Exam in Mathematical Logic February 3, 2016

Problem 1. Let φ be the propositional formula $p \land \neg q$ and let η be a propositional formula with no connectives other than \Leftrightarrow, \neg . Prove that $\varphi \Leftrightarrow \eta$ is not a tautology.

Problem 2. Let ξ be the sentence:

$$\forall x \,\forall y \, [f(x) = f(y) \Rightarrow x = y] \Rightarrow [\forall x \,\exists y \, R(f(x), y) \Rightarrow \forall x \,\exists y \, R(x, y)].$$

- (a) Find a sentence ψ in prenex normal form logically equivalent to ξ .
- (b) Prove that ψ is true in all finite structures.
- (c) Prove that $\neg \psi$ is satisfiable.

Problem 3. Decide whether the following sets are definable without parameters in the structure $(\mathbb{Q}, \leq^{\mathbb{Q}}, +^{\mathbb{Q}})$:

- (a) $\mathbb{Q} \cap (1, +\infty)$,
- (b) $\mathbb{Q} \cap (0, +\infty)$.

Problem 4. A graph G = (V, E) is a non-empty set V with a symmetric relation $E \subseteq V^2$. The graph G is connected if for any $x, y \in V, x \neq y$, there is some $k \in \mathbb{N}$ and a sequence $x_0 = x, ..., x_k = y$ such that $(x_{i-1}, x_i) \in E$ for i = 1, ..., k.

Let $G_n = (\{0, \ldots, n\}, E_n)$, where $(x, y) \in E_n$ iff $y \equiv x + 1 \pmod{n + 1}$, be a graph consisting of a cycle of n + 1 elements. Let G be $\prod_{n \in \mathbb{N}} G_n / \mathcal{U}$, where

 \mathcal{U} is a non-principal ultrafilter on \mathbb{N} . Show that G is not connected.

Problem 5. Prove that there exist structures $\mathbb{A} = (A, +^{\mathbb{A}}, \cdot^{\mathbb{A}}), \mathbb{B} = (B, +^{\mathbb{B}}, \cdot^{\mathbb{B}})$ such that: $(\mathbb{N}, +^{\mathbb{N}}, \cdot^{\mathbb{N}}) \equiv \mathbb{A} \preccurlyeq \mathbb{B}$, both A and B have cardinality \mathfrak{c} , and $A \neq B$.

Problem 6. Let A be a set and let S be a binary relation on A. Prove that if Player II has a winning strategy in the EF game $G_3((A, S), (\mathbb{R}, \leq))$, then $(A, S) \equiv (\mathbb{R}, \leq)$.