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Abstract
It has become standard that, when a SAT solver decides that a CNF Γ is unsatisfiable, it produces
a certificate of unsatisfiability in the form of a refutation of Γ in some proof system. The system
typically used is DRAT, which is equivalent to extended resolution (ER) – for example, until this
year DRAT refutations were required in the annual SAT competition. Recently [Bogaerts et al. 2023]
introduced a new proof system, associated with the tool VeriPB, which is at least as strong as DRAT
and is further able to handle certain symmetry-breaking techniques. We show that this system
simulates the proof system G1, which allows limited reasoning with QBFs and forms the first level
above ER in a natural hierarchy of proof systems. This hierarchy is not known to be strict, but
nevertheless this is evidence that the system of [Bogaerts et al. 2023] is plausibly strictly stronger
than ER and DRAT. In the other direction, we show that symmetry-breaking for a single symmetry
can be handled inside ER.
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1 Introduction

We write Lit for the set of propositional literals and 0, 1 for the propositional constants. A
clause is a disjunction which may contain 0, 1 or a literal together with its negation; in the
last two cases we call it tautologous. A conjunctive normal form formula, or CNF, is a set of
clauses, understood as a conjunction. We write ⊥ for the empty clause and > for the empty
CNF. For a clause C = x1 ∨ · · · ∨ xk we write ¬C for the CNF ¬x1 ∧ · · · ∧ ¬xk.

A substitution is a map ω : Lit ∪ {0, 1} → Lit ∪ {0, 1} which respects negations and is
the identity on {0, 1}. We view a partial assignment as a kind of substitution. For literals
p1, . . . , pk we write ~p�ω for the tuple ω(p1), . . . , ω(pk). For a clause C, we write C�ω for the
clause {ω(p) : p ∈ C}. For a CNF Γ, we write Γ�ω for {C�ω : C ∈ Γ}. We write ω � Γ to
mean that Γ�ω is tautologous, that is, every clause is tautologous. If ω is a partial assignment
this is the same as the usual meaning of �. The composition of substitutions τ, ω is defined
by τ ◦ ω(p) = τ(ω(p)). Note that Γ�τ◦ω = (Γ�ω)�τ and thus τ � Γ�ω if and only if τ ◦ ω � Γ.

I Definition 1. A symmetry of a CNF Γ is a substitution ω such that Γ�ω = Γ.

Hard combinatorial formulas often have many symmetries. A successful heuristic to make
such formulas easier for SAT solvers is symmetry-breaking, usually in the form of introducing
a lex-leader constraint [13]. We illustrate this in the following proposition. Suppose Γ is
a CNF in variables z1, . . . , zn and suppose we have a formula [x1, . . . , xn ≤lex y1, . . . , yn]
expressing the lexicographic order on assignments to ~x and ~y. For now we suppress technical
issues of how exactly we express this, and tacitly treat [~x ≤lex ~y] as though it is a CNF.

I Proposition 2. If ω is a symmetry of Γ, then Γ and Γ ∪ [~z ≤lex ~z�ω] are equisatisfiable.
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2 The strength of the dominance rule

Proof. Suppose Γ is satisfiable. Let α be a lexicographically minimal assignment such that
α � Γ. Then by symmetry α � Γ�ω and thus α ◦ ω � Γ. By minimality we have α ≤lex α ◦ ω
which, working through the definitions, gives us that α � [~z ≤lex ~z�ω] as required. J

The new formula Γ ∪ [~z ≤lex ~z�ω] is potentially much easier to solve than the original Γ,
because the extra constraint can substantially shrink the space of partial assignments that
the solver has to search through. Note that the proof still works if we simultaneously add
lex-leader constraints for several different symmetries.

It is now common for SAT solvers to have a proof-logging component which, when it
decides that a formula Γ is unsatisfiable, will generate a certificate of unsatisfiability – in
other words, a refutation of Γ. For this to be useful, it must be in a well-known proof system
for which trusted software exists to verify that the refutation is correct. The standard system
used for this is DRAT [30]. However, it is open to what extent DRAT can (feasibly) handle
reasoning that uses symmetry-breaking, especially for more than one symmetry [17].

This issue is addressed in [4] which introduces a new proof-logging system with tools to
handle quite general symmetry-breaking, extending DRAT. It builds on the system VeriPB [15]
and as such uses reasoning using linear inequalities, rather than clauses; furthermore it is
equipped to solve optimization problems, rather than just satisfiability.

We study the proof complexity of this system (as a refutation system for CNFs). We
show that it is equivalent to G1, a system based on limited reasoning with QBFs which is one
level above extended resolution (ER) in a natural hierarchy of proof systems [24]. This is in
contrast to the redundancy-based systems which have been studied recently, such as DRAT,
propagation redundancy and substitution redundancy, which are in their full generality all
equivalent to ER [22, 18, 5]. This may represent another step in the strength of reasoning
used in SAT algorithms, like from DPLL and treelike resolution, to CDCL and resolution,
to the just-mentioned systems and ER [14, 26, 1]. In particular, it is unlikely that the new
system in [4] can be simulated by DRAT.

The main tool used in [4] for symmetry-breaking is called the dominance-based strength-
ening rule. It is based on the following principle, which we express here in the language of
CNFs and call “informal” because we are sweeping under the carpet the exact nature of the
formulas ∆ and [~x <lex ~y] (intended to express strict lexicographic order).

I Proposition 3 (informal). Let Γ,∆ be formulas, where Γ is in variables ~z and has the
property that any assignment satisfying Γ can be extended to satisfy ∆. Suppose we have a
clause C and a substitution ω such that

Γ ∧∆ ∧ ¬C � Γ�ω ∧ [~z�ω <lex ~z]. (1)

Then Γ and Γ ∧ C are equisatisfiable.

Proof (sketch). Suppose Γ is satisfiable. Let α be a lexicographically minimal assignment
such that α � Γ. Extend α to α∪β satisfying Γ∧∆. If α∪β � C then we are done. Otherwise,
from the entailment (1) we know α ∪ β � Γ�ω ∧ [~z�ω <lex ~z]. Letting α′ = (α ∪ β) ◦ ω, we
conclude that α′ � Γ and α′ <lex α, contradicting the minimality of α. J

The rule says roughly: if we have derived Γ, and have available a suitable ∆, ω and a
proof of entailment (1), then we can derive Γ∧C. (In fact, the full rule in [4] is more general,
since it is not restricted to the lexicographic ordering.)

Machinery exists to study the strength of rules of this kind by studying how easy it is to
prove their soundness in the first-order setting of bounded arithmetic. Specifically, to carry
out the proof of Proposition 3 it is sufficient to know that a nonempty polynomial-time set
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(in this case the set of α such that α � Γ) always has a lexicographically least element. This
puts the system inside the theory T 1

2 , which is associated with G1 (see below for definitions).
The harder direction, lower-bounding the strength of the rule, uses similar machinery.

Consider the transformation α 7→ α′ in the proof above. We claim that, given an arbitrary
polynomial time function f , we can construct an instance of the rule where this transformation
is given by f . We do this by defining ∆ to compute f and store the resulting values in β,
and defining ω to pull these values from β back to the ~z variables, as α′. Observe that
in the proof, it is not actually necessary for α to be lexicographically minimal; the “local
minimality” property that α ≤lex f(α) is sufficient. We show that a converse holds: that
using the rule, we can find a local minimum of this kind, or to say it more precisely, we can
efficiently derive a contradiction from the statement that there is no local minimum.

The problem of finding such a local minimum is known as polynomial local search, or
PLS [21]. It is known that if we are only interested in sentences of low quantifier complexity,
such as “CNFs in this family are unsatisfiable”, then every logical consequence of “every
polynomial-time set has a least element”, that is, of T 1

2 , is already a consequence of the
apparently weaker statement “every PLS problem has a solution”. Using this we can show
that, roughly speaking, every CNF which can be proved unsatisfiable in T 1

2 has a short
refutation in the proof system in [4], where the refutation uses an instance of the rule
constructed from a PLS problem as described above. It follows that the system simulates G1.

The rest of the paper fills in the details of these arguments. In Section 2 we recall the
definitions of some proof systems we will need. These are G1 itself; cutting planes, which is
the foundation for the system in [4]; and ER, where we will need to work extensively with
derivations as well as refutations. In Section 3 we define our version of the system in [4],
where we have removed the machinery for handling optimization problems. We call this the
dominance proof system, and in it the dominance-based strengthening rule can be used for
rather general orderings, not just lexicographic. We will work more with a restriction of it, the
linear dominance proof system, in which it is limited to essentially the lexicographic ordering.
We also define a simpler auxiliary proof system ER-PLS, which uses clauses rather than
inequalities and captures the properties of the system that are important for us (illustrated
in Proposition 3). It will follow from our results that, as a system for refuting CNFs, it is
equivalent to the linear dominance system. In Section 4 we describe some results we need
from bounded arithmetic and give a formal definition of PLS. We then show our main result,

I Theorem 4. The linear dominance system is equivalent to G1.

The proof is in three parts. Section 5 contains the main technical work of the paper,
showing, in Theorem 18, that ER-PLS simulates G1, as sketched above. Section 6 shows
that the linear dominance system in turn simulates ER-PLS. For the remaining direction,
that G1 simulates linear dominance, it is enough to show that linear dominance is sound,
provably in T 1

2 . This is in Section 7, where we also briefly discuss the difference between
linear dominance and the full dominance system.

In Section 8 we study what we can prove in ER about fragments of these systems. We
show essentially that, in Proposition 3 above, if the mysterious formula ∆ is not present then
we do not need to use minimality, or even PLS, in the proof. This is because without the step
where we extend α to satisfy ∆, the move from α to α′ does not involve any computation, but
amounts to shuffling the components of α around using the substitution ω, and for simple
graph-theoretical reasons we can compute the ith iteration ωi in polynomial time without
invoking any stronger principles. In Section 8.1 we use this observation to show a technical
result, that a natural weakening of the linear dominance system is already simulated by ER.



4 The strength of the dominance rule

In Section 8.2 we use a similar construction to show1:

I Theorem 5. Define the system Q1 as ER plus the power to add a lex-leader constraint for
a single symmetry. Then Q1 is simulated by ER (and thus by DRAT).

Appendix A contains some technical material postponed from other sections.

We finish this section by addressing the natural question: what is this hierarchy of proof
systems above ER, and why should we expect it to be strict? After all, ER is already a
very strong system with many tools for proving combinatorial and algebraic statements, and
seems to lie well beyond current methods for proving lower bounds [28].

ER was shown in [11] to correspond to the theory PV, which models reasoning with
polynomial-time concepts (see Section 4 for definitions). In [24] the systems G0, G1, G2, . . .

of quantified Boolean reasoning were introduced, to correspond in the same way to a
hierarchy T 0

2 , T
1
2 , T

2
2 , . . . of bounded arithmetic theories extending PV (which we can identify

with T 0
2 [20]), where T 1

2 can reason with PNP concepts, T 2
2 with PΣp

2 , and so on. In particular,
if we ignore issues of uniformity, the unsatisfiable CNFs with short refutations in Gi capture
precisely the universal sentences2 provable in T i2. It is a classical result that the fragments
IΣ0, IΣ1, . . . of Peano arithmetic are separated by universal sentences. Specifically, the
consistency statement for IΣk has this form and is provable in IΣk+1 but not in IΣk (see
e.g. [16, Chapter I.4(c)]). It is expected, essentially by analogy, that the analogous theories
T 0

2 , T
1
2 , . . . are also separated at the universal level by some kind of consistency statement,

although it is known that classical consistency will not work [31].
In the case we are interested in here, of PV and T 1

2 , there is some evidence of separation
at the ∀Σb1 level (one step above universal) since it is a logical version of the question: is the
TFNP class PLS different from FP? Here we at least have a relativized separation between
PLS and FP [8], although this implies nothing directly about the unrelativized theories.

2 Traditional proof systems

We require that proof systems are sound and that refutations in a given system are recognizable
in polynomial time. When comparing two systems P and Q we are usually interested in
their behaviour when refuting CNFs, and we use the following basic definition.

I Definition 6. We say that Q simulates P if there is a polynomial-time function which,
given a P -refutation of a CNF Γ, outputs a Q-refutation of Γ. Q and P are equivalent if
they simulate each other.

Often it will make sense to discuss not only refutations of formulas, but also derivations
of one formula from another. We will use the notation e.g. “a derivation Γ ` ∆” instead of
“a derivation of ∆ from Γ” and will write π : Γ ` ∆ to express that π is such a derivation.

2.1 Quantified Boolean formulas and G1

G1 is a fragment of G, a proof system used for reasoning with quantified Boolean formulas.
We give only a brief description of G – for more details see [23, Chapter 4]. We will only

1 We believe this is more general than the result about single symmetries in [17], since we handle an
arbitrary symmetry, not just an involution; see the discussion in [4].

2 That is, sentences consisting of a sequence of unbounded universal quantifiers followed by a polynomial
time predicate. We could also write ∀Πb

1.
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consider fragments of G as systems for refuting CNFs; for comparisons of G with some other
systems in the context of proving quantified Boolean formulas, see e.g. [3, 9].

A quantified Boolean formula, or QBF, is built from propositional variables and connectives
in the usual way, and also allows quantification over Boolean variables. That is, if F (x) is
a QBF containing a variable x, then so are ∃xF (x) and ∀xF (x). In this context ∃x and
∀x are Boolean quantifiers and these formulas semantically have the expected meanings
F (0) ∨ F (1) and F (0) ∧ F (1). We stratify QBFs into classes called Σq

1, Πq
1,Σ

q
2,Π

q
2 etc. in

the usual way, by counting quantifier alternations. In particular, Σq
1 is the closure of the

class of (quantifier-free) Boolean formulas under ∨,∧ and ∃. The strength of proof systems
working with QBFs is that they allow us to represent an “exponential-size concept” such as∨
~a∈{0,1}n F (~a) with a polynomial-size piece of formal notation ∃x1 . . . xnF (~x).
The proof system G is an extension of the propositional sequent calculus. In this context

a sequent is an expression of the form

A1, . . . , Ak −→ B1, . . . , B`

where A1, . . . , Ak and B1, . . . , B` are QBFs. Such a sequent is understood semantically to
mean the same as

∧
iAi →

∨
j Bj , and we say that an assignment satisfies a sequent if it

satisfies this formula. A derivation in G is a sequence of sequents, each of which is either
an axiom of the form A −→ A, or follows from one or two earlier sequents by one of the
rules. These rules are sound and complete and we will not list them, as the details are not
so important for us (see Section 4 for our justification of this). For k ∈ N the system Gk is
the restriction of G which only allows formulas from Σqk ∪Πq

k to appear in derivations.
We are interested in proof systems as ways of refuting CNFs. To turn G1 into such a

system we have the following definition, where for definiteness we think of Γ as a single QBF
(rather than, say, as the cedent given by its clauses) and where ⊥ is the empty cedent.

I Definition 7. A G1 refutation of a CNF Γ is a G1 sequent calculus derivation of the
sequent Γ −→ ⊥.

2.2 Pseudo-Boolean constraints and cutting planes
Following [4], we use the term pseudo-Boolean constraint, or PB constraint, for a linear
inequality with integer coefficients over 0/1-valued variables. We will sometimes call a
set of such constraints a PB formula. PB constraints generalize clauses, since a clause
C = x1∨ . . .∨xn∨¬y1∨ . . .∨¬ym can be expressed by a constraint of the form x1 + · · ·+xn +
(1− y1) + · · ·+ (1− ym) ≥ 1. We call this constraint C∗ and will also write Γ∗ for the PB
formula obtained by taking C∗ for each clause C in a CNF Γ.

If C is a PB constraint A~x ≥ b we write ¬C for the PB constraint A~x ≤ b− 1. Note that,
although it is semantically the same, this denotes a different piece of syntax from ¬C when
C is a clause. Given a substitution ω, we write C�ω for the PB constraint obtained by simply
replacing each variable x in C with ω(x), and we use a similar notation for PB formulas.

We use cutting planes [12], or CP, as a derivational system for deriving one PB formula G
from another PB formula F . A CP derivation is a sequence of PB constraints, including
every constraint from G, such that each constraint is either from F , or is a Boolean axiom
of the form xi ≥ 0 or xi ≤ 1, or follows from earlier constraints by one of the rules. These
are addition – we can derive a new constraint by summing integral multiples of two old
constraints; and rounding – from a constraint dA~x ≥ b, where d > 0 is an integral scalar
and A is an integral matrix of coefficients, we can derive A~x ≥ db/de. We use the notation
F C̀P G for CP derivations. In a formal CP derivation, coefficients are written in binary.



6 The strength of the dominance rule

2.3 Extended resolution as a derivational system
For CNFs Γ and ∆, a resolution derivation Γ ` ∆ is a sequence of clauses, beginning with
the clauses of Γ and containing every clause from ∆, such that each clause in the sequence is
either in the initial copy of Γ or is derived from earlier clauses by the resolution or weakening
rule. Here the resolution rule derives C ∨D from C ∨ x and D ∨ ¬x, for any variable x, and
the weakening rule derives D from C for any D ⊇ C (although see below for a restriction on
weakening in the context of extended resolution derivations). Because we allow propositional
literals 0 and 1 to occur in clauses, we need to be able to remove them, so we also allow
derivation of C from C ∨ 0 (this can be thought of as resolution with a notional axiom “1”).
A resolution refutation of Γ is a derivation of Γ ` ⊥.

An extension axiom has the form of three clauses ¬u ∨ ¬v ∨ y, ¬y ∨ u and ¬y ∨ v which
together express that y is equivalent to u∧ v. The intended use is that u, v are literals and y
is a newly-introduced variable. For good behaviour under restrictions we also allow extension
axioms of the form ¬u ∨ y, ¬y ∨ u expressing that y is equivalent to a single existing literal,
and of the form y or ¬y expressing that y is equivalent to a constant.

I Definition 8. For CNFs Γ and ∆, an extended resolution (ER) derivation Γ ` ∆ is a
sequence of clauses, beginning with Γ and including every clause in ∆. Each clause in the
sequence either appears in the initial copy of Γ, or is derived from earlier clauses by resolution
or weakening (where weakening is not allowed to introduce a variable that has not appeared
earlier in the sequence3) or by the extension rule, which allows us to introduce an extension
axiom defining a variable that has not appeared earlier in the sequence from variables that
have appeared earlier.

Such a derivation is sound in the following sense: any assignment to all variables in Γ
which satisfies Γ can be extended to an assignment to all variables in ∆ which satisfies ∆.
The extension axioms in the derivation tell us explicitly how to extend the assignment.

We will often need to handle many extension axioms at once:

I Definition 9. Let ~x, ~y be disjoint tuples of variables. We say that ∆ is a set of extension
axioms over ~x; ~y if it can be written as a sequence of extension axioms defining variables
y1, . . . , yr in order, where each yi is defined in terms of variables from among ~x, y1, . . . , yi−1.

Equivalently, such a ∆ can be thought of as describing a Boolean circuit and asserting
that, on input ~x, the values computed at the internal nodes are ~y. We also introduce notation
for writing sets of extension axioms in this way:

I Definition 10. Suppose ~x, ~y are tuples of variables and C is a circuit with gates of fan-in
2. We write [~y = C(~x)] for the set of extension axioms over ~x; ~y expressing that the non-input
nodes of the circuit have values ~y on inputs ~x (we assume ~x, ~y have suitable arities). If the
circuit has a distinguished output node we label the corresponding variable in ~y as yout.

The condition that the extension rule must introduce new variables has some counter-
intuitive consequences, and we must take extra care when we use ER as a derivational system.
For example, there are ER derivations > ` x and > ` ¬x, (where > is the empty CNF) but
there is no derivation ¬x ` x, even though ¬x extends >, and no derivation > ` x ∧ ¬x. In
many ways the new variables behave like existentially quantified bound variables.

3 This restriction on weakening is probably not strictly necessary. We include it because it has the helpful
consequence that each new variable comes with an explicit definition in terms of the old variables.
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Under some reasonable conditions on how extension variables are used, we can avoid
problems related to such issues. Below we formally prove two lemmas of this kind, which
we will refer to as needed. We could avoid the issue by working with some other system
equivalent to ER, such as extended Frege, circuit Frege [19] or even treelike G1, but it would
then be harder to show that the resulting system is simulated by linear dominance.

We use a convention that, in the context of ER derivations, when we write an expression
of the form Γ(~x) ` ∆ with some variables ~x displayed on the left, we mean that every variable
in ~x is treated as an “old” variable in this derivation and as such is not used as an extension
variable in any instance of the extension rule, even if it does not actually appear in the
CNF Γ(~x).

I Lemma 11. Let Γ(~x), A(~x, ~y), B(~x, ~z),∆(~x, ~w) by CNFs, where we assume ~x, ~y, ~z, ~w are
disjoint and no other variables appear. Suppose we have ER derivations

π1 : Γ(~x) ∧A(~x, ~y) ` B(~x, ~z) and π2 : Γ(~x) ∧B(~x, ~z) ` ∆(~x, ~z, ~w).

Then we can construct an ER derivation Γ(~x) ∧A(~x, ~y) ` ∆(~x, ~z, ~w) in polynomial time.

Proof. We first copy π1. Then we copy π2, except that every extension variable in π2 which
is not in ~w is given a new name, to avoid clashes with variables ~y and other extension
variables that appeared in π1. J

I Lemma 12. Given an ER derivation π1 : Γ(~x) ` ∆ ∧ A, where ∆ is a set of extension
axioms over ~x; ~y, we can construct in polynomial time an ER derivation π2 : Γ(~x)∧∆ ` ∆∧A.

Proof. Let ∆′ and A′ be the same as ∆ and A except that we have replaced every variable yi
with a new variable zi. From Γ ∧∆, we can derive ∆′ ∧ A′ by a copy of π1 with ∆ added
to the initial clauses and with each yi changed to zi everywhere outside of ∆. Then we
can work through ~y and derive, from the relevant extension axioms in ∆ and ∆′, using the
normal rules of resolution, that yi ↔ zi; formally, this is the two clauses ¬yi ∨ zi and ¬zi ∨ yi.
Finally we resolve these clauses with the clauses of A′ to derive A. J

3 The dominance rule

We define three refutational proof systems using versions of the dominance-based strength-
ening rule of [4]. The dominance proof system is intended to be the same as the system
described in [4] except that we have removed the machinery for talking about optimization,
that is, everything related to the objective function f . The linear dominance proof system
restricts this by only allowing a particular kind of ordering to be used in the dominance
rule; the practical work in [4] in fact only needs this weaker system. Lastly we introduce our
auxiliary system ER-PLS.

In these systems, often we can only apply a rule on the condition that some other derivation
Γ ` ∆ or C C̀P D exists, in ER or CP, possibly involving formulas that do not appear
explicitly in the proof we are working on; or that some other polynomial-time-checkable
object exists, such as a substitution ω. To ensure that correctness of a proof is checkable in
polynomial time we implicitly require that, in a formal proof in a dominance-based system,
each application of the rule is labelled with an example of the object in question, with the
size of the labels (that is, the CP derivations, substitutions etc.) counted towards the size of
the formal proof.
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3.1 The dominance proof system
This is a system for refuting PB formulas. As in [4], we will call steps in a refutation
configurations, rather than lines. A configuration is a quadruple (C ,D ,O�, ~z) where

C is a set of PB constraints called core constraints
D is a set of PB constraints called derived constraints
O�(~x, ~y) is a PB formula where ~x and ~y both have the same arity as ~z
~z is a tuple of variables.

We put no conditions on which variables appear in C and D , except that the variables ~x, ~y
in O�(~x, ~y) should be thought of as dummy variables that are not related to the rest of the
proof. In a valid proof, in every configuration the formula O�(~x, ~y) defines a preorder and we
use this with ~z to define a preorder � on assignments, writing α � β if O�(~x, ~y) is satisfied
under the assignment that takes ~x to α(~z) and ~y to β(~z).

Semantically a configuration can be thought of as asserting that C is satisfiable, and
that if we order assignments by O� on ~z as described above, then for any assignment α
satisfying C , some assignment β with β � α satisfies C ∪D (see Definition 19 below).

A refutation of a PB formula F is then a sequence of configurations, beginning with
(F, ∅,>, ∅), where > is the empty PB formula, and ending with a configuration in which C

or D contains the contradiction ⊥, that is, 0 ≥ 1. Each configuration is derived from the
previous configuration (C ,D ,O�, ~z) by one of the following rules:

Implicational derivation rule. Derive (C ,D∪{C},O�, ~z), if there is a derivation4 C ∪D C̀P C.

(Objective bound update rule – this appears in [4], but we omit it from our systems as it
only affects the objective function f , which we do not use.)

Redundance-based strengthening rule. Derive (C ,D ∪ {C},O�, ~z) if there is a substitu-
tion ω and a derivation C ∪D ∪ {¬C} C̀P (C ∪D ∪ {C})�ω ∪ O�(~z�ω, ~z).

Deletion rule. Derive (C ′,D ′,O�, ~z) if
1. D ′ ⊆ D and
2. C ′ = C or C ′ = C \ {C} for some constraint C derivable by the redundance rule above

from (C ′, ∅,O�, ~z)5.

Transfer rule. Derive (C ′,D ,O�, ~z) if C ⊆ C ′ ⊆ C ∪ D . In other words, we can copy
constraints from D to C

Dominance-based strengthening rule. We first give a slightly informal definition: derive
(C ,D ∪ {C},O�, ~z) if there is a substitution ω and, informally, a derivation

C ∪D ∪ {¬C} C̀P C�ω ∪ (~z�ω ≺ ~z)

where ~z�ω ≺ ~z expresses that ~z�ω is strictly smaller than ~z in the ordering O�. However it
may be that any PB formula expressing the strict inequality (~z�ω ≺ ~z) is very large. So

4 In [4], the derivation is allowed to use some additional inferences beyond those of CP. For simplicity we
omit these, as in the presence of the redundance-based strengthening rule, even strengthening CP here
to a system like extended Frege would not make any difference to the overall dominance system. In
particular, our proof of the simulation of linear dominance by G1 in Section 7 would still go through.

5 This restriction of the deletion rule ensures that it preserves semantic validity under the intuitive
meaning of configurations mentioned above. See Section 7 for an argument.
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formally the rule is: derive (C ,D∪{C},O�, ~z) if there is a substitution ω and two derivations

C ∪D ∪ {¬C} C̀P C�ω ∪ O�(~z�ω, ~z)
C ∪D ∪ {¬C} ∪ O�(~z, ~z�ω) C̀P ⊥.

Order change rule. From (C , ∅,O�, ~z) derive (C , ∅,O ′�, ~z′) if O ′� is CP-provably a preorder.
That is, if there are derivations ∅ C̀P O�(~u, ~u) and O�(~u,~v) ∪ O�(~v, ~w) C̀P O�(~u, ~w).

3.2 The linear dominance proof system
This restricts the dominance proof system to only use orderings O� arising from a multilinear
objective function. Formally, we require that O�(~x, ~y) is always of the form f(~x) ≤ f(~y),
where f is a multilinear function ~x 7→

∑
i bixi for some constants bi. These constants can

be changed using the order change rule. We are no longer required to explicitly prove that
O�(~x, ~y) is an ordering, as CP can always prove this for this restricted form.

The most important ordering of this form is the lexicographic ordering, which we get by
setting f(~x) 7→

∑
i 2ixi (for a suitable ordering of the variables in ~x).

3.3 The system ER-PLS
This system uses the clausal version of the dominance rule sketched in Proposition 3 in the
introduction. The name is intended to suggest that it has a similar connection to polynomial
local search “computations” as ER has to polynomial time.

We fix a polynomial-time constructible family of CNFs defining lexicographic ordering.
That is, for each k we have a CNF [x1, . . . , xk ≤lex y1, . . . , yk], which may also use some
auxiliary variables ~z, such that for all α, β ∈ {0, 1}k there is an assignment to ~z satisfying
[α ≤lex β] if and only if α ≤ β lexicographically. It is not too important which CNF we use
for [~x ≤lex ~y], but we specify a convenient one in Appendix A.1 below.

An ER-PLS refutation of a CNF Γ is formally a sequence of CNFs, beginning with Γ and
ending with a CNF containing the empty clause ⊥. At each step we apply one of the two
rules below to derive the next CNF in the sequence.

ER rule. From Γ derive Γ∧∆ if there is an ER derivation Γ ` ∆, in the sense of Definition 8.

Dominance rule. Let ~x list all variables of Γ in some order and let C be a clause in these
variables. From Γ derive Γ ∧ C, provided we have
1. a set ∆ of extension axioms over ~x; ~y
2. a substitution ω mapping variables ~x to variables among ~x ∪ ~y
3. two ER derivations

a. Γ ∧∆ ∧ ¬C ` Γ�ω

b. Γ ∧∆ ∧ ¬C ∧ [~x ≤lex ~x�ω] ` ⊥
with the technical condition that the auxiliary variables ~z used in [~x ≤lex ~x�ω] may not
appear in Γ, ∆, or C.

Informally, condition 3 can be thought of as asking for a single ER derivation Γ∧∆∧¬C `
Γ�ω ∧ [~x�ω<lex~x], as in Proposition 3. Note that we do not have any deletion rule, that is,
we can only grow working set of clauses Γ, and never shrink it. This is because Γ is modelled
on the core constraints C in the dominance system, which can only be deleted in very specific
situations. For simplicity we do not allow deletion at all, as we will not need it.

I Lemma 13. If Γ′ is derived from Γ by a rule of ER-PLS, then Γ′ and Γ are equisatisfiable.
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Proof. The only nontrivial case is the forward direction of the dominance rule. This is
proved in the same way as Proposition 3 in the introduction, with the cosmetic change that
we now have [~x ≤lex ~x�ω] on the left of the entailment rather than [~x�ω<lex~x] on the right.
We must also deal now with the auxiliary variables in [~x ≤lex ~x�ω], but since these are not in
the domain of the ordering this presents no problem. J

4 Bounded arithmetic

We will carry out some arguments in theories of bounded arithmetic, which we will turn into
propositional proofs using variants of well-known translations. Here we give a brief overview
– for more see e.g. [23, Chapters 9 and 12]. When we write that a formula with free variables
is provable in a first-order theory, we mean that its universal closure is provable.

4.1 Theories
PV is the canonical theory for polynomial-time reasoning [11]. Its language contains a
function symbol, called a PV function, for every polynomial-time algorithm on N. Its
axioms are defining equations for all PV functions, based on Cobham’s characterization of
polynomial-time functions. See e.g. [23, Chapter 12.1] for a precise definition (there the
theory is called PV1). Importantly, PV proves the principle of mathematical induction for
any property defined by a PV formula – that is, by a quantifier-free formula in the language
of PV. Such formulas define precisely the polynomial-time properties.

More powerful theories can be obtained by extending PV with stronger induction axioms.
A formula in the language of PV is Σb

1 if it has the form ∃x≤ t ϕ, where t is a term not
containing x and ϕ is a PV formula; unsurprisingly, Σb1 formulas define exactly properties in
NP. A formula is Σb2 if it has the form ∃x≤ t1 ∀y≤ t2 ϕ for ϕ a PV formula. The classes Πb

1
and Πb

2 are defined dually.
The theory T1

2 (a more accurate name would be T 1
2 (PV)) extends PV by induction

axioms for all Σb1 formulas. T 1
2 is the weakest theory that suffices to prove the least number

principle for Σb1 formulas, that is, that every nonempty NP set has a least element; actually,
even the least number principle for PV formulas already implies T 1

2 over PV [6].
The theory S1

2 , intermediate in strength between PV and T 1
2 , extends PV by the length

induction axioms for Σb1 formulas, that is, universal closures of statements of the form

ψ(0) ∧ ∀x (ψ(x)→ ψ(x+ 1))→ ∀xψ(|x|)),

where ψ is Σb1 and | · | stands for the length function that takes a number x to its length in
binary notation. The theory S2

2 is a strengthening of T 1
2 that additionally contains length

induction for Σb
2 formulas. It should be noted that S1

2 proves length induction also for Πb
1

formulas, T 1
2 proves induction also for Πb

1 formulas, and so on.
Ordered by strength, we have PV ⊆ S1

2 ⊆ T 1
2 ⊆ S2

2 ⊆ . . . . There is also partial
conservativity between some adjacent theories. In particular, S1

2 is ∀Σb
1-conservative over

PV and S2
2 is ∀Σb2-conservative over T 1

2 [7]. This means that if ψ(x) is a Σb1 formula and S1
2

proves ∀xψ(x), then PV proves it as well; analogously for Σb2 formulas, S2
2 and T 1

2 .

There is a well-known connection between propositional proof systems and arithmetic
theories, linking ER to PV (and S1

2) and G1 to T 1
2 (and S2

2). The following theorem, which
shows that a theory proves the soundness of the corresponding proof system, can be viewed
as an upper bound: it says that, for example, G1 is in some sense no stronger than T 1

2 . We
use this for our main result in Section 5.
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I Theorem 14 ([11, 24]). S1
2 – and by conservativity, PV – proves the CNF-reflection

principle for ER: “any CNF refutable in ER is unsatisfiable”. Similarly, S2
2 – and by

conservativity, T 1
2 – proves the CNF-reflection principle for G1: “any CNF refutable in G1

is unsatisfiable”.

Proof sketch. We first consider G1. The statement “sequent s, containing only formulas
from Σq1 ∪Πq

1, is satisfied by assignment α to its free variables” can be naturally written as a
Πb

2 formula σ(s, α). Using this we formalize the natural proof of the soundness of G1 as a
length induction on a Πb

2 formula, roughly as follows: given a G1 derivation π, we show by
induction down π that ∀ασ(s, α) holds for every line s of π. If the last line has the form
Γ ` ⊥ for a CNF Γ, this means that Γ cannot be satisfiable.

The part about ER is proved by a similar argument, but with the length induction
hypothesis being “every line in the ER refutation π up to the current one is satisfiable”.
This can be stated in a Σb

1 way, holds at the beginning of π if the CNF Γ being refuted is
satisfiable, but no longer holds once π reaches the empty clause ⊥. J

In the other direction, it is possible to translate proofs in an arithmetic theory into
uniform families of propositional proofs. We will use this translation for PV and ER, and we
give a slight refinement of it in Section 4.2. Such translations can also be used to give a kind
of converse to Theorem 14, with a proof similar to our approach in Section 5 below:

I Theorem 15 ([11, 24]). If PV (equivalently S1
2) proves the CNF-reflection principle for a

propositional proof system Q, then ER simulates Q. Similarly, if T 1
2 (equivalently S2

2) proves
the CNF-reflection principle for Q, then G1 simulates Q.

Theorems 14 and 15 together give us a close association between T 1
2 and short G1 proofs,

and in fact we prove our results about G1 indirectly using these theorems, rather than by
reasoning about G1 itself. This is largely the reason that we did not include a complete
description of G1 in Section 2.1.

Another important property of T 1
2 – and, by conservativity, of S2

2 – is that its ∀Σb
1

consequences can be witnessed by polynomial local search. We formally define a PLS problem
as a triple (tw, θw, Nw), where t,N are respectively a unary and a binary PV function, θ is a
binary PV formula, and the distinguished argument w written in the subscript is an instance
of the problem. The formula θ defines the domain of the problem on instance w (tacitly,
any element of the domain is required to be at most polynomially larger than w); tw is an
initial value that should be in the domain; and Nw is a one-place neighbourhood function,
which attempts to map any value in the domain to a strictly smaller value in the domain.
Since the domain has a least element as long as it is nonempty, Nw will sometimes fail, and
a solution to the problem on instance w is either tw, if ¬θw(tw), or a value y such that θw(y)
but either ¬θw(Nw(y)) or Nw(y) ≥ y.

The PLS witnessing theorem for T 1
2 , originally proved in [8], says that if T 1

2 proves
∀w ∃y≤ t ϕ, where ϕ is a PV formula, then the task of finding y given w can be reduced
to a PLS problem. Written in a modern form, which also includes an upper bound on the
strength of the theory needed to prove correctness of the reduction, we have:

I Theorem 16 ([2, Theorem 2.5]). Assume that T 1
2 ` ∀w ∃y≤ t ϕ(w, y), where ϕ is a PV

formula. Then there is a PLS problem Qw = (tw, θw, Nw) and a PV function f such that
the following are provable in PV:
1. ¬θw(tw)→ ϕ(w, f(w))
2. θw(z) ∧ ¬θw(Nw(z)) → ϕ(w, f(z))
3. θw(z) ∧Nw(z) ≥ z → ϕ(w, f(z)).
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4.2 Propositional translations

We use a version of the translation from PV proofs to polynomial-time constructible families
of ER proofs, due to Cook [11].6 We first describe how to translate formulas. Consider a
PV formula θ(~x). Let ~k represent a choice of binary bit-lengths for the variables ~x (we will
not be very formal about ~k; we can think of this notation as assigning a length to every free
first-order variable in the universe). Supposing ~x = x1, . . . , x`, we will code each xi using a
ki-tuple of new propositional variables x1

i , . . . , x
ki
i , which tuple we write just as ~xi.

By definition, θ is a quantifier-free formula built from PV functions. So we can construct,
in some canonical way based on the structure of θ, in time polynomial in the bit-lengths
k1, . . . , k`, a Boolean circuit C(~x1, . . . , ~x`) evaluating θ on binary inputs of these lengths.
Following Definition 10, we introduce a tuple of new variables ~z, one for each node in C,
and define the propositional translation [[θ(~x)]]~k to be the CNF [~z = C(~x1, . . . , ~x`)] ∧ zout.
Unless stated otherwise, we assume that the translations of any two explicitly listed formulas
have disjoint auxiliary variables ~z. For example, in Proposition 17, we assume that the
translations of ϕ1, . . . , ϕr, θ all have disjoint auxiliary variables, even if some formula appears
twice in this list.

We now state how we translate proofs. For the proof see Appendix A.2.

I Proposition 17. Suppose PV proves a sentence ∀~x, ϕ1(~x) ∧ · · · ∧ ϕr(~x) → θ(~x), where
ϕ1, . . . , ϕr, θ are quantifier-free. Then for any assignment ~k of bit-lengths to the variables ~x,
we can construct in time polynomial in ~k an ER derivation

[[ϕ1(~x)]]~k ∧ · · · ∧ [[ϕr(~x)]]~k ` [[θ(~x)]]~k.

5 ER-PLS simulates G1

This section contains the main technical work of the paper. We begin by constructing some
PV proofs. We will use propositional translations of these in our simulation.

Let Sat(a, x) be a natural PV formula expressing that CNF a is satisfied by assignment x.
Let Ref(a, b) be a natural PV formula expressing that b is a G1 refutation of a. We may
take ∀a, b, x ¬Sat(a, x) ∨ ¬Ref(a, b) as the CNF-reflection principle for G1, stating that any
CNF refutable in G1 is unsatisfiable. By Theorem 14 this is provable in T 1

2 .
CNF-reflection is a universally-quantified PV formula, so in particular it is ∀Σb1. Thus by

Theorem 16, there is a PLS problem Qw = (tw, θw, Nw), where to save space we think of a, b, x
as combined into a single parameter w which we write as a subscript, such that the existence
of a solution to Qw implies ¬Sat(a, x) ∨ ¬Ref(a, b), provably in PV. Precisely, PV proves
the following three formulas, in free variables a, b, x, y (note that since the CNF-reflection
principle does not contain an existential quantifier, we do not need the function f that
appears in Theorem 16):
1. ¬θw(tw) → (¬Sat(a, x) ∨ ¬Ref(a, b))
2. θw(y) ∧ ¬θw(Nw(y)) → (¬Sat(a, x) ∨ ¬Ref(a, b))
3. θw(y) ∧Nw(y) ≥ y → (¬Sat(a, x) ∨ ¬Ref(a, b)).

6 We emphasize that we are using the Cook translation, rather than the Paris-Wilkie translation of
e.g. [27]. The Paris-Wilkie translation is usually used to translate first-order proofs involving an oracle
symbol into families of small proofs in relatively weak propositional systems. For example, it translates
(a relativized version of) T 1

2 into polylogarithmic-width resolution.
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By standard properties of PLS, we may assume in order to simplify some things below that
the bit-length of tw depends only on the components a, b of w and not on the assignment x,
and that Nw is hard-wired to never give output bigger than tw.

Making some small rearrangements and introducing a new variable u for the neighbour
of y, we get that PV proves

F1. Sat(a, x) ∧ Ref(a, b) ∧ y = tw → θw(y)
F2. Sat(a, x) ∧ Ref(a, b) ∧ θw(y) ∧ u = Nw(y) → θw(u)
F3. Sat(a, x) ∧ Ref(a, b) ∧ θw(y) ∧ u = Nw(y) ∧ y ≤ u → ⊥.

With these proofs in hand we can describe the simulation.

I Theorem 18. ER-PLS simulates G1.

Proof. We are given a CNF A and a G1 refutation B of A. We want to construct, in
polynomial time, an ER-PLS refutation of A. We will build the refutation using propositional
translations of the proofs F1-F3 above. We begin by calculating the bit-length of the variables
a, b, x, y, u which we will use in the translation.

Let n be the number of variables in A and let m and ` be the bit-length of the strings
coding A and B respectively. We may assume n ≤ m. We will use m, `, n as the respective
bounds on the bit lengths of a, b, x. By our simplifying assumption on the problem Qw we
can find a bound r, polynomial in m and `, on the bit-length of tw for parameters w of the
lengths we are considering. We may also use r as the bit-length for both y and u, since
Nw needs at most r bits to encode its output. Thus we use these bounds m, `, n, r, r as the
bit-length parameter ~k in all our propositional translations below. As a result, all the CNFs
we obtain from the translation will have size polynomial in m+ `. For simplicity of notation,
we will omit actually writing the subscript ~k.

Applying Proposition 17 to F1, F2 and F3, we obtain, in time polynomial in m+ `, the
following ER derivations:

P1 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[y = tw]] ` [[θw(y)]]
P2 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[θw(y)]] ∧ [[u = Nw(y)]] ` [[θw(u)]]
P3 : [[Sat(a, x)]] ∧ [[Ref(a, b)]] ∧ [[θw(y)]] ∧ [[u = Nw(y)]] ∧ [[y ≤ u]] ` ⊥.

These formulas and derivations are in propositional variables ~a,~b, ~x, ~y, ~u that arise from
a, b, x, y, u in the translation, using the bit-lengths described above (plus the requisite
auxiliary and extension variables).

Now let τ be the substitution (in fact a partial assignment) that first replaces the
propositional variables ~a and ~b with the actual bits of A and B. Then, recalling that the
CNFs [[Sat(a, x)]] and [[Ref(a, b)]] are defined in terms of Boolean circuits taking ~a,~b, ~x as
input, we compute the values of all nodes in these circuits that do not depend on ~x (for
[[Ref(a, b)]] this means all nodes) and let τ assign those values to the corresponding auxiliary
variables in the CNFs.

Applying τ to the derivations above, each of P1�τ , P2�τ , P3�τ is still a valid ER refutation.
However we may delete [[Ref(a, b)]]�τ from the assumptions, since by construction τ satisfies
every clause in [[Ref(a, b)]], because B is in fact a refutation of A. Furthermore we make the
following claims, where all the circuits and derivations asserted to exist are constructible in
polynomial time from A and B. For the notation [~z = C(~e)] see Definition 10.

1. Write A(~x) for the CNF A with the variables renamed to x1, . . . , xn. Then there is an
ER derivation A(~x) ` [[Sat(a, x)]]�τ .
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2. There is a circuit Dθ and auxiliary variables ~zy and ~zu such that
a. [[θw(y)]]�τ has the form [~zy = Dθ(~x, ~y)] ∧ zout

y

b. [[θw(u)]]�τ has the form [~zu = Dθ(~x, ~u)] ∧ zout
u .

Abusing notation, we may write these as [θ̂(~x, ~y)] and [θ̂(~x, ~u)].
3. There is a circuit t̂ and auxiliary variables ~zt such that there is an ER derivation

[(~y, ~zt) = t̂(~x)] ` [[y = tw]]�τ .
4. There is a circuit N̂ and auxiliary variables ~zN such that there is an ER derivation

[(~u, ~zN ) = N̂(~x, ~y)] ` [[u = Nw(y)]]�τ .
5. There is an ER derivation [~y ≤lex ~u] ` [[y ≤ u]]�τ .

Here claim 2 is true by construction, and for claim 5 note that the CNF [[y ≤ u]] is
not changed after restricting by τ . Otherwise we appeal to the well-known strength and
robustness of ER and the fact that we are able to choose how to express Sat, and even y ≤ x,
in PV. We give more details of claim 1 in Appendix A.3.

Combining the derivations provided by the claims with P1�τ , P2�τ , P3�τ and appealing to
Lemma 11 we get that the following three ER derivations can be constructed in polynomial
time from A and B.

R1 : A(~x) ∧ [(~y, ~zt) = t̂(~x)] ` [θ̂(~x, ~y)]

R2 : A(~x) ∧ [θ̂(~x, ~y)] ∧ [(~u, ~zN ) = N̂(~x, ~y)] ` [θ̂(~x, ~u)]

R3 : A(~x) ∧ [θ̂(~x, ~y)] ∧ [(~u, ~zN ) = N̂(~x, ~y)] ∧ [~y ≤lex ~u] ` ⊥.

For example, for R2 we first combine the derivation in claim 1, the first identity in claim 2,
and the derivation in claim 4 to derive the LHS of P2�τ from the LHS of R2 (we may need
to rename some variables introduced by the extension rule to avoid clashes when we combine
derivations, as in the proof of Lemma 11). By Lemma 11 we can then use P2�τ to derive
[[θw(u)]]�τ , which is precisely the RHS of R2 by the second identity in claim 2.

The reader should note that R1–R3 still capture the same idea that we began this section
with, but now in a nonuniform version: they constitute a proof in ER that if ~y is a solution
of a PLS problem related to Qw, where w is the instance (A,B, ~x), then A(~x) is false.

We can now describe an ER-PLS refutation of A(~x), and thus one of A. It will use
one application of the ER rule and one of the dominance rule. We begin with A(~x).
We then introduce the clauses [θ̂(~x, ~y)] by the ER rule. This is allowed, because we can
obtain them from A(~x) by the following ER derivation: first write down the extension
axioms [(~y, ~zt) = t̂(~x)], then use R1.

To finish the refutation we use the dominance rule to derive the empty clause. That is,
in the rule we take the new clause C to be empty. The other ingredients are as follows.
1. We set Γ := A(~x) ∧ [θ̂(~x, ~y)], so Γ consists of all the clauses we have so far.
2. We let ~v := ~y, ~zy, ~x list all variables that occur in Γ. Here we deliberately put ~y first so

that it is most significant in determining the lexicographic order of assignments to ~v.
3. We set ∆ := [(~u, ~zN ) = N̂(~x, ~y)] ∧ [~zu = Dθ(~x, ~u)]. This is a set of extension axioms over

~v; ~u, ~zu, ~zN .
4. We set ω to be the substitution which maps each variable in ~y, ~zy to the corresponding

variable in ~u, ~zu and is the identity everywhere else.
The substitution ω is chosen so that Γ�ω = A(~x)∧ [θ̂(~x, ~u)]. Also ∆ and ω are chosen so that
the range of ω is a subset of the variables appearing in ∆, as required by the rule.

The reader should have in mind the following informal process, as sketched in the
introduction. Suppose we have an assignment α to ~v satisfying Γ = A(~x) ∧ [θ̂(~x, ~y)]. By R2,
we can use the circuits described in ∆ to extend it to an assignment α ∪ β to ~v, ~u, ~zu, ~zN
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satisfying Γ�ω = A(~x) ∧ [θ̂(~x, ~u)], and by R3 the ~u-part of β must be strictly smaller than
the ~y-part of α. By the construction of ω, if we let α′ := (α ∪ β) ◦ ω then α′ again satisfies
A(~x)∧ [θ̂(~x, ~y)], with the ~y-part of α′ the same as the ~u-part of β. In this way ∆ and ω work
together to simulate one step in the exponential-time algorithm to solve PLS by producing
smaller and smaller “feasible solutions” ~y such that [θ̂(~x, ~y)]. Specifically, ∆ computes the
next solution and writes it on its new variables ~u, then ω copies the values of ~u back to the
old variables, overwriting ~y.

Formally, to complete the proof we need to construct two ER derivations
(a) Γ ∧∆ ` Γ�ω

(b) Γ ∧∆ ∧ [~v ≤lex ~v�ω] ` ⊥.
Strictly speaking we should also include ¬C in both sets of assumptions, but since C is the
empty clause omitting this makes no difference.

Writing out (a) in more detail, what we need to show is

A(~x) ∧ [θ̂(~x, ~y)] ∧ [(~u, ~zN )=N̂(~x, ~y)] ∧ [~zu=Dθ(~x, ~u)] ` A(~x) ∧ [θ̂(~x, ~u)].

If the clauses [~zu = Dθ(~x, ~u)] were not present on the left then R2 would already be a
derivation of this. However these clauses are part of [θ̂(~x, ~u)], so we can use R2 with an
appeal to Lemma 12.

For (b), we observe that [~v ≤lex ~v�ω] means precisely [(~y, ~zy, ~x) ≤lex (~u, ~zu, ~x)], from which
formula we can easily derive in ER that [~y ≤lex ~u]. Hence we can use R3 and Lemma 11. J

6 Linear dominance simulates ER-PLS

Recall from Section 2.2 the notation C∗ and Γ∗ for converting clauses and CNFs into
equivalent PB constraints and formulas. We will show that, given a derivation of ∆ from Γ in
ER-PLS, we can construct in polynomial time a derivation of (∆∗, ∅,>, ∅) from (Γ∗, ∅,>, ∅)
in the linear dominance system, which implies the simulation. So we must show how to
handle the two rules of ER-PLS: the ER rule and the dominance rule.

ER rule. This follows straightforwardly by the well-known simulation of resolution by
cutting planes [12] and, for extension steps, using the redundance-based strengthening rule
(of the linear dominance system) and standard arguments about how to add extension axioms
as redundant clauses, see e.g. [25]. We include a detailed proof in Appendix A.4.

Dominance rule. Suppose we have a CNF Γ and a clause C, both in variables x1, . . . , xn,
plus a set ∆ of extension axioms over ~x; ~y, a substitution ω mapping variables ~x to variables
~x ∪ ~y, and two ER derivations
(a) Γ ∧∆ ∧ ¬C ` Γ�ω

(b) Γ ∧∆ ∧ ¬C ∧ [~x ≤lex ~x�ω] ` ⊥.
We will describe a derivation from (Γ∗, ∅,>, ∅) of (Γ∗ ∪ {C∗}, ∅,>, ∅).

We can combine the derivations for (a) and (b) above to construct an ER derivation

π : Γ ∧∆ ∧ ¬C ` Γ�ω ∧ [~x�ω <lex ~x].

where [~x <lex ~y] represents strict lexicographic ordering – see Proposition 25 in Appendix A.1.
Furthermore we may assume that π is actually a resolution derivation, that is, that it does
not include any applications of the extension rule. This is because we can move all extension
axioms introduced by that rule from the body of the derivation to ∆, preserving the order
in which they appeared in the derivation. That process turns ∆ into a set of extension
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axioms over ~x; ~y, ~z, where ~z now includes all extension variables that were introduced in the
original π, and in particular all auxiliary variables in [~x�ω <lex ~x].

To build the derivation in the linear dominance system, we first change the ordering from
the trivial order > to the lexicographic order on x1, . . . , xn, with the most significant bits
first. This can be done using the order change rule; see Section 3.2. So we are now in the
configuration (Γ∗, ∅,O�, ~x), where O� is the lexicographic order.

We then derive (Γ∗,∆∗,O�, ~x), where we add each extension axiom in ∆ in turn using
the redundance-based strengthening rule, in the same way that we handle extension axioms
in the the ER rule. We must check that we satisfy the order condition for this rule, but this
is easy, since the substitutions used do not affect ~x variables, which are the only variables
relevant to the ordering. Again we have moved the details to Appendix A.4.

Now we use dominance-based strengthening to derive (Γ∗,∆∗ ∪ {C∗},O�, ~x). We apply
the normal translation from resolution into CP to π to get

Γ∗ ∪∆∗ ∪ {(¬C)∗} C̀P (Γ�ω)∗ ∪ [~x�ω <lex ~x]∗.

It is easy to construct a short derivation ¬(C∗) C̀P (¬C)∗. We can also construct a derivation
[~x�ω <lex ~x]∗ C̀P O≺(~x�ω, ~x) in polynomial time by Lemma 24 in Appendix A.1, where O≺ is
strict lexicographic ordering written in the natural way using the same multilinear function
f as O�; this is the same as L< from Lemma 24, except that L< is reverse-lexicographic.
Moreover, (Γ�ω)∗ is the same as (Γ∗)�ω. Thus we have

Γ∗ ∪∆∗ ∪ {¬(C∗)} C̀P (Γ∗)�ω ∪ O≺(~x�ω, ~x). (2)

Finally, from (2) we can trivially construct a derivation

Γ∗ ∪∆∗ ∪ {¬(C∗)} ∪ O�(~x, ~x�ω) C̀P ⊥. (3)

The derivations (2) and (3) are what we need to apply the dominance-based strengthening
rule to derive C∗ (after weakening O≺ in (2) to O�). This completes the proof.

7 G1 simulates linear dominance

For this result we will use Theorem 15, which states that for a propositional proof system Q,
if S2

2 proves the CNF-reflection principle for Q, then G1 simulates Q. We take Q to be the
linear dominance system, considered as a system for refuting CNFs. That is, a Q-refutation
of a CNF Γ is a linear dominance refutation of Γ∗. Thus for the simulation it is enough to
prove in S2

2 that the existence of such a refutation of Γ∗ implies that Γ is unsatisfiable.
We do this by formalizing in S2

2 as much as we can of the proof of soundness of the
dominance system from [4]. We run into a problem when dealing with the dominance rule.
To show it is sound, it is enough to show that if a CNF is satisfiable, then it has a least
satisfying assignment with respect to the ordering O�. However as far as we know the general
statement of this form, that an arbitrary ordering has a least element, is not provable in S2

2 ,
and is known to be unprovable if the ordering given is by an oracle [29]. It is provable in T 2

2 ,
and hence in S3

2 , by a simple inductive argument. By the methods in this section it follows
from this that the full dominance system is simulated by G2.

To stay inside the strength of S2
2 we chose to work with the linear dominance system

instead since T 1
2 , and hence also S2

2 , can prove that any nonempty set of strings has a
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least element in the lexicographic ordering, which is enough to prove the soundness of the
dominance rule restricted to such an ordering.7

We use a definition from [4].

I Definition 19. A configuration (C ,D ,O�, ~z) is called valid if
1. C is satisfiable
2. For every total assignment α � C , there is a total assignment β with β � α and β � C ∪D .

Notice that validity is a Πb
2 condition, and in particular S2

2 is strong enough to do all
the basic reasoning we need about sums and inequalities. Working in S2

2 , suppose for a
contradiction we are given a satisfiable CNF Γ and a linear dominance refutation π of Γ∗. We
will use Πb

2 length induction, taking as our inductive hypothesis that the ith configuration
in π is valid. The base case is the initial configuration (Γ∗, ∅,>, ∅), which is valid by
assumption (since any assignment satisfying Γ already satisfies Γ∗). On the other hand
the final configuration in π is not valid, since in that configuration C ∪D is not satisfiable.
Therefore to derive a contradiction it is enough to show that every rule preserves validity.

Since the soundness of CP is trivially provable in PV, this is easy for the implicational
derivation, transfer and order change rules. For the remaining rules, namely redundance-
based strengthening, deletion and dominance-based strengthening, suppose we are at a valid
configuration (C ,D ,O�, ~z).

Redundance-based strengthening rule. We have a substitution ω and we know

C ∪D ∪ {¬C} � (C ∪D ∪ {C})�ω ∪ O�(~z�ω, ~z).

Let α � C . By the inductive hypothesis there is β � α such that β � C ∪D , and we want
to find β′ � α such that β′ � C ∪D ∪ {C}. If β � C then we set β′ = β. Otherwise we set
β′ = β ◦ ω, and the properties of β′ follow from the assumption.

Deletion rule. The interesting case is that we derive (C ′,D ′,O�, ~z) with D ′ ⊆ D and
C ′ = C \ {C} for some C derivable by the redundance rule from (C ′, ∅,O�, ~z). Let α � C ′.
If α � C then there is nothing to show. Otherwise, using the notation of the redundance
rule, we let α′ = α ◦ ω and know that α′ � α and α′ � C . The inductive hypothesis then
gives us β′ � α′ with β′ � C ∪D , so in particular β′ � α and β′ � C ′ ∪D ′.

For all rules so far, the proof that validity is preserved goes through even in PV. For
the last rule we will need to minimize the value of a PV function on a polynomial-time
computable set, which can be done in S2

2 , since it extends T 1
2 (see Section 4.1).

Dominance-based strengthening rule. We derive (C ,D ∪ {C},O�, ~z), and for a given
substitution ω we know

C ∪D ∪ {¬C} � C�ω ∪ f(~z�ω) ≤ f(~z)
C ∪D ∪ {¬C} ∪ {f(~z) ≤ f(~z�ω)} � ⊥

where f is the linear function defining O�. Let α � C . We want to find β′ � α such that
β′ � C ∪D ∪ {C}. Let S be the set of total assignments �-below α satisfying C . Let β be a

7 Whether the dominance system is strictly stronger than the linear dominance system is unclear.
Conceivably to bound the strength of the full dominance rule we could make use of the fact that the
ordering is not given by an arbitrary relation, but by a relation which is provably an ordering in CP.
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member of S for which f(β) is minimal (where f(β) stands for f applied to the ~z variables
of β). Using the least number principle for Σb1 formulas available in S2

2 , we can find such a β.
By the inductive hypothesis (that is, the validity of (C ,D ,O�, ~z)) we may assume that

β � C ∪D . If β � C then we set β′ = β. Otherwise let β′ = β ◦ ω. By the first entailment in
the rule, β′ � C and f(β′) ≤ f(β), so β′ ∈ S. Therefore by the minimality of f(β) we have
f(β) ≤ f(β′). But this contradicts the second entailment.

This completes the proof that S2
2 proves the soundness of the linear dominance system,

which is thus simulated by G1.

8 Simulations of fragments by ER

8.1 Weak linear dominance
Consider the version of the linear dominance system in which we limit the dominance-based
strengthening rule by only allowing it to be applied when the set D of derived clauses is
empty. That is, we replace it with the rule: from (C , ∅,O�, ~z) derive (C ∪ {C}, ∅,O�, ~z) if
there is a substitution ω and derivations

C ∪ {¬C} C̀P C�ω ∪ f(~z�ω) ≤ f(~z)
C ∪ {¬C} ∪ {f(~z) ≤ f(~z�ω)} C̀P ⊥.

where f is the linear function defining O�. We shall refer to this system as the weak linear
dominance system.

I Proposition 20. The weak linear dominance system is simulated by ER.

To prove the simulation, we use a lemma saying that PV knows that there is a polynomial
time function that lets us iterate a substitution m times, when m is given in binary.

I Lemma 21. There is a polynomial time function g(ω,m) which takes as input a substitu-
tion ω on variables z1, . . . , zn and a number m (coded in binary) and outputs the substitu-
tion ωm. Furthermore this works provably in PV, that is, PV ` g(ω,m+ 1) = g(ω,m) ◦ ω.

Proof. Fix a variable zi and consider the sequence zi, ω(zi), . . . , ω2n+2(zi) as a walk through
the space Lit ∪ {0, 1}. The sequence can be produced by a PV function on input 〈ω, i〉. By
the pigeonhole principle, which is available in PV here since n is small (polynomial in the
length of the input), this sequence must touch some point twice. That is, it consists of a walk
of length ki to some u ∈ Lit∪{0, 1}, followed by a loop of some size `i, where 0 ≤ ki ≤ 2n+ 1
and 1 ≤ `i ≤ 2n. Again, the numbers ki, `i can be computed by a PV function on input 〈ω, i〉

Thus to compute ωm(zi) for m > 2n+ 2 it is enough to calculate the remainder of m− k
divided by `: namely, ωm(zi) = ωki+((m−ki) mod `i)(zi). J

Proof of Proposition 20. By Theorem 15, it is enough to show that the soundness of the
weak linear dominance system is provable in S1

2 . So, working in S1
2 , suppose that a CNF Γ is

satisfiable but that Γ∗ has a refutation π in the system. We will derive a contradiction. We
will use length induction, but with a weaker inductive hypothesis than was used in Section 7
for the soundness of full linear dominance. Namely, we will show that for each configuration
(C ,D ,O�, ~z) in turn in π, C ∪ D is satisfiable. Satisfiability is a Σb

1 property, so this is a
form of length induction we can carry out in S1

2 . It yields a contradiction when we get to
the last configuration in π.
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The first configuration is satisfiable, by the assumption on Γ. It is easy to see that every
rule, other than dominance-based strengthening, preserves satisfiability; in the case of the
redundance-based strengthening rule, this is by the standard argument about composing the
current assignment once with ω, if necessary.

So suppose we are dealing with the weak dominance-based strengthening rule. We have
an assignment α which satisfies the current configuration (C , ∅,O�, ~z), and we want to satisfy
(C ∪ {C}, ∅,O�, ~z). We have a substitution ω and derivations

C ∪ {¬C} C̀P C�ω ∪ f(~z�ω) ≤ f(~z)
C ∪ {¬C} ∪ {f(~z) ≤ f(~z�ω)} C̀P ⊥.

for a linear f . Suppose for a contradiction that C ∪ {¬C} is unsatisfiable. Then, since CP
derivations are provably sound (even in PV) we know that for any assignment β, if β � C ,
then β ◦ ω � C and f(β ◦ ω) < f(β).

We may assume without loss of generality that f only takes values between 0 and some
upper bound m. Writing αi for α ◦ ωi, we use induction (rather than length induction) on i
to show that for all i we have

αi � C and f(αi) ≤ m− i.

By Lemma 21, this is a PV formula, so this induction can be carried out in S1
2 (if the formula

were Σb
1, we would only be able to use length induction). The base case i = 0 is true by

the assumptions about α and f , and the inductive step follows from the discussion in the
previous paragraphs. We conclude that f(αm+1) ≤ −1, which is impossible. J

8.2 Symmetry breaking in ER
Let us define a proof system Q, which we could call ER plus static symmetry breaking.
A refutation of a CNF Γ in Q consists of an initial step, in which we list a sequence of
symmetries ω1, . . . , ωk of Γ and write down the corresponding lex-leader constraints (where
for each constraint we use fresh auxiliary variables). This is followed by an ER refutation of
Γ augmented by these constraints, that is, of Γ′ := Γ ∧

∧
i[~z ≤lex ~z�ωi

].
For k ∈ N we define Qk to be Q limited to only adding axioms for k symmetries.

I Proposition 22. The full system Q is sound, and is simulated by G1.

Proof. We repeat the proof of Proposition 2, except this time we fill in some details. To
prove soundness, it is enough to show that, supposing Γ is satisfiable, Γ′ is satisfiable as
well. Let α be a lexicographically minimal assignment to the ~z-variables satisfying Γ. We
claim that an extension of α satisfies Γ′. To see this, let ωi be any symmetry from our list.
Then α � Γ implies α � Γ�ωi , and thus α ◦ ωi � Γ. By minimality of α we have α ≤lex α ◦ ωi,
and thus, extending α to β which satisfies the extension axioms in the definition of ≤lex,
we have that β satisfies the symmetry-breaking axiom [~z ≤lex ~z�ωi

]. In this way we can
simultaneously satisfy such axioms for all i, by the assumption that auxiliary variables are
disjoint.

For the simulation by G1, it is enough to observe that this argument can be cast as a
proof of the CNF-reflection principle for Q and carried out in T 1

2 . Then we can appeal to
Theorem 15. J

The converse direction is presumably false:

I Proposition 23. G1 is not simulated by Q, assuming G1 is not simulated by ER.
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Proof. Let Γn be a family of CNFs which have polynomial-sized refutations in G1 but require
superpolynomial size in ER. Then it is easy to construct a polynomial-sized CNF An such
that Γn∪An has no symmetries; assuming Γn has variables x1, . . . , xm, a convenient example
consists of clauses xi ∨ y1 ∨ · · · ∨ yi for each i, where y1, . . . , ym are new variables. Then G1
refutations of Γn still work for Γn ∪An (we may need to add one more weakening step). On
the other hand, if π is any Q refutation of Γn ∪An, then it must be just an ER refutation,
and we can turn it into an ER refutation of Γn by applying the restriction which sets every
yi variable to 1. Thus π must have superpolynomial size. J

We can now prove Theorem 5 from the introduction, that Q1 is simulated by ER.

Proof of Theorem 5. We will show that the soundness of Q1 is provable in S1
2 . The result

then follows by Theorem 15. Let Γ be a CNF and let ω be a symmetry of Γ. Let Γ′ :=
Γ∧ [~z ≤lex ~z�ω] and suppose we are given an ER refutation of Γ′. We will show, with a proof
formalizable in S1

2 , that if Γ is satisfiable then so is Γ′. We can then derive a contradiction,
since S1

2 proves the soundness of ER (see Theorem 14).
Working in S1

2 , suppose α � Γ. As in the proof of Proposition 20 we write αi for α ◦ ωi,
and use the fact that by Lemma 21 this can be computed in polynomial time. Suppose for
a contradiction that Γ ∧ [~z ≤lex ~z�ω] is unsatisfiable. It follows that for any assignment β,
if β � Γ then β ◦ ω <lex β. On the other hand, if β � Γ then we already know β ◦ ω � Γ,
since Γ�ω = Γ. Assuming that there are n many z-variables we have α ≤lex 2n − 1, where
we identify 2n − 1 with a string of 1s of length n. Thus we can reach a contradiction by a
similar induction as in the proof of Proposition 20, showing inductively that for each i we
have αi � Γ and αi ≤lex 2n − i. J

This proof breaks down immediately even for Q2, since we do not have any equivalent of
Lemma 21 for arbitrary compositions of two substitutions.

We briefly discuss how one could directly construct an ER refutation from a Q1 refutation,
without going through bounded arithmetic and Theorem 5. The main task is to construct a
circuit C which, when given an assignment α such that α � Γ, outputs an assignment β such
that β � Γ ∧ [~z ≤lex ~z�ω]. Furthermore this property of C must be provable in ER, in the
sense that we have an ER derivation Γ(~x) ∧ [~z = C(~x)] ` Γ(~z) ∧ [~z ≤lex ~z�ω] (where we are
suppressing auxiliary variables in C and ≤lex). We will just describe C.

We use a subcircuit which takes input ~z, i and computes αi := ~z�ωi using the algorithm
for g in Lemma 21. The circuit C finds i such that the two conditions αi � Γ and αi ≤lex 2n−i
hold for i, but one of them fails for i+ 1, and outputs αi. Such an i can be found by binary
search, since both conditions hold for i = 0 and the second one must fail for i = 2n + 1.
Since αi � Γ and αi+1 = αi ◦ ω, we have that αi+1 � Γ as ω is a symmetry. We conclude
that the second condition fails and αi+1 >lex 2n − i− 1. Thus αi+1 ≥lex αi, meaning that
αi ≤lex αi ◦ ω as required.
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A Postponed technical material

A.1 How to formalize ordering (from Section 3.3)
We define CNFs [~x <lex ~y] and [~x ≤lex ~y] expressing the lexicographic ordering. We will need
these to be compatible with how we reason about orderings in the pseudo-Boolean setting.

Let r be the arity of ~x and ~y. For our proof system we will want to compare ~x and ~y with
the most significant bits first, but just in this section we prefer to define a CNF for reverse
lexicographic order, since it gives more readable notation when we spell out the details.

We work with variables x1, . . . , xr, y1, . . . , yr, z1, . . . , zr+1 and c2, . . . , cr+1, representing
numbers x, y < 2r, a number z < 2r+1 and a string of “carry” bits c. We first write a CNF ∆
expressing “x + z = y + 2r”. This is the conjunction of, for each i = 1, . . . , r + 1, a CNF
expressing

xi + zi + ci = yi + 2ci+1 (4)

where at the “boundaries” we replace xr+1, c1 and cr+2 with the constant 0 and replace yr+1
with the constant 1; this last step corresponds to adding 2r to the number y. Each expression
of the form (4) can be written as a CNF. Moreover, since the number z is uniquely defined,
we can introduce extension variables needed for intermediate steps in the verification of (4)
in such a way that the whole formula ∆ becomes a set of extension axioms defining ~z, ~c and
the intermediate extension variables from ~x and ~y.

We write a CNF P< expressing that ~x < ~y by saying that “x+ z = y + 2r with z > 2r”,
that is, ∆ ∧ zr+1 ∧

∨r
i=1 zi.

Now let L< be the natural way to expressing the strict lexicographic ordering by a single
PB constraint. That is, L< is the constraint

∑r
i=1 2i−1xi <

∑r
i=1 2i−1yi. The definition of

P< was chosen to give a simple proof of the following lemma.

I Lemma 24. There is a polynomial-time procedure that on input 1r produces CP derivations
P<(~x, ~y)∗ C̀P L<(~x, ~y).
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Proof. We will write Xj , Yj , Zj for the sums
∑j
i=1 2i−1xi etc. We will inductively construct

derivations ∆∗ C̀P Xj + Zj = Yj + 2jcj+1, for j = 1, . . . , r, where ∆ is the CNF defined
above. Here and below the equality = is shorthand for the pair of inequalities ≤ and ≥.

For each such j, the CNF ∆ contains clauses together expressing xi + zi + ci = yi + 2ci+1,
after the substitution c1 → 0. Thus, by the implicational completeness of cutting planes [10],
we can produce constant-size derivations of this equality (as a pair of PB constraints)
from ∆∗. For i = 1 this immediately gives the base case of the induction. Now, in the
inductive step, suppose 1 ≤ j < r and we have Xj + Zj = Yj + 2jcj+1. Then we add
xj+1 + zj+1 = yj+1 + 2cj+2− cj+1 multiplied by 2j to obtain Xj+1 +Zj+1 = Yj+1 + 2j+1cj+2.

When the inductive construction is completed, we have derived Xr + Zr = Yr + 2rcr+1.
The final constraints in ∆∗ can be used to produce a constant-size derivation of the equality
zr+1 + cr+1 = 1. So we can add 2rzr+1 = 2r − 2rcr+1 to get Xr +Zr+1 = Yr + 2r. From the
assumptions zr+1 = 1 and

∨r
i=1 zr in P< we can derive Zr+1 > 2r, and together these give

us L<. J

We define P≤(~x, ~y) as the negation of P<(~y, ~x). Precisely, if P<(~y, ~x) has the form
∆ ∧ zr+1 ∧

∨r
i=1 zi we take P≤(~x, ~y) to be the CNF ∆ ∧ [w ↔ (zr+1 ∧

∨r
i=1 zi)] ∧ ¬w, where

the expression [w ↔ . . . ] is shorthand for a series of extension axioms defining a new
variable w. Finally we set the formula [~x ≤lex ~y] to be P≤(xr, . . . , x1, yr, . . . , y1) and set
[~x <lex ~y] to be P<(xr, . . . , x1, yr, . . . , y1). The next proposition is proved in a similar way
to the proof of Proposition 17 below.

I Proposition 25. Given an ER derivation Γ∧ [~x ≤lex ~y] ` ⊥ we can construct in polynomial
time an ER derivation Γ ` [~y <lex ~x].

A.2 Propositional translations (from Section 4.2)
We give the proof of Proposition 17. That is, suppose PV proves a sentence

∀~x, ϕ1(~x) ∧ · · · ∧ ϕr(~x)→ θ(~x), (5)

where ϕ1, . . . , ϕr, θ are quantifier-free. Then for any assignment ~k of bit-lengths to the
variables ~x, we can construct in time polynomial in ~k an ER derivation

[[ϕ1(~x)]]~k ∧ · · · ∧ [[ϕr(~x)]]~k ` [[θ(~x)]]~k.

Proof of Proposition 17. By the usual form of the translation from PV into ER, as presented
for example in [23, Theorem 12.4.2], it follows from the provability of (5) that in time
polynomial in ~k we can build an ER refutation

π : [[ϕ1(~x)]]~k ∧ · · · ∧ [[ϕr(~x)]]~k ∧ [[¬θ(~x)]]~k ` ⊥.

The details of how to transform π into an ER derivation π′ : Γ ` [[θ(~x)]]~k, where we write Γ
for [[ϕ1(~x)]]~k ∧ · · · ∧ [[ϕr(~x)]]~k, are routine but messy. The translation [[θ(~x)]]~k has the form
∆ ∧ zout where ∆ is a set of extension axioms over ~x1, . . . , ~x`;~z for some variables ~z (which
include zout). Modulo trivial modifications, [[¬θ(~x)]]~k can be taken to be ∆ ∧ ¬zout. Note
that by our conventions on variables, the variables ~z do not appear in Γ. Thus we can begin
π′ by deriving all of ∆ from Γ using the extension rule, and all that remains is to derive zout.

To so this, we work through the refutation π : Γ ∧∆ ∧ ¬zout ` ⊥ and, for each clause C
in π except for the initial clause ¬zout, we derive C ∨ zout. If C is a clause of Γ or ∆, we
derive C ∨ zout from C by weakening (notice that zout is at this point an “old” variable,
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since it appears in ∆); if C is derived in π by resolution on a variable other than zout or
by weakening, we derive C ∨ zout by the same inference; if C is derived in π from B ∨ zout

and A ∨ ¬zout by resolution on zout, we instead derive C ∨ zout by weakening from B ∨ zout

(again, this does not introduce any new variables). If C is part of an extension rule in π, we
introduce the same extension axioms and then derive C ∨ zout by weakening, noting that the
same variables are new at this point in π and in π′. Thus we finally derive zout, where in π
we derived ⊥. J

A.3 How to formalize satisfiability (from Section 5)
I Proposition 26. There is a polytime procedure that, given a CNF A in n variables, produces
an ER derivation A(~x) ` [[Sat(a, x)]]�τ , where the bit-lengths of ~a, ~x in [[Sat(a, x)]] are the
size of A and n, respectively, τ substitutes the bits of A for ~a, and A(~x) is A with variables
renamed to ~x.

Proof. We may assume that A is already in the variables ~x = x1, . . . , xn. The details of
the procedure will depend on how exactly Sat(a, x) is formalized by a PV formula, but any
two reasonable formalizations will be provably equivalent in PV, so we may focus on one
convenient formalization and then invoke Proposition 17 and Lemma 11.

Suppose, for example, that Sat(a, x) is given as a straightforward procedure that considers
each clause of a in succession and checks for each literal whether it belongs to the clause and
whether it is satisfied under x; afterwards, it checks if at least one literal was satisfied in
each clause. Let m be the number of clauses in A. Then we may assume that [[Sat(a, x)]]�τ
contains the following auxiliary variables: for each j = 1, . . . ,m and each i = 1, . . . , 2n (this
being the number of literals in n variables), a variable zji with the intuitive meaning that
one of the first i literals appears in the j-th clause and happens to be satisfied; and for each
j = 1, . . . ,m, a variable wj with the intuitive meaning that each of the first j clauses contains
a satisfied literal. We may also assume that [[Sat(a, x)]]�τ consists of the following conjuncts:

for j = 1, . . . ,m and i = 1, . . . , 2n, a constant-size set of clauses logically equivalent to
either zji ↔ zji−1, if the i-th literal does not appear in the j-th clause, or zji ↔ zji−1∨(¬)xk,
if the i-th literal appears in the j-th clause and happens to be (¬)xk (here zj0 is the
constant 0),
for j = 1, . . . ,m, a constant-size set of clauses logically equivalent to with wj ↔ wj−1∧zj2n
(here w0 is the constant 1),
wm.

The derivation of this from A is the obvious one: first, for each j = 1, . . . ,m, introduce each
zji ↔ zji−1 resp. zji ↔ zji−1 ∨ (¬)xk as extension axioms and perform a series of resolutions
with the j-th clause of A, eventually obtaining zj2n. Then, again for each j = 1, . . . ,m,
introduce wj ← wj−1 ∧ zj2n as an extension axiom and resolve wj ← wj−1 ∧ zj2n with zj2n and
wj−1 to obtain wj . J

A.4 Simulating ER-PLS by linear dominance (from Section 6)
We give some details omitted from Section 6. We first show how to simulate the ER rule
of ER-PLS in the linear dominance system, and then we fill a gap in how we handled the
dominance rule.

ER rule. Suppose Γ∧∆ is derived from Γ by the ER rule. Then there is an ER derivation π
which begins with Γ and includes every clause in ∆. It is enough to show that from (Γ∗, ∅,>, ∅)
we can derive (Γ∗, π∗,>, ∅), where we write π∗ for the set of translations of clauses appearing
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in π. This is because we can then copy all of ∆∗ from the derived constraints π∗ into the core
constraints Γ∗ using the transfer rule of the dominance system, to get ((Γ ∧∆)∗, π∗,>, ∅).
and finally reset the derived constraints to ∅ using the deletion rule, to get ((Γ ∧∆)∗, ∅,>, ∅)
as required.

Treating each clause in π in turn, either it is an initial clause from Γ; or it was derived
from earlier clauses by resolution or weakening; or it is a clause introduced by the extension
rule. The first two cases are easily dealt with by the implicational derivation rule (of the
dominance system), plus the well-known simulation of resolution by CP [12]. The remaining
case is the extension rule. We use the standard arguments for showing that we can simulate
this rule in a system based on adding certain redundant clauses, see e.g. [25].

An extension axiom in π has the form of three clauses ¬u ∨ ¬v ∨ y, ¬y ∨ u and ¬y ∨ v,
which we translate into three PB constraints:

A : (1− u) + (1− v) + y ≥ 1
B : (1− y) + u ≥ 1
C : (1− y) + v ≥ 1.

We show that these can be derived from any set E of PB constraints which do not mention the
variable y, by three applications of the redundance-based strengthening rule of the dominance
system (we may ignore the part of the rule having to do with the ordering, as we are using the
trivial ordering >). That is, we must find substitutions σ, τ, ω and derivations E ∪ {¬A} C̀P

(E ∪ {A})�σ, E ∪ {A,¬B} C̀P (E ∪ {A,B})�τ and E ∪ {A,B,¬C} C̀P (E ∪ {A,B,C})�ω.
Let σ map y 7→ u and do nothing else. Then E�σ = E and A�σ is 2− v ≥ 1, which is the

Boolean axiom v ≤ 1. Thus we have the first CP derivation. For the second CP derivation
we can set τ = σ again, since B�σ is just 1 ≥ 1.

Now let ω map y 7→ 0 and do nothing else. Then E�ω = E and we have

A�ω is (1− u) + (1− v) ≥ 1 C�ω is v ≥ 0
B�ω is u ≥ 0 ¬C is 1− y + v ≤ 0

Thus B�ω and C�ω are trivially derivable. For A�ω, we can rearrange it as u+ v ≤ 1, which
we can derive by starting with ¬C and adding axioms y ≤ 1 and u ≤ 1. Thus we have the
third CP derivation.

We also allow extension axioms expressing y ↔ u or y ↔ 0 or y ↔ 1. We can derive the
∗ translations of these in a similar way to the first two derivations above, by simply setting y
to be u or the desired value.

Dominance rule. We fill in a step that was omitted in Section 6. Suppose we are in a config-
uration (Γ∗, ∅,O�, ~x), where O� is the lexicographic order. We must derive (Γ∗,∆∗,O�, ~x),
where ∆ is a set of extension axioms over ~x; ~y.

We do this by adding each extension axiom in ∆ in turn using the redundance-based
strengthening rule, in the same way that we handled introducing extension axioms in the case
of the ER rule above. However this time we must check that we satisfy the order condition
for this rule – this did not matter before, as there we had the trivial order.

For example (using the same notation E , A, σ as above), in the derivation needed to
introduce A, the formal requirement is to show

E ∪ {¬A} C̀P (E ∪ {A})�σ ∪ O�(~x�σ, ~x).

However this is trivial as σ does not affect the variables ~x, which are explicitly the only
variables compared in the ordering O�. The same goes for the other substitutions used
above.
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