∆ than {N 2k

2k
,∆2k}. This, (6.1) and (6.5) yield

radwor
n (N∆) ≤ radwor

2k ({N2k

2k ,∆
2k}) ≤ η · rwor

2k (∆).

Using (6.3), for any f ∈ F and y ∈ N∆(f) we obtain

‖S(f)− ϕno (yn)‖ ≤ max {2, (1 + ρ) ‖f‖F } radwor
n (N∆)

≤ η max {2, (1 + ρ) {f‖F } rwor
2k (∆).

The theorem now follows from the fact that 2k ≥ d(n+ 1)/4e. 2

We have already convinced ourselves that for many problems the nth min-
imal radius rwor

n (∆) behaves polynomially in 1/n. In such cases the error
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‖S(f) − ϕno (yn)‖ achieves the optimal convergence rate which is rwor
n (∆),

and information N∆ can be called optimal.
Theorem 6.2 is of general character. It is clear that for some special

problems it is possible to construct the optimal information more effectively,
even when rwor

dn+1
4
e(∆) � rwor

n (∆) does non hold. An example is given in E

6.4.

Notes and Remarks

NR 6.1 The first results which revealed relations between the asymptotic and
worst case settings were obtained by Trojan [111] who analyzed the linear case
with exact information. (See also Traub et al. [108, pp. 383–295].) His results were
then generalized by Kacewicz [27] to the nonlinear case with exact information.
Particular nonlinear problems of evaluating the global maximum and zero finding
were studied in Plaskota [77] and Sikorski and Trojan [94], correspondingly.

The results on the asymptotic setting with noisy information were obtained by
Kacewicz and Plaskota [33] [34] [35]. This section is based mainly on the last three
papers.

NR 6.2 In this section we analyzed behavior of algorithms as the number of ob-
servations increases to infinity. It is also possible to study behavior of the cost of
computing an ε–approximation, as ε → 0. Clearly, we want this cost to grow as
slowly as possible for all f ∈ F and information y about f . The corresponding
computational model would be as follows.

The approximations are obtained by executing a program P . This time, how-
ever, the result of computations is a sequence g0, g1, g2, . . . of approximations rather
than a single approximation. That is, the execution consists (at least theoreti-
cally) of infinitely many steps. At each nth step a noisy value yn of a functional
Ln(f ; y1, . . . , yn−1) is observed and then the nth approximation gn = ϕn(y1, . . . , yn)
is computed. Obviously, such an infinite process usually requires infinitely many
constants and variables. However, we assume that for any n, the nth approxima-
tion is obtained using a finite number of constants and variables, as well as a finite
number of primitive operations. In other words, a program reduced to only n first
steps is a program in the sense of the worst case setting of Section 2.9.1.

Let P be a program that realizes an algorithm ϕ using information N. For
ε ≥ 0, let

m(P ; f, y)(ε) = min { k ≥ 0 | ∀i ≥ k ‖S(f)− ϕi(yi)‖ ≤ ε } (6.7)

be the minimal number of steps for which all elements gm, gm+1, gm+2, . . . are ε–
approximations to S(f). (If such a k does not exist then m(P ; f, y) = +∞.) Then
the cost of obtaining an ε–approximation using the program P is given as

cost(P ; f, y)(ε) = costm(P , y), f ∈ F, y ∈ N(f),
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where m = m(P ; f, y)(ε) is defined by (6.7), and costm(P ; y) is the cost of per-
forming m steps using the program P with information y. (If m = +∞ then
cost(P ; f, y)(ε) = +∞.)

A similar model of the (asymptotic) cost was studied by Kacewicz and Plaskota
[34] [35]. They showed that, under some additional assumptions, the best be-
havior of cost(P ; f, y)(ε) is essentially determined by the worst case complexity
Compwor(ε). Hence, there are close relations between the asymptotic and worst
case settings not only with respect to the error but also with respect the the cost
of approximation.

NR 6.3 In the prvious remark we assumed that the computational process is infi-
nite. It is clear that in practice the computations must be somewhere interrupted.
The choice of an adequate rule for terminating calculations is an important prac-
tical problem. Obviously, (6.7) cannot serve as a computable stopping rule since
m(P ; f, y)(ε) explicitly depends on f which is unknown.

Suppose that we want to compute approximations using a program P which
realizes a linear algorithm ϕ using nonadaptive information N. Suppose also that
we know some bound on the norm of f , say ‖f‖F ≤ K. Then, to obtain an ε–
approximation it is enough to stop calculations after

m = min { i | ewor(Ni, ϕi) ≤ ε min{1, 1/K} }

steps. In view of the results of Kacewicz and Plaskota [34] [35], this is best we can
do. On the other hand, if we do not have any additional information about ‖f‖F ,
then any computable termination rule fails; see E 6.5.

Exercises

E 6.1 Let ∆ ∈ R∞ be a given precision sequence. Show that

‖x‖∆ = lim
n→∞

‖xn‖∆n , x ∈ R∞,

is a well defined extended norm in R∞, and that for all n ≥ 1 we have

‖xn‖∆n = min
z∈R∞

‖[xn, z]‖∆, xn ∈ Rn.

E 6.2 Show that Corollary 6.1 holds also for the smoothing spline algorithm ϕ∞
defined in Section 2.5.1.

E 6.3 Let N and ϕ be an arbitrary information and algorithm. Show that for the
spline algorithm ϕo and τn(y) as in Theorem 6.1, the set

{
f ∈ F

∣∣∣ ∀y ∈ N(f), lim sup
n→∞

‖S(f)− ϕn(yn)‖
τn(y) · ‖S(f)− ϕno (yn)‖ < +∞

}

does not contain any ball.
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E 6.4 Suppose that the solution operator S is compact and it acts between sepa-
rable Hilbert spaces, and that observations of all functionals with norm bouded by
1 are allowed. Let

N0 = [ 〈·, ξ1〉F , 〈·, ξ2〉F , . . . ],
where {ξi} is the complete orthonormal basis of eigenelements of S∗S and the cor-
responding eigenelements satisfy λ1 ≥ λ2 ≥ · · · ≥ 0. Assuming exact observations,
∆ = [0, 0, 0, . . .], show that for the spline algorithm ϕspl we have

‖S(f)− ϕnspl(y
n)‖ ≤ ‖f‖ · rwor

n (0), f ∈ F, y = N0(f).

That is, N0 is the optimal information independently of the behavior of rwor
n (0) =√

λn+1.

E 6.5 (Kacewicz and Plaskota) Let P be a program realizing an algorithm ϕ using
nonadaptive information N = {N,∆} such that rwor

n ({N, 0}) > 0 ∀n ≥ 1. Let
tn : R∞ → {0, 1} be arbitrary termination functions. That is, for f ∈ F and
y ∈ N(f) calculations are terminated after

m(y) = min { i ≥ 0 | ti(y1, . . . , ti) = 1 }

steps. Show that for any ε > 0 and y ∈ N(F ), there exists f ∈ F such that y ∈ N(f)
and ‖S(f)− ϕm(y)(y)‖ > ε.

6.3 Asymptotic and average case settings

In this section, we assume that F is a separable Banach space equipped with
a zero mean Gaussian measure µ. The solution operator S is continuous lin-
ear and it acts between F and a separable Hilbert space G. The information
noise has random character.

More specifically, an (in general adaptive) information operator is given
as a family N = {Ny,Σy}y∈R∞ where

Ny = [L1(·), L2(·; y1), . . . , Ln(·; y1, . . . , yn−1), . . . ]

and

Σy = [σ2
1 , σ

2
2(y1), . . . , σ2

n(y1, . . . , yn−1), . . . ]

are infinite sequences of continuous linear functionals Li = Li(·; y1, . . . , yi−1)
and nonnegative reals σ2

i = σ2
i (y1, . . . , yi−1), i ≥ 1, respectively. For f ∈ F ,

πf = N(f) is a probability measure representing the probability of occuring
sequences y = [y1, y2, . . .] ∈ R∞ when gaining information about f . These
measures are defined on the σ–field generated by the cylindrical sets of the
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form B = A × R∞ where A is a Borel set of Rn and n ≥ 1. For any such
B we have πf (B) = πnf (A) where πnf is the distribution of [y1, . . . , yn] ∈ Rn
corresponding to the first n observations. That is, πnf is defined as in Section
3.7.1 for the information operator Nn with

Nn
y = [L1(·), L2(·; y1), . . . , Ln(·; y1, . . . , yn−1) ]

and ∆n
y = [δ1, δ2(y1), . . . , δn(y1, . . . , yn−1)]. Hence, for any Borel set B ⊂ R∞

we have
πf (B) = lim

n→∞ πnf (Bn) (6.8)

where Bn = { yn ∈ Rn | y ∈ B } is the projection of B onto Rn.
Note that the measure πf possesses the following property. For a given

vector (y1, . . . , ym−1) ∈ Rn, the distribution of ym is Gaussian with mean
Lm(f ; y1, . . . , ym−1) and variance σ2

m(y1, . . . , ym−1).
Noisy information about f is any realization y ∈ R∞ of the random

variable distributed according to πf .

6.3.1 Optimal algorithms

We now deal with the problem of optimal algorithm. Recall that in the
average case setting the optimal algorithms ϕopt are obtained by applying
S on the mean of the conditional distribution given information about f .
Also, ϕopt can be interpreted as a smoothing spline algorithm, ϕopt = ϕspl.
We now show that the same kind of algorithms can be successfully used in
the asymptotic setting.

More specifically, for y ∈ R∞, let the algorithm ϕspl = {ϕnspl} be given
as ϕnspl(y

n) = S(m(yn) ) where

m(yn) =
n∑

j=1

znj (Cµ(Lj(·; yj−1) ) ),

zn is the solution of (
Σn
y +GnNy

)
zn = yn ,

Σn
y = diag {σ2

1 , σ
2
2(y1), . . . , σ2

n(yn−1) }, and GnNy is the Gram matrix, Gn
Ny

=

{Li(·; yi−1), Lj(·; yj−1)}ni,j=1. Denoting by H the Hilbert space associated
with µ, m(yn) can be equivalently defined as the minimizer in H of the
functional

‖f‖2H +
n∑

j=1

1

σ2
j (y

j−1)
(yj − Lj(f ; yj−1) )2
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(compare with Sections 3.6 and 3.7.2).

In what follows, we shall use the joint distribution µ̃ on the space F×R∞.
It represents the probability of occurring f ∈ F and information y about f ,
and is generated by the measure µ and the distributions πf . Namely, for
measurable sets A ⊂ F and B ⊂ R∞, we have

µ̃(A×B) =

∫

A
πf (B)µ(df).

Observe that in view of (6.8) we can also write

µ̃(A×B) = lim
n→∞ µ̃n(A×Bn)

where µ̃n(A×Bn) =
∫
A πnf (Bn)µ(df) is the joint probability on F ×Rn or,

in other words, it is the projection of µ̃ onto F × Rn. Obviously, m(yn) is
the mean element of the conditional distribution µ2(·|yn) on F . Hence, ϕnspl

minimizes the average error over µ̃n.
The algorithm ϕspl is optimal in the following sense.

Theorem 6.3 For any algorithm ϕ = {ϕn}, its error almost nowhere
tends to zero faster than the error of ϕspl. That is, the set

A =

({
(f, y) ∈ F ×R∞

∣∣∣ lim
n→∞

‖S(f)− ϕn(yn)‖
‖S(f)− ϕnspl(y

n)‖ = 0

})

is of µ̃–measure zero. (By convention, 0/0 = 1.)

The proof of this theorem is based on the following fact.

Lemma 6.2 Let ω be a Gaussian measure on G with mean mω. Then for
any g0 ∈ G and q ∈ (0, 1) we have

ω ( { g ∈ G | ‖g − g0‖ < q ‖g −mω‖ } ) ≤ β
q

1− q (6.9)

where β =
√

2/(π e).

Proof Suppose first that mω = 0. Let g = c g0 + g1 where g1 ⊥ g0. Then
‖g − g0‖ < q ‖g‖ is equivalent to

(1− c)2c2‖g0‖2 + ‖g1‖2 < q2 ( c2‖g0‖2 + ‖g1‖2)
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which, in particular, implies (1 − c)2 < c2q2 and c ∈ ((1 + q)−1, (1 − q)−1).
This in turn means that

‖g0‖2
1 + q

< 〈 g, g0 〉 <
‖g0‖2
1− q . (6.10)

Let B be the set of all g satisfying (6.10). As g → 〈g, g0〉 is the zero mean
Gaussian random variable with variance λ = 〈Cωg0, g0〉 (where Cω : G→ G
is the correlation operator of µ), for λ = 0 we have ω(B) = 0, while for λ > 0

ω(B) =
1√
2πλ

∫ ‖g0‖2/(1−q)

‖g0‖2/(1+q)
e−x

2/(2λ) dx =
1√
2π

∫ a/(1−q)

a/(1+q)
e−x

2/2 dx,

where a = ‖g0‖2λ−1/2. Hence,

ω(B) ≤ a√
2π

(
1

1− q −
1

1 + q

)
exp

{
−1

2

(
a

1 + q

)2
}

=

√
2

π

q

1− q

(
a

1 + q

)
exp

{
−1

2

(
a

1 + q

)2
}
.

To get (6.9), it suffices to observe that the maximal value of x e−x
2/2 is e−1/2.

If mω 6= 0 then we let ω(·) = ω1(· −mω) and ḡ0 = g0 −mω. Then zero
is the mean element of ω and ω(A) = ω1({g | ‖g − ḡ0‖ < q‖g‖ }).

Proof of Theorem 6.3 Choose q ∈ (0, 1). For n ≥ 1, define the sets

An =
{

(f, y) ∈ F ×R∞ | ‖S(f)− ϕn(yn)‖ < q · ‖S(f)− ϕnspl(y
n)‖

}
.

Observe that if (f, y) ∈ A then for all sufficiently large n we have (f, y) ∈ An,
and consequently

A ⊂
∞⋃

j=1

∞⋂

n=j

An.

Hence,

µ̃(A) ≤ lim
j→∞

µ̃



∞⋂

n=j

An


 ≤ lim sup

n→∞
µ̃(An). (6.11)

We now estimate the measure µ̃ of An. Let

Ann = { (f, yn) ∈ F ×Rn | (f, y) ∈ An }.
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Then µ̃(An) = µ̃n(Ann). Using decomposition of µ̃n with respect to the nth
information yn we get

µ̃n(Ann) =

∫

Rn
µ2(Ann|yn )µ1(dyn),

where µ1 is the a priori distribution of yn, µ2(·|yn) is the conditional distri-
bution on F given yn, and

Ann(yn) = { f ∈ F | (f, yn) ∈ Ann }.

Due to Theorem 3.8, the measures µ2(·|yn) are Gaussian. Denote ν2(·|yn) =
µ2(S−1(·)|yn) and

Bn
n(yn) = S(Ann(yn) ) = { g ∈ G | ‖g − ϕn(yn)‖ < q ‖g − ϕnspl(y

n)‖ }.

Since ν2(·|yn) is also Gaussian and its mean element equals ϕnspl(y
n), Lemma

6.2 gives ν2(Bn
n(yn)) ≤ β q/(1− q), and consequently

µ̃n(Ann) =

∫

Rn
ν2(Bn

n(yn))µ1(dyn) ≤ β
q

1− q .

Thus the set An has the µ̃ measure at most β q/(1−q). In view of (6.11),
this means that also µ̃(A) ≤ β q/(1 − q). Since q can be arbitrarily close to
0, we finally obtain µ̃(A) = 0, as claimed. 2

The algorithm minimizing the nth average errors turned out to be opti-
mal also in the asymptotic setting. There is no algorithm ϕ such that the
successive approximations ϕn(yn) converge to the solution S(f) faster than
ϕnspl(y

n).

6.3.2 Convergence rate

Theorem 6.3 does not say anything about the rate of convergence of ϕnspl(y
n)

to S(f). For deterministic noise, the best behavior of the error can essentially
be compared to that of the worst case radii. It turns out that for random
noise a similar role plays the sequence of nth average radii. The nth average
radius of nonadaptive information Ny (y ∈ R∞) is given as

radave
n (Ny) =

√∫

Rn
r2(µ2(·|yn) ) ,
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where µ2(·|yn) is the conditional distribution on F given yn, and r2(·) is the
squared radius of a measure, see Section 3.2.

Before we state theorems about the rate of convergence of ϕspl, we first
need some estimations for Gaussian measures of balls in G. In what follows,
we denote by Br(a) the ball of radius r and centered at a.

Lemma 6.3 Let ω be a zero mean Gaussian measure on G. Then for any
r ≥ 0 and a ∈ G we have

ω(Br(0) ) ≥ ω(Br(a) ).

Proof Assume first that G = Rn and the coordinates gi, 1 ≤ i ≤ n, are
independent random variables. For n = 1 the lemma is obvious. Let n ≥ 2.
Let ωn−1 be the joint distribution of gn−1 = (g1, . . . , gn−1) and ωn be the
distribution of gn. Then

ω(Br(a) )

=

∫

Rn
ωn

({
gn
∣∣∣ |gn − an| ≤

√
r2 − ‖gn−1 − an−1‖2

})
ωn−1(dgn−1)

≤
∫

Rn
ωn

({
gn
∣∣∣ |gn| ≤

√
r2 − ‖gn−1 − an−1‖2

})
ωn−1(dgn−1)

= ω(Br(a
n−1, 0) ) .

Proceeding in this way with successive coordinates we obtain

ω(Br(a
n−1, 0) ) ≤ ω(Br(a

n−2, 0, 0) ) ≤ · · · ≤ ω(Br(0, . . . , 0︸ ︷︷ ︸
n

) ),

and consequently ω(Br(a) ) ≤ ω(Br(0) ).

Consider now the general case. Let {ξj}j≥1 be the complete orthonormal
system of eigenelements of Cω. Then gj = 〈g, ξj〉 are independent zero mean
Gaussian random variables and Br(a) = { g ∈ G | ∑j(gj − aj)

2 ≤ r2 }.
Denoting by ωn the joint distribution of (g1, . . . , gn) and by Bn

r (an) the ball
in Rn with center an = (a1, . . . , an) and radius r, we have

ω(Br(a) ) = lim
n→∞ ωn(Bn

r (an) ) ≤ lim
n→∞ ωn(Bn

r (0) ) = ω(Br(0) ) ,

as claimed.
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Lemma 6.4 Let ω be a Gaussian measure on G and let Cω be its corre-
lation operator. Then

ν(Br(a) ) ≤ 4

3
ψ

(
2 r√

trace(Cω)

)

where ψ(x) =
√

2/π
∫ x
0 e
−t2/2dt.

Proof We can assume without loss of generality that the mean element of
ω is zero since we always can shift the measure towards the origin. In view
of Lemma 6.3, we can also assume that the ball is centered at zero. In this
case we write, for brevity, Br instead of Br(0).

Let d = dimG ≤ +∞. Let {ξj} be the complete orthonormal system of
eigenelements of Cω, Cωξj = λjξj. Then the random variables gj = 〈g, ξj〉
are independent and gj ∼ N (0, λj).

Let tj be independent random variables which take −1 and +1 each with
probability 1/2, and let t = (tj)

d
j=1. Denote by p the joint probability on

T = {−1,+1}d, and by ω̃ the joint probability on T ×G. Then

ω̃





 (t, g) ∈ T ×G

∣∣∣
∣∣∣
d∑

j=1

tj gj
∣∣∣ ≤ 2 r






 (6.12)

≥
∫

Br
p





 t ∈ T

∣∣∣
∣∣∣
d∑

j=1

tj gj
∣∣∣ ≤ 2 r






 ω(dg)

≥ γ · ω(Br)

where

γ = inf p





 t ∈ T

∣∣∣
∣∣∣
d∑

j=1

tj cj
∣∣∣ ≤ 2






 ,

the infimum taken over all cj with
∑d
j=1 c

2
j ≤ 1.

On the other hand, {tjgj} are independent random variables and tjgj ∼
N (0, λj), which implies that

∑d
j=1 tjgj ∼ N (0, λ) where λ = trace(Cω).

Hence, (6.12) equals

1√
2πλ

∫ 2r

−2r
e−t

2/(2λ) dt = ψ

(
2r√
λ

)
,

and consequently

ω(Br) ≤
1

γ
ψ

(
2r√

trace(Cω)

)
.
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We now estimate γ−1. Since for any c = (c1, c2, . . .) the random variable∑d
j=1 tjcj has mean zero and variance

∑d
j=1 c

2
j , we can use the well known

Chebyshev’s inequality to get

p





 t ∈ T

∣∣∣
∣∣∣
d∑

j=1

tjcj
∣∣∣ > 2






 ≤ 1

4
·
d∑

j=1

c2j ≤
1

4
.

Hence, γ ≥ 1− 1/4 and γ−1 ≤ 4/3. The proof is complete. 2

We are now ready to show that the error of any algorithm (and particularly
the error of ϕspl) cannot converge to zero faster than {radave

n (Ny)}.

Theorem 6.4 For any algorithm ϕ the set

A1 =

{
(f, y) ∈ F ×R∞

∣∣∣ lim
n→∞

‖S(f)− ϕnspl(y
n)‖

radave
n (Ny)

= 0

}

has the µ̃–measure zero.

Proof We choose q ∈ (0, 1) and define

A1,n = { (f, y) ∈ F ×R∞ | ‖S(f)− ϕnspl(y
n)‖ < q · radave

n (Ny) }

and B1,n = { (f, yn) ∈ F×Rn | (f, y) ∈ A1,n }. Similarly to the proof of The-
orem 6.3, we have A1 ⊂ ∪∞i=1 ∩∞n=i A1,n and µ̃(A1) ≤ lim supn→∞ µ̃

n(B1,n).
It now suffices to show that the last limit tends to zero as q → 0+.

Indeed, using the conditional distribution of µ̃n we get

µ̃n(B1,n) =

∫

Rn
µ2( { f ∈ F | (f, yn) ∈ B1,n } | yn )µ1(dyn)

=

∫

Rn
ν2( { g ∈ G | ‖g − gyn‖ < q · radave

n (Ny) } | yn )µ1(dyn) .

Since radave
n (Ny) = trace(Cν2,yn

) where Cν2,yn
is the correlation operator of

the Gaussian measure ν2(·|yn), we can use Lemma 6.4 to get that

ν2 ({ g ∈ G | ‖g − ggn‖ < q · radave
n (Ny) } | yn ) ≤ 4

3
ψ(2q) .

Thus µ̃n(B1,n) ≤ 4/3ψ(2q). Since this tends to zero with q → 0+, µ̃(A1) = 0.
2

We now show that in some sense the sequence {radave
n (Ny)} provides also an

upper bound on the convergence rate.
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Theorem 6.5 For the algorithm ϕspl the set

A2 =

{
(f, y) ∈ F ×R∞

∣∣∣ lim
n→∞

radave
n (Ny)

‖S(f)− ϕnspl(y
n)‖ = 0

}
.

has the µ̃–measure zero.

Proof Choose q ∈ (0, 1) and define

A2,n = { (f, y) ∈ F ×R∞ | ‖S(f)− ϕnspl(y
n)‖ ≥ 1/q · radave

n (Ny) }

and B2,n = { (f, yn) ∈ F × R∞ | (f, y) ∈ A2,n }. Then A2 ⊂ ∪∞i=1 ∩∞n=i A2,n

and µ̃(A2) ≤ lim supn→∞ µ̃
n(B2,n). Using decomposition of µ̃ we have

µ̃n(B2,n) (6.13)

=

∫

Rn
ν2

({
g ∈ G | ‖g − gyn‖ ≥ 1/q

√
trace(Cν,yn)

} ∣∣∣ yn
)
µ1(dyn) .

We now use a slight generalization of the Chebyshev’s inequality to es-
timate the Gaussian measure of the set of all g which are not in the ball
centered at the mean element. Namely, if ω is a Gaussian measure on G
then for any r > 0

trace(Cω) =

∫

G
‖g −mω‖2 ω(dg)

≥
∫

‖g−mω‖>r
‖g −mω‖2 ω(dg) ≥ r2 ω(G \Br(mω) ) ,

and consequently

ω ({ g ∈ G | ‖g −mω‖ ≥ r }) ≤
trace(Cω)

r2
.

For r = 1/q
√

trace(Cω), the right hand side of the last inequality is just q2.
Hence, (6.13) is bounded from above by q2.

Using the same argument as in the proof of Theorem 6.4 we conclude
that µ̃(A2) = 0. 2

Theorem 6.5 says that for all (f, y) a.e. some subsequence ‖S(f)−ϕnkspl(y
nk)‖

converges to zero at least as fast as radave
nk

(Ny), as k → ∞. Unfortunately,
the word “subsequence” above is necessary. That is, we cannot claim in
general that with probability one the sequence ‖S(f)−ϕnspl(y

n)‖ behaves at
least as well as radave

n (Ny). Actually, this probability can be even zero, as
illustrated in the following example.
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Example 6.5 Let F = G be the space of infinite sequences with ‖f‖2
F =∑∞

j=1 f
2
j < +∞. We equip F with the zero mean Gaussian measure µ

such that Cµei = λiei where λi = aj and 0 < a < 1. Consider ap-
proximation of f ∈ F from exact information about coordinates of f , i.e.,
N(f) = [f1, f2, f3 . . .] and Σ = [0, 0, 0, . . .]. We shall see that then the set

A3 =

{
(f, y) ∈ F ×R∞

∣∣∣ lim sup
n→∞

‖S(f)− ϕnspl(y
n)‖/radave

n (N) < +∞
}

has the µ̃–measure zero.
Indeed, as noise does not exist, the measure µ̃ is concentrated on the

subspace {(f,N(f)) | f ∈ F} and µ̃(A3) equals the µ–measure of the set
B = { f ∈ F | (f,N(f) ) ∈ A3 }. Moreover, since in this case ϕnspl(y

n) =

[y1, . . . , yn, 0, 0, 0, . . .] and radave
n (N) =

√∑∞
i=n+1 λi, we have B =

⋃∞
k=1Bk

where

Bk =

{
f ∈ F

∣∣∣
∞∑

i=n

f2
i ≤ k2

∞∑

i=n

λi, ∀n ≥ 1

}
.

Observe now that the condition
∑∞
i=n f

2
i ≤ k2∑∞

i=n λi implies

|fn| ≤ k

√√√√
∞∑

i=n

λi = k

√
an

1− a =
k√

1− a
√
λn.

Hence,

µ(Bk) ≤
∞∏

n=1

µ

({
f ∈ F

∣∣∣ |fn| ≤
k√

1− a
√
λn

})

=
∞∏

n=1

(√
2

π

∫ k√
1−a

0
e−x

2/2 dx

)
= 0,

and consequently µ̃(A3) = µ(B) = limk→∞ µ(Bk) = 0.

6.3.3 Optimal information

In the end, let us consider the problem of optimal information. That is,
we fix the precision sequence Σ = [σ2

1 , σ
2
2 , . . .] and want to select the infinite

sequence of functionalsN = [L1, L2, . . .] in such a way that the errors ‖S(f)−
ϕnspl(y

n)‖ converge to zero as fast as possible. We assume that N belongs
to the class N of all information for which the functionals Li are in a given
class Λ ⊂ F ∗.
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Theorems 6.4 and 6.5 say that for given information N = {N,Σ} the
behavior of errors can be essentially characterized by that of the nth radii
of N. Hence, it seems natural to call optimal this information for which the
sequence radave

n (N,Σ) vanishes with fastest rate.
For n ≥ 1, let

rave
n (Σ) = inf

N∈N
radave

n (Nn,Σn)

be the minimal average error that can be achieved using first n nonadap-
tive observations. It is clear that for any information N ∈ N we have
radave

n (N,Σ) ≥ rave
n (Σ), i.e., the radii radave

n (N,Σ) do not converge faster
than rave

n (Σ). Consequently, Theorem 6.4 yields that for arbitrary informa-
tion N ∈ N the µ̃–measure of the set

{
(f, y) ∈ F ×R∞

∣∣∣ lim
n→∞

‖S(f)− ϕnspl(y
n)‖

rave
n (Σ)

= 0

}

is zero. We now give information NΣ whose radii behave in many cases as
rave
n (Σ). To this end, we use construction of Section 6.2.3. That is, we let
η > 1 and for n ≥ 1 choose Nn ∈ N in such a way that

radave
n (Nn,Σ) ≤ η · rave

n (Σ).

Then
NΣ = [N1

1 , N
2
2 , N

4
4 , . . . , N

2k

2k , . . . ].

Theorem 6.6 Suppose the precision sequence Σ = [σ2
1, σ

2
2 , . . .] satisfies

σ2
1 ≥ σ2

2 ≥ σ2
3 ≥ · · · ≥ 0.

Then for the information NΣ and algorithm ϕspl the set



 (f, y) ∈ F ×R∞

∣∣∣ lim
n→∞

rave
dn+1

4
e(Σ)

‖S(f)− ϕnspl(y
n)‖ = 0





has the µ̃–measure zero.

Proof Proceeding as in the proof of Theorem 6.2 we can show that

radave
n (NΣ,Σ) ≤ η · rave

dn+1
4
e(Σ) (6.14)

Hence, the theorem is a consequence of (6.14) and Theorem 6.5. 2.
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If rave
n (Σ) behaves polynomially in 1/n (which holds for problems analyzed

in Chapter 3), then rave
dn+1

4
e(Σ) � rave

n (Σ). In such cases information NΣ is

optimal.

Notes and Remarks

NR 6.4 This section is original. However, the technique of proving Theorems 6.3,
6.4 and 6.5 is adopted from Wasilkowski and Woźniakowski [121] where the exact
information case is studied and relations between the asymptotic and average case
settings were established for the first time. Lemma 6.4 is due to Kwapień and also
comes from the cited paper.

Exercises

E 6.6 Consider the problem of approximating a parameter f ∈ R from information
y = [y1, y2, y3, . . .] ∈ R∞ where yi = f+xi and xi’s are independent, xi ∼ N (0, σ2),
i ≥ 1. Show that then for any f

πf





 y ∈ R∞

∣∣∣ lim
n→∞

1

n

n∑

j=1

yj = f






 = 1 .

That is, the algorithm ϕn(yn) = 1/n
∑n

j=1 yj converges to the “true” solution f
with probability 1.

E 6.7 Consider the one dimensional problem of E 6.6. For y belonging to the set

C =



 y ∈ R∞

∣∣∣ the limit m(y) = lim
n→∞

1

n

n∑

j=1

yj exists and is finite



 ,

let ωy be the Dirac measure on R centered at m(y). Let µ1 be the prior distribution
of information y ∈ R∞,

µ1(·) =

∫

F

πf (·)µ(df).

Show that µ1(C) = 1, and that for any measurable sets A ⊂ F and B ⊂ R∞ we
have

µ̃(A×B) =

∫

B

ωy(A)µ1(dy).

That is, {ωy} is the family of regular conditional distribution on R with respect to
information y ∈ R∞, ωy = µ2(·|y) ∀y a.e.

E 6.8 Give an example where

µ̃
( {

(f, y) ∈ F ×R∞ | ‖S(f)− ϕnspl(y
n)‖ � radave

n (Ny)
} )

= 1 .
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E 6.9 Suppose the class Λ consists of functionals whose µ–norm is bounded by 1.
Let

N0 = [ 〈·, ξ1〉, 〈·, ξ2〉, . . . ]
where {ξi} is the complete orthonormal basis of eigenelements of SCµS

∗ and the
corresponding eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ 0. Assuming exact observations,
Σ = [0, 0, 0, . . .], show that information N0 is optimal independently of the behavior

of rave
n (0) =

√∑
j≥n+1 λj .
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