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1. On many occasions one considers infinite sequences. If we want to define the area of a circle we may

consider for example regular polygons inscribed into it having a growing number of vertices and we may say

that the area of the circle is a number approached by the areas of the polygons. The precision grows together

with the numbers of the vertices. In fact we consider a sequence of areas of regular polygons inscribed into

the circle. This means that to each natural number starting from 3 a real number is assigned. The real

numbers are called sequence terms. Usually the third term of a sequence is denoted by a3 , the fourth one

a4 etc.

2. Another example of an infinite sequence was considered by Zeno of Elea (490—425 BC). He said that

Achilles known as one of the fastest runners of ancient times cannot catch a turtle. We shall describe his

argument using present language and contemporary notation. For simplicity let us assume that the initial

distance between Achilles and the turtle is 100 meters and the the velocity of the escaping turtle is 10

times smaller than the velocity of the following man. After some time Achilles will pass 100 meters. At

the same time the turtle will pass only 10 meters and is not caught by the man. After ten times smaller

amount of time Achilles will pass 10 meters and the turtle is still ahead of him by 1 meter. Achilles will pass

the remaining 1 meter but the turtle is still 0.1 of a meter ahead of him. The process may be continued.

The subsequent distances passed by Achilles are 100 m, 110 m, 111 m, 111.1 m, 111.11 m, . . . We are

considering a sequence of numbers. Write an = 100 + 10 + 1 +
1
10 + · · · + 100

10n−1 = 111.1 . . .1 , the digit 1

appears in the last number n times. Zeno was unable to say how to determine the sum of infinitely many

numbers. A precise definition necessary for the solution of the problem was not ready until the begining of

the 19 -th century (Gauss, Cauchy, Bolzano). Obviously today one can say that Achilles will catch the turtle

after he will pass 10009 = 111.11 . . . meters, there are infinitely many ones in the last expression. In order to

make the solution of the problem as clear as possible we shall write down an argument that does not use

a notion of an infinite sum explicitely. Let x be a distance passed by the turtle during his escape. At the

same time Achilles passed the distance of 10x . The difference of the distances is 9x = 100 , so x = 1009 , thus

10x = 10009 . We did not show yet how to solve an important problem raised by Zeno, we only went around

it.* The important problem was to find the limit of the sequence. We shall learn soon how to deal with such

problems.

3. We are going to consider another example of great importance for the economists. Let us assume that the

deposit of k dollars is in a bank, the interest rate is 100x per year. If the deposit remains untouched for e year

and the interest is compounded once a year then after a year we shall have k + xk dollars. If the interest is

compounded after 6 six months we shall have k+ x2k dollars after 6 months and k+
x
2 k+

x
2 (k+

x
2 k) = k(1+

x
2 )
2

dollars after the whole year. This means that under such a policy of the bank we shall k x
2

4 dollars more

* There were other paradoxes related to infinity. For example a point has no length, a line segment consists of points
but it has a length. This seems to mean that the sum of infinitely many zeros may be positive! A moving object, say
an arrow travels no distance at an infinitely short time, so it should not move at all. We shall learn in what way one
should talk of such questions and do not end up with a contradictory statements.
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than under the previous one. Obviously for small deposit this is not important, if k = 1000 , x = 1
10

( 10% interest rate is very high!) then k x
2

4 = 2.5 so it is not much. For big deposits the situation changes.

Suppose now that the interest is compounded after each month. Then after the first month the deposit will

be k + x
12k = k(1 +

x
12 ) , after 2 months it will be k(1 +

x
12 ) · (1 + x

12 ) = k(1 +
x
12 )
2 , after 3 months

k(1 + x
12 )
3 , . . . , after a year k(1 + x

12 )
12 . If we divide a year into n equal periods (n may be 1, 2, 3, . . . )

then after a year the deposit will be equal to k(1 + xn )
n . It is more or less clear that when we increase the

number of periods after the interest is compounded the amount of money after a year should grow. People

responsible for the policy of the bank should know how such changes of the policy influence the income of

bank customers because it is tightly related to the income of the bank.

The quantity k(1 + xn )
n with x ∈ �

, not necessarily x > 0 appears in different situations. Physicists

say that the decay of the mass of an radioactive element is proportional to the given mass and to the time. It

is not hard to realize that this statement differs very little from the statement: the amount of money added

to the deposit is proportional to the deposit. Therefore the formula obtained after a similar consideration

is the same. The only difference is that in this case the x < 0 . In this case it makes more sense to think

that n is very big, in fact the bigger n is the result should be more precise. In the bank it is practically

impossible to compound interest continuously but the radiation is not stopped after office hours, it goes

on with no breaks. Another example from physics leading to the same formula is the length of steel rail

considered as a function of temperature. The length of the rail grows together with the temperature. The

increment of the length is proportional to the increment of the temperature and the length of the rail. This

physics law is known to everybody who took physics in a high school. In this situation one writes that

∆` = λ ·∆t . This leeds to the formula `(t +∆t) = `(t)(1 + λ∆t) , λ plays here the role of x in the story
about a deposit in a bank. Very few high school students are able to notice that if this law is applied in a

standard way with no comments it leads to contradictory results. If the rail is warmed up say by 20◦ C at

once one gets `(t+ 20) = `(t)(1 + 20λ∆t) . It the rail is warmed up twice by 10◦ each time then the result

is `(t + 20) = `(t + 10)(1 + 10λ∆) = `(t)(1 + 10λ∆)2 = `(t)(1 + 20λ∆t + 100λ2∆t2) so it is bigger. The

problem that arises is of mathematical nature. In this particular case the difference `(t) · 100λ2∆t2 is very
small, because λ is very little and it is squared, in fact much smaller than the precision of measurement, so

it is practically irrelevant. One should be able to find mathematical formulas that would lead to the same

result because in practically the rail is warmed up gradually, so one should be able to compute its length

with any of the two methods described above. The is true in the case of radioactive decay. But there is a

difference. Frequently people are interested at the time after which the mass of the radioactive element will

be twice smaller than the initial one. This means that although the coefficient λ is little also in this case the

time is big enough to make the quantity `(t) · 100λ2∆t2 so big that it is not possible to call it negligible.
In both situations we ended up with the same formula as in the case of a deposit in the bank. This

should convince us that the sequence
(

1 + xn
)n
is important.

4. A geometric sequence is another important type of a sequence. a0 , q are arbitrary real numbers. We
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define a1 = a0q , a2 = a1q , . . . , in general an = a0q
n for n = 0, 1, 2 . . . . The number q is called a ratio

of the geometric sequence. If q 6= 0 , then q = a1a0 =
a2
a1
= . . . . Problems described above lead to different

geometric sequences. If the interest rate is fixed then the deposit behaves like a geometric sequence: a0 is

the initial deposit, a1 is the deposit after the first period after which the interest is compounded, a2 is

the deposit after two periods etc. Another example is a number of people living in some country. If the

conditions of life are unchanged (no wars, typhoons, floods, . . . ) then the population changes at a certain

rate, grows if the population growth rate x is positive, declines if the growth rate x is negative. In this

situation q = 1 + x .

5. Even simpler than a geometric sequence is an arithmetic one: an = a0+nd , a0 and d are arbitrary real

numbers. The number d is called the difference of a sequence because it is a difference of two subsequent

terms. In the 19-th century some people noticed the the amount of grain behaves approximately like an

arithmetic sequence (n was a number of the year). Of course from time to time there were floods, droughts

and the statistics changes. In the 19-th century people started to use chemical fertilizers, one the first in use

was Chile saltpeter. This resulted in crop growth.

6. In the manuscript Liber abaci (1202) of Leonardo Pisano, known as Fibonacci, there is a problem: A

certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can

be produced from that pair in a year if it is supposed that every month each pair begets a new pair which

from the second month on becomes productive? At first there is one pair of rabbits, a month later there are

two pairs of them. The old ones are ready to have one more pair in a month, new born are not, so after 2

months there are 3 pairs of rabbits. 2 pairs of „old” rabbits will give birth to 2 new pairs of rabbits in a

month. So after 3 months there will be 5 pairs of rabbits, among them 2 pairs of new born. Therefore after

4 months there are 5+3 = 8 pairs of rabbits, 3 of them new born. After some time we are able to say that

after a year there are 377 = 233+144 pairs of rabbits. There is a quite natural question: let a0 = 1 , a1 = 2

i an = an−1 + an−2 for all n = 2, 3, 4, . . . . Find a formula for an . Such a formula was written by J.Binet in

19–th century. Here it is:

an =

(

1+
√
5

2

)n+2

−
(

1−
√
5

2

)n+2

√
5

.

One can easily verify it using for example mathematical induction. But there is more important question.

How it is possible to guess or to derive it? It does not look obvious and it is not surprising that it took so long

before mathematicians were able to get it. We are not going to discuss the derivation of the Binet formula

now.

7. We shall give a precise definition of a sequence now.

Definition of a sequnce

A sequence is an arbitrary function defined on the set of all integers that are greater than or equal to n0 ,

n0 is a given integer. The value of the function at n ≥ n0 is called an n–th term of the sequence.
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(an) denotes the sequence n–th of which is an . When the sequence of regular polygons was considered

then n0 = 3 , because the smallest number of the vertices was 3 . In the next two examples n0 = 1 (the first

term of the sequence is a1 ). Geometric sequence, arithmetic sequence and Fibonacci sequences started from

a0 so in these cases n0 = 0 .

In some cases the initial index n0 may be negative. The names arithmetic sequence or geometric sequence

will be applied to sequences originating from an0 , no matter what n0 is chosen. The only requirement is

that an+1 = an + d for n ≥ n0 in the case of an arithmetic sequence or — an+1 = an · q for n ≥ n0 in the
case of an geometric sequence. Most frequently we shall start with 0 or od 1 . Unless something else will be

written explicitely the letter n will denote a non–negative integer, i.e. natural number.*

8. Now we are ready to define a limit of a sequence. We came close to this notion when telling the story

about Achilles and the turtle (Zeno paradox).

Definition of the limit of the sequence

a. A number g is a limit if the sequence (an) iff, for each real number ε > 0 there exists an integer nε

such that if n > nε then |an − g| < ε .
b. +∞ ( plus infinity) is a limit of the sequence (an) iff for each real number M there exists an integer
nm such that if n > nM then an > M .

c. −∞ ( minus infinity) is a limit if the sequence (an) iff for each real number M there exists an integer
nm such that if n > nM then an < M .

d. It g is a limit of the sequence (an) , finite or not, we write g = lim
n→∞
an or an−−−−−→

n→∞
g . Some people

write an → g as n→∞ or shortly an → g . If the sequence has a finite limit g we say it is convergent
to g .

Suppose g = lim
n→∞
an for some g ∈

�
. The difference |an − g| is small ( |an − g| < ε ) if the number

n numery is big enough (n > nε ), so we can say that for n sufficiently big the term an is approximately

equal to g , moreover the admissible error is |an−g| < ε . Let us be more precise. It does not have to be true
that later terms necessarily give a better precision. It may happen that for some time an error will grow.

What is true is the following: if one wants to approximate g with small error with an , he should take n

large (sufficiently large). The precise meaning of the statement sufficiently large depends on the sequence.

One should think of the number ε as of „allowed error”, so usually it will be very little. If we are able to

prove that for sufficiently big n ’s the term an approximates g with an error smaller then ε then the error

is smaller than any ε̃ > ε . It is one of many obvious statements which are very useful in proofs.

Do not forget that the number |x− y| may be regarded as the distance of points x, y on the real line.
Therefore the inequality |an − g| < ε means that that point an is inside the open interval of length 2ε
centered at g . In particular the sequence all term s of which are equal (or only terms with sufficiently big

* Some mathematicians say that the natural numbers start from 1 , so they are 1 , 2 , . . .Others say that they start
from 0 . At the moment the author supports the later concept. Natural numbers are used primarily for saying how
many elements are in a given finite set, since an empty set has 0 elements we regard 0 as a natural number. Obviously
an empty set is an abstract notion so it is hard to say whether it is natural to include 0 into natural numbers. Some
people do not like this idea. It is obviously possible to discuss such a problem as long as the humanity exists.
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indices are equal), is convergent to the common value of all terms.

Instead of there exists nε such that for all n > nε . . . holds we shall say for sufficiently big n . . . holds

or for almost all n . . . holds. So for almost all n ’s . . . means for all except for finitely many n ’s . . . . On

many occasions we shall be interested at g not at nε .

One can speak in a very similar way of the equality +∞ = lim
n→∞
an , part b of the definition of the limit.

In this situation the term an (n > nM ) should be close to plus infinity. This should mean that it is a big

positive number, so an > M . We do not assume in the definition that M > 0 but it is clear that one may

think of positive M only: if an > 0 then an is greater than any negative number.

We leave to the reader restating part (c) of the the definition in the same way.

If +∞ = lim
n→∞
an then some people say that the sequence (an) is convergent to +∞ while some other

people say that the sequence (an) is divergent to +∞ . Usually in this situation we shall say convergent.
9. Examples

a. 0 = lim
n→∞

1
n . To prove this it is enough to define nε as an arbitrary number greater than

1
ε . Thus

we may set n1 = 1 , n1/2 = 3 , n0,41 = 3 etc. but we may also choose bigger numbers e.g. n1 = 10 ,

n1/2 = 207 , n0,41 = 3 , etc. Always we may replace a chosen nε with a bigger number.

b. 12 = limn→∞
2n+3
4n−1 . We are going to show this equality. Obviously the inequality

∣

∣

∣

1
2 − 2n+34n−1

∣

∣

∣
=
∣

∣

∣

−7
2(4n−1)

∣

∣

∣
≤

7
6n holds for all n ≥ 1 . Therefore it suffices to choose nε so that nε > 7

6ε . This means that if nε is

chosen so and n > nε then
∣

∣

∣

1
2 − 2n+34n−1

∣

∣

∣
< ε . We do not claim that the inequality holds for these indices

only. We say that for them it holds, maybe it holds also for some others! It is not necessary to solve the

inequality, we only need to show that it holds for all sufficiently big natural numbers n .

c. If d > 0 then +∞ = lim
n→∞
(a0 + nd) . Let us show it. If M is an arbitrary number, nε >

M−a0
d and

n > nε then n >
M−a0
d . Therefore an = a0 + nd > M . Thus +∞ = lim

n→∞
(a0 + nd) .

10. Bernoulli Inequality

We are going to prove a useful inequality. Let n be a positive integer, a > −1 a real number. Then

(1 + a)n ≥ 1 + na

the equality holds iff a = 0 or n = 1 .

If n = 1 then for every a the equality holds: (1+ a)1 = 1+1 · a . Since (1+ a)2 = 1+2a+ a2 ≥ 1+2a
the inequality holds for n = 2 and all real numbers a (not for a > −1 only). We can multiply the
inequality (1 + a)2 ≥ 1 + 2a by a positive number (1 + a) , here we use the hypothesis a > −1 . The result
is (1 + a)3 ≥ (1 + 2a)(1 + a) = 1 + 3a+ 2a2 ≥ 1 + 3a . It is clear that for a 6= 0 the strict inequality holds.
In the same way we derive the inequality (1 + a)4 ≥ (1 + 3a)(1 + a) ≥ 1 + 4a + 3a2 ≥ 1 + 4a from the
inequality (1 + a)3 ≥ 1+ 3a . We may repet the procedure as many times as we want to. This way we prove
the inequality for n = 5 and all a > −1 , then for n = 6 etc. In general, if the inequality is true for a > −1
and fixed n then (1 + a)n+1 ≥ (1 + na)(1 + a) = 1 + (n+ 1)a+ na2 ≥ 1 + (n+ 1)a . It is not hard to show
that for n > 1 the equality holds for a = 0 only. Of course in the proof we used mathematical induction.
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We did not start with the name of the procedure in hope that the students would not be terrified by the

name.

11. The limit of a geometric sequence

Let an = q
n . This sequence is convergent to 0 iff |q| < 1 , It is convergent to 1 , if q = 1 , its limit is

+∞ if q > 1 . If q ≤ −1 , then the sequence does not have any limit.
The theorem is easy. In the case q = 0 or q = 1 the claim is obvious, because in these situations the

sequence is constant, i.e. its terms are independent of n .

Let −1 < q < 1 . Then 0 < |q| < 1 . Let ε > 0 be a real number. If nε >
1
ε − 1
1
|q| − 1

is an integer and

n > nε , then
1

|q|n =
(

1 +
(

1
|q| − 1

))n

≥ 1 + n( 1|q| − 1) > 1 + 1ε − 1 = 1ε .

This implies that for n > nε the inequality
1
|q|n >

1
ε holds. Therefore for n > nε we have |qn| < ε but this

means that lim
n→∞
qn = 0 , by the definition of the limit.

Next case is q > 1 . One can easily see that qn = (1 + (q − 1))n ≥ 1 + n(q − 1) . So, if n > nM and
nM >

M−1
q−1 then q

n > 1 + (M − 1) =M . This proves that lim
n→∞
qn = +∞ .

It is time to assume that q ≤ −1 . In this case qn ≤ −1 for any odd integer n and qn ≥ 1 for any even
integer n . If the sequence is convergent to a finite limit g then the distance of any term with n sufficiently

big from g is less than 1 . So the distances from qn or qn+1 from g are less than 1 . Therefore the distance

from qn to qn+1 is less than 1 + 1 = 2 i.e. |qn − qn+1| < 2 . This is not possible, because one the numbers
qn , qn+1 is less than or equal to −1 while the other one is greater than or equal to 1 , so the the distance
from qn to qn+1 is greater than or equal to 1 − (−1) = 2*. It is a contradiction, so the sequence has no
finite limit. Also +∞ is not the limit of the sequence, because if it had been then for n sufficiently large
the following inequality would hold qn > 0 (here M = 0) contrary to qn < 0 for all odd n . Analogously

−∞ is not a limit of the sequence because for all even n , qn > 0 .
Therefore the sequence (qn) nas neither finite nor infinite limit.

12. Monotone, strictly monotone and bounded sequences

Definition of monotone sequences

A sequence (an) is called non-decreasing (increasing) iff for every number n the inequality an ≤ an+1
(an < an+1 ) is satisfied. Similarly a non-increasing (decreasing) sequence is a sequence such that for every

number n the inequality an ≥ an+1 (an > an+1 ) is satisfied. A monotone sequence is a sequence which is
either non-decreasing or non-increasing. A strictly monotone sequence is a sequence which is either increasing

or decreasing.

In some books another terminology is used: instead of non-increasing sequence the authors may say

decreasing. In such case the name strictly increasing is applied for increasing sequences. To avoid any mi-

sunderstanding one may talk of non-decreasing and of strictly increasing sequences.

* Using the formulas we can write: 2≤|qn−qn+1|≤|qn−g|+|g−qn+1|<1+1=2 for n sufficiently big.
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A geometric sequence that starts from a1 = q is monotone for q ≥ 0 : for q = 0 or q = 1 the geometric
sequence is constant, in these cases it is non-increasing and non-decreasing at the same time. If 0 < q < 1

the sequence is decreasing, if q > 1 it is increasing. An arithmetic sequence with positive difference d is

increasing, if the difference d is negative it is decreasing, if d = 0 the sequence is constant.

Definition of bounded sequences

A sequence (an) is bounded from above iff there exists a real number M such that for every natural

number n the inequality an ≤M is satisfied. A sequence (an) is bounded from below iff there exist a real
number m such that for every n the inequality an ≥ m holds. A sequence which is bounded from above
and from below is called bounded. A sequence which is not bounded is called unbounded.

A sequence (n) is bounded from below, eg. −13 or 0 are its lower bounds. This sequence is not bounded
from above, so we say it is unbounded. The sequence

(

(−1)n
)

is bounded from above, e.g. by 1 or
√
1000 .

It is also bounded from below, e.g. by −1 or by −13 .

It is clear that a sequence (an) is bounded iff there exists a non-negative number M such that |an| ≤M
for every n . This is an obvious corollary from the definition of a bounded sequence: a number M must be

so big that M is an upper bound and at the same time −M is a lower bound of the sequence (an) .

13. The sequence
(

(1 + xn )
n
)

Let us start with writing down the first ten terms of a sequence.

in the case of x = 1 : and in the case of x = −4 :
(

1 + 11
)1
= 2

(

1 + −41
)1
= −3

(

1 + 12
)2
= 94 = 2, 25

(

1 + −42
)2
= 1

(

1 + 13
)3
= 6427 ≈ 2, 37

(

1 + −43
)3
= −127 ≈ −0, 37

(

1 + 14
)4
= 625256 ≈ 2, 44

(

1 + −44
)4
= 0

(

1 + 15
)5
= 77763125 ≈ 2, 49

(

1 + −45
)5
= 1
3125 ≈ 0, 00032

(

1 + 16
)6
= 11764946656 ≈ 2, 52

(

1 + −46
)6
= 1
729 ≈ 0, 0014

(

1 + 17
)7
= 2097152823543 ≈ 2, 55

(

1 + −47
)7
= 2187
823543 ≈ 0, 0027

(

1 + 18
)8
= 4304672116777216 ≈ 2, 56

(

1 + −48
)8
= 1
256 ≈ 0, 0039

(

1 + 19
)9
= 1000000000387420489 ≈ 2, 58

(

1 + −49
)9
= 1953125
387420489 ≈ 0, 0050

(

1 + 1
10

)10
= 2593742460110000000000 ≈ 2, 59

(

1 + −410
)10
= 59049
9765625 ≈ 0, 0060

It is easy to see that the sequence (an) with an = (1 +
x
n )
n is neither arithmetic nor geometric with

one exception: x = 0 . We are going to show that if n > −x 6= 0 then an+1 > an . This means
that the sequence is increasing from some place. If x > 0 it is increasing. If x < 0 then it may happen

that initial terms change their signs. In such situation there is no chance for monotonicity. If all terms of

the sequence are positive then it is increasing. This should be proved. The inequality n > −x imply the
inequality n+1 > −x . The first of the two implies that 1+ xn > 0 , the second one implies that 1+ x

n+1 > 0 .

The inequality an < an+1 is equivalent to
(

1 + xn
)n
<
(

1 + x
n+1

)n+1

. Since 1 + xn > 0 the last inequality
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is equivalent to
(

1+ x
n+1

1+ xn

)n+1

> 1

(1+ xn )
= n
n+x . We shall use Bernoulli inequality (see 10.) to prove that the

last inequality holds for n > −x . One has
(

1+ x
n+1

1+ xn

)n+1

=
(

1− x
(n+x)(n+1)

)n+1

≥ 1− (n+ 1) x
(n+x)(n+1) = 1− x

n+x =
n
n+x .

Let us mention that that the number −x
(n+x)(n+1) , it plays the role of a in Bernoulli inequality, is greater

than −1 — it is obvious for x ≤ 0 because in this case the number is positive, if x > 0 its absolute value
x

(n+x)(n+1) is less than
1
n+1 < 1 . We have proved that from the moment at which the quantity (1 +

x
n )

becomes positive for all subsequent n ’s the sequence starts growing (it is constant for x = 0). Let us

mention that if x > 0 then all terms of the sequence are positive, if x < 0 then for every even number n

the inequality (1 + xn )
n ≥ 0 holds while for odd integers n it holds under the hypothesis n > −x .

One interesting question is still open: is the growth of the sequence
(

(1 + xn )
n
)

unbounded in the

case of x > 0 or for a given number x one can find a number greater than all terms of the sequence. It

turns out that the sequence
(

(1 + xn )
n
)

is bounded from above for any positive number x . For negative

number x this statement is obvious since as it was said before we have 0 <
(

(1 + xn )
n
)

< 1 for n > −x . If

n > x > 0 then
(

1 + xn
)n
=

(

1− x2
n2

)n

(1− xn )
n < 1

(1− xn)
n . The quantity 1

(1− xn )
n decreases together with n (recall

that n > x ) because the numerator is unchanged while the denominator grows as we proved before. This

implies that if n(x) is the smallest integer greater that x then all terms of the sequence are less than

1
(

1− x
n(x)

)n(x) =
(

n(x)
n(x)−x

)n(x)

. For example n(1) = 2 so all term of the sequence
(

1 + 1n
)n
are less than

(

2
2−1

)2

= 4 . If x = −4 then all terms of the sequence beginning from the fifth one are positive and less

than 1 , a quick look at the first four of them tells us that the biggest of all terms is
(

1+ −42
)2
= 1 and the

smallest one is
(

1 + −41
)1
= −3 .

It easily follows that if k ≥ n(x) than the number 1

(1− xk )
k =

(

k
k−x

)n

is an upper bound of the sequence

(

(

1 + xn
)n
)

— the reader may prove this easy statement by himself or herself.

14. A limit of a monotone sequence

We cannot give any proof of the following theorem

The Monotone Sequence Limit Theorem

Each monotone sequence has a limit.

We cannot prove this theorem because we never stated the Dedekind Continuity Axiom. In fact this

theorem is equivalent to the axiom which is not included into this book. Let us just say that had we used

rational numbers only (a number is rational if it can be written as a fraction with integer numerator and

integer denominator), the theorem was false. This is due to the fact that there are sequences of rational

numbers with irrational limits. This theorem describes in some way a very important property of the set of

all real numbers, namely: there are no holes (punctures) in it, geometrically the set of all real numbers is

a straight line. The Dedekind axiom describes the same property with other words. The set of all rational

numbers is very different. There are punctures in it everywhere. Between any two rational numbers c , d
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there is an irrational number, e.g. c+ d−c√
2
— the number is irrational because

√
2 > 1 is irrational while c, d

are rational. The number lies between c and d because it lies on the same side of c as d and its distance

from c is less than that of d : |d−c|√
2
< |d− c| .

From the monotone sequence limit theorem it follows immediately that the geometric sequence with

q ≥ 0 has a limit. The theorem does not imply that there is a limit in the case of q < 0 because in this case
the sequence is not monotone.

The theorem implies also that for every real number x the sequence
(

(1 + xn )
n
)

has a limit. The

sequence is not monotone but it is monotone from some place and it suffices for convergence since a change

of finitely many terms of the sequence has no impact on convergence or on the limit. It is so because in the

definition of a limit one speaks of an with sufficiently big n only, so the change of finitely many terms of

the sequence may change only the meaning of the statement sufficiently big .

Notation

In the future exp(x) will denote the limit of the sequence
(

(1 + xn )
n
)

, so

exp(x) = lim
n→∞

(

1 +
x

n

)n

.

Therefore the symbol exp denotes the function which is defined on the set of all real numbers, the function

assigns a positive number lim
n→∞

(

1 + xn
)n
to a real number x .

15. Definition of the operations with ±∞ symbols
The symbols +∞ and ∞ have been already used. They are not new real numbers, they are new objects.
We are going to define operations with them.

Definition

−(+∞) = −∞ , +(+∞) = +∞ , −(−∞) = +∞ , +(−∞) = −∞ .
+∞± a = ±a+ (+∞) = +∞ and −∞± a = ±a+ (−∞) = −∞ for every real number a .
+∞+ (+∞) = +∞ , −∞+ (−∞) = −∞ , +∞− (−∞) = +∞ , −∞− (+∞) = −∞ .
+∞ · a = +∞ and −∞ · a = −∞ for any real number a > 0 ,
(+∞) · (+∞) = (−∞) · (−∞) = +∞ .
+∞ · a = −∞ i −∞ · a = +∞ for any real number a < 0 ,
a
±∞ = 0 for every real number a ,

±∞
a = ±∞ · 1a for every real number a 6= 0 .
a+∞ = +∞ and a−∞ = 0 for every a > 1 .
a+∞ = 0 and a−∞ = +∞ for every 0 < a < 1 .
−∞ < a < +∞ for every real number a .
−∞ < +∞
We do not give any definition of ±∞±∞ , 0 · (±∞) , 1±∞ and few others. It will become soon clear that it is not
possible to do it in a useful way. We call them indeterminate expressions. The definitions given above allow

to state theorems about existence and evaluating limits in a simpler way, as we shall see in a near future.
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Now we are going to state few simple theorems that help a lot when working with limits. After it we

shall give few examples showing how the theorems can be applied in solving problems. At the end we shall

give the proofs of some them in order to show how this can be done.

Arithmetic Properties of the Limit Theorem

A1. It limits lim
n→∞
an , lim

n→∞
bn exists and their sum is defined then there exists a limit lim

n→∞
(an + bn) and

the following equality lim
n→∞
(an + bn) = lim

n→∞
an + lim

n→∞
bn holds.

A2. It limits lim
n→∞
an , lim

n→∞
bn exists and their difference is defined then there exists a limit lim

n→∞
(an − bn)

and the following equality lim
n→∞
(an − bn) = lim

n→∞
an − lim

n→∞
bn holds.

A3. It limits lim
n→∞
an , lim

n→∞
bn exists and their product is defined then there exists a limit lim

n→∞
(an · bn) and

the following equality lim
n→∞
(an · bn) = lim

n→∞
an · lim

n→∞
bn holds.

A4. It limits lim
n→∞
an , lim

n→∞
bn exists and their quotient is defined then there exists a limit lim

n→∞
an
bn
and the

following equality lim
n→∞

an
bn
= limn→∞ anlimn→∞ bn

holds.×

Estimate Theorem

N1. If C < lim
n→∞
an then for sufficiently large n the inequality C < an holds.

N2. If C > lim
n→∞
an then for sufficiently large n the inequality C > an holds.

N3. If lim
n→∞
bn < lim

n→∞
an then for sufficiently large n the inequality bn < an holds.

N4. If the inequality bn ≤ an holds for all sufficiently large n then lim
n→∞
bn ≤ lim

n→∞
an . ×

Uniqueness Proposition

Any sequence has at most one limit.

Proof.

Suppose it has 2 limits, e.g. g1 < g2 . Let C be a number that lies between g1 and g2 : g1 < C < g2 . Then

for n sufficiently large an < C (since g1 is a limit, see N2) and at the same time an > C (since g2 is a

limit, see N1). Therefore an < C < an . It is a contradiction: no number is greater than itself.

Boundedness Proposition

Any sequence with a finite limit is bounded.

Proof.

If the limit lim
n→∞
an is finite then there are real numbers C̃, D̃ and a natural number k such that for all

n ≥ k the inequality C̃ < an < D̃ holds. Let C = min(C̃, a1, a2, . . . , ak) and D = max(C̃, a1, a2, . . . , ak) .
From this definition it follows at once that C ≤ an ≤ D . This means that the sequence (an) is bounded
from below by C and from above by D .

Remark. The proof is very simple. Nonetheless it worth to mention that among finitely many numbers

there always is the smallest and the biggest. It is not so in the case of infinitely many numbers, e.g. there is

no smallest number among 1, 12 ,
1
3 , . . . When we say for sufficiently big numbers n the inequality C ≤ an

holds it means that there a number k1 such that C̃ ≤ an for all n ≥ k1 . In we say that the inequality
an ≤ D̃ holds we mean that there is a number k2 such that an ≤ D for n ≥ k2 . If we say that C̃ ≤ an ≤ D̃
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holds for sufficiently big n we mean that n ≥ k1 and n ≥ k2 , i.e. n ≥ max(k1, k2) . Obviously it is possible
to talk of the biggest of the two numbers. In this proof we imposed only two conditions on n . Sometimes

one works with infinitely many conditions. Then it is not possible to pick up the biggest of infinitely many

numbers ki . This usually makes the proof more complicated and sometimes a theorem under consideration

requires additional hypothesis.

The Three Sequence Theorem

If an ≤ bn ≤ cn for all sufficiently large n and the sequences (an) and (cn) have equal limits then the
sequence (bn) also has a limit and moreover

lim
n→∞
an = lim

n→∞
bn = lim

n→∞
cn. ×

Definition of a subsequence

If (nk) is a strictly increasing sequence of natural numbers then the sequence (ank) is called a subsequence

of (an) .

The sequence a2, a4 a6, . . . , i.e. the sequence (a2k) is a subsequence of the sequence (an) — in this

case nk = 2k . The sequence a2, a3, a5, a7, a11, . . . is a subsequence of (an) — in this case nk is a k –th

prime number. We can give many more examples but hopefully it is sufficient to say that we take out of the

given sequence infinitely many of its terms with no change of their order.

It follows immediately from the definitions of the limit of the sequence and of the subsequence that all

subsequences of a sequence with a limit g have limit g . It is not hard to prove that instead of showing that

a sequence has a limit one can look at finitely many properly chosen subsequences of the sequence. It all

them have the same limit then it is a limit of the initial sequence.

Junction Theorem*

Suppose it is possible to choose out of the sequence (an) two subsequences (akn) and (aln) that converge

to the same limit g and that each term of the sequence (an) appears at least in one of them, i.e. for every n

there exists an m such that n = km or n = lm . In this situation the common limit g of the two sequence

is the limit of the sequence (an) : lim
n→∞
an = g . ×

It is time for one of the most important theorems which will intervene in many proofs in the future.

Bolzano – Weierstrassa Theorem

Every sequence of real numbers contains a sequence which has a limit (finite or infinite). ×

Corollary 1.

A sequence has a limit iff the limits of its all sequences which have limits are equal. ×

The next theorem, which we already partially proved, was shown by A.Cauchy who has been one of the

founders of mathematical analysis.

* The name of the theorem came out of the author’s mind, the author hopes the name is not a stupid one.
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Cauchy Condition Theorem

A sequence (an) has a finite limit wtedy iff the following Cauchy condition is satisfied:

dla każdego ε > 0 istnieje liczba naturalna nε taka, że jeśli k, l > nε, to |ak − al| < ε . × (CC)

The Cauchy theorem similarly to monotone sequence limit theorem allows in many cases to prove that

a sequence has a finite limit without indicating the limit. This is very useful in many cases. It allows also to

prove that some sequences do not have finite limits. In fact we have already used the theorem when proving

that a geometric sequence with q ≤ −1 does not have any limit. In that case number 2 play the role of ε .
Essentially we have listed all the theorems about sequences needed in the book. We are going to give one

more because usually many students learn de l’Hospital’s Rule which can be found in one the later chapters

while at a high school. The theorem is useful and a student can understand de l’Hospital’s Rule better when

he will see its discrete version. The theorem helps to deal with the indeterminancies of type 00 or
±∞
±∞ .

Stolz Theorem

Let all terms of the strictly increasing sequence (bn) be different from 0 and let there exists a limit

lim
n→∞

an+1−an
bn+1−bn . If one of the conditions is satisfied:

(i) lim
n→∞
bn = ±∞ ,

(ii) lim
n→∞
an = 0 = lim

n→∞
bn

the the sequence
(

an
bn

)

has also a limit and

lim
n→∞
an
bn
= lim
n→∞
an+1 − an
bn+1 − bn

. ×

17. Examples and comments

We are going to show how the machinery can be applied in practice. The examples d,e,f,g are very

important and they will be used in the later chapters.

a. We shall start with an example we described already. Namely we shall deal with the sequence
(

2n+3
4n−1

)

(cf. 9b.). We proved that the sequence converges to 12 and we never explained how it is possible to guess

the value of the limit. Notice that both the numerator and the denominator tend to ∞ as n −→ ∞ .
This not the best situation: +∞+∞ and this quotient remains undefined. It is not hard to get rid of this

difficulty: 2n+34n−1 =
2+ 3n
4− 1n
. It is possible to apply now the theorem about the limit of the sum of two

sequences (A1), then we use the theorem about the limit of the difference of two sequences (A2) in order

to see that lim
n→∞
(2 + 3n ) = 2 + limn→∞

3
n = 2 + 0 = 2 and limn→∞

(4 − 1n ) = 4 − limn→∞
1
n = 4 − 0 = 4 — we

know already that lim
n→∞

1
n = 0 (cf. 9a), so limn→∞

3
n = 3 · limn→∞

1
n = 3 · 0 = 0 . We are now dealing with the

quotient. Its numerator tends to 2 while the denominator to 4 6= 0 . Therefore we may use the theorem
about the limit of the quotients (A4). From this theorem it follows immediately that the limit is equal

to 24 =
1
2 . That is all since the arithmetic properties of the limit theorem guarantees the existence of

all necessary limits and the equalities.
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We shall show one more way of finding the limit although it is like hunting a mosquito with an

A–bomb. Stolz theorem can be applied since lim
n→∞
(4n− 1) = +∞ and the sequence (4n− 1) is strictly

increasing. It is enough to find the limit lim
n→∞

2(n+1)+3−(2n+3)
4(n+1)−1−(4n−1) , if it exists. We have

2(n+1)+3−(2n+3)
4(n+1)−1−(4n−1) =

= 24 =
1
2 . The obtained sequence is constant, i.e. the value of all terms is

1
2 , independently of n , so its

limit equals 12 , too. Lets make it very clear: there is an easy solution without Stolz theorem, we only

wanted to show on a very simple examples how the theorem can be applied.

b. We shall show that lim
n→∞
(n5 − 100n4 − 333978) = +∞ . The reader will notice that the first 100 terms

(possibly many more) are negative, n5 − 100n4 − 333978 = n4(n− 100)− 333978 ≤ 0 . We do not care
how many of sequence terms are negative. Let’s write

n5 − 100n4 − 333978 = n5(1− 100n − 333978n5 ) .

Obviously lim
n→∞
n5 = ( lim

n→∞
n)·( lim

n→∞
n)·( lim

n→∞
n)·( lim

n→∞
n)·( lim

n→∞
n) = (+∞)·(+∞)·(+∞)·(+∞)·(+∞) =

= +∞ , the limit of the product equals to the product of the limits (A3). Then lim
n→∞

100
n = 0 and

lim
n→∞

333978
n5 = 0 , because the limit of the quotient is equal to the quotient of the limits (A4). Then we

apply (A2) twice to see that lim
n→∞

(

1− 100n − 333978n5

)

= 1− 0− 0 = 1 . The sequence is now a product of
the two sequences the first of then tends to +∞ while the second one has a positive limit, namely
1 . It follows from the definition of the product of +∞ and a positive number that the sequence
(n5 − 100n4 − 333978) tends to +∞ .
Also this limit can be found in a different way. Write n5 − 100n4 − 333978 ≥ n5 − 334078n4 = n4(n−
334078) . The last sequence is a product of two sequences: (n − 334078) and (n4) . They both tend to
+∞ so their product tends to +∞ ·+∞ = +∞ . So does the sequence with a greater term.

c. We showed that the geometric sequence (qn) with q ∈ (−1, 1) is convergent to 0 . We shall show now
how one can prove it avoiding any estimates. Instead of the estimates we are going to use theorems

that guarantee existence of certain limits. At the beginning let us assume that 0 ≤ q < 1 . Clearly
qn+1 ≤ qn so the sequence as a non-increasing one has a limit. Let lim

n→∞
qn = g . All terms of the

sequence (qn) are in the interval (0, 1) . Therefore g ∈ [0, 1] . All subsequences of (qn) converge to
g . Therefore g = lim

n→∞
qn+1 = lim

n→∞
(q · qn) = q · lim

n→∞
qn = q · g , so g = qg . Since q 6= 1 it immediately

implies g = 0 . Assume now that −1 < q < 0 . Then −|q|n ≤ qn ≤ |q|n . It follows from what is already
proved and the three sequence theorem that 0 = lim

n→∞
(−|q|n) = lim

n→∞
qn = lim

n→∞
|q|n = 0 .

One may deal in the same way with q > 1 . The sequence (qn) is strictly increasing, therefore it has

some limit g . As before we prove that g = qg . This may happen only when g = 0 or g = ±∞ .
Obviously g > 0 , -the limit of an increasing sequence of positive numbers is necessarily greater than

0 , so g = +∞ . In the case of q ≤ −1 the sequence has no limit because there exist subsequences with
different limits, e.g. g1 = lim

n→∞
q2n+1 = lim

n→∞

[

q · (q2)n
]

= q · lim
n→∞
(q2)n and g2 = lim

n→∞
q2n = lim

n→∞
(q2)n ,

g1 ≤ −1 < 1 ≤ g2 .

d. Let a > 0 be an arbitrary real number. We shall show that lim
n→∞

n
√
a = 1 . As in the previous example
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two methods will be shown. This time we start with more theoretical solution, so less computational

solution.

Let a > 1 . The sequence ( n
√
a) is strictly decreasing, its terms are less than 1 . Therefore it has a

limit g . g is finite and it is greater than or equal to 1 . All subsequences of (qn) converge to g .

Therefore g = lim
n→∞

2n
√
a . The limit of a product equals to the product of the limits so: g2 = g · g =

= lim
n→∞

2n
√
a · lim
n→∞

2n
√
a = lim

n→∞
( 2n
√
a)
2
= lim
n→∞

n
√
a = g , hence g2 = g . Therefore g = 0 < 1 or g = 1

(±∞ have been already excluded). We already know that g ≥ 1 , so g = 1 .
If a = 1 the n

√
a = 1 and there is nothing to prove. Let 0 < a < 1 . Then lim

n→∞
n
√
a = lim

n→∞
1

n
√
1/a
=

= 1

lim
n→∞

n
√
1/a
= 1
1 = 1 , because the limit of the quotient equals to the quotient of the limits and

lim
n→∞

n

√

1
a = 1 by already proved part of the theorem.

Now we shall prove that lim
n→∞

n
√
a = 1 for a > 1 using the definition of the limit and some estimates.

Let ε > 0 be an arbitrary real number. We wnat to show that for n sufficiently big | n√a− 1| < ε , i.e.
1 − ε < n

√
a < 1 + ε . Since a > 1 , the inequality 1− ε < n

√
a holds for all ε > 0 . It suffices to show

that n
√
a < 1 + ε , i.e. a < (1 + ε)n for n big enough. By Bernoulli inequality 1 + nε < (1 + ε)n , so it

is enough to prove that a < 1 + nε for sufficiently big n . Let nε >
a−1
ε . Then n >

a−1
ε for n > nε ,

so 1 + nε > a .

Remark: we have not solved the inequality n
√
a < 1 + ε because it requires logarithms n > log a

log(1+ε) , we

have only shown that n
√
a < 1 + ε for n > a−1ε and we did not bother of any n ≤ a−1

ε , for some of

them the inequality may hold.

e. The next interesting sequence is ( n
√
n) . Its limit is 1 .

Let us start with writing down the first few terms: 1
√
1 = 1 ,

√
2 , 3
√
3 , 4
√
4 =
√
2 , . . . . It is clear

that 3
√
3 >
√
2 — to prove it we can raise both sides to 6 -th power. Therefore

√
2 < 3
√
3 > 4
√
4 . The

sequence is neither increasing nor decreasing. It may be monotone from some place on. We shall prove

that lim
n→∞

n
√
n = 1 using the definition of the limit, another proof will be given later.

Let ε be an arbitrary positive number. All terms of the sequence are greater than or equal to 1 .

Therefore it suffices to show that for n big enough the inequality n
√
n < 1 + ε holds. An equivalent

inequality is n < (1 + ε)n . In this case Bernoulli inequality is insufficient. Let ε > 0 and n ≥ 2 . In
such case (1 + ε)n ≥ 1 +

(

n
1

)

ε+
(

n
2

)

ε2 >
(

n
2

)

ε2 . It is enough to know that n <
(

n
2

)

ε2 = n(n−1)2 ε2 for all

n big enough. It is equivalent to 2
ε2 + 1 < n . This ends the proof.

Now we are going to show the proof without any estimates. Let us raise the inequality n+1
√
n+ 1 < n

√
n

to n(n+1) -th power. The result is (n+1)n < nn+1 . Deciding by nn we get n >
(

n+1
n

)n
=
(

1 + 1n
)n
.

We showed already (c.f. 13.) that the sequence
(

(

1 + 1n
)n
)

is bounded. From this it follows that

n >
(

1 + 1n
)n
for all n sufficiently large. There is no need to find out what sufficiently large means

in this case. Therefore the sequence ( n
√
n) decreases from some term, it is bounded by 1 from below,
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therefore it is convergent to a finite limit g . All its subsequences, e.g. 2n
√
2n converge to the same

limit g . Therefore

g2 = g · g = lim
n→∞

2n
√
2n · lim

n→∞
2n
√
2n = lim

n→∞

(

2n
√
2n
)2
= lim
n→∞

(

n
√
2 · n√n

)

= lim
n→∞

n
√
2 · n√n = 1 · g = g .

Therefore g2 = g . From this equality and 1 ≤ g < +∞ it follows that g = 1 . The proof is over. It
turns out that also in this case it is possible to find the limit using the theoretical theorems instead of

estimates. It required slightly more work because the sequence was not monotone.

f. Let k be an arbitrary positive integer and q > 1 an arbitrary real number. We shall show that

lim
n→∞

nk

qn = 0 . The sequence (q
n) increases, its limit is = ∞ . We may try to apply Stolz theorem. Let

us start with k = 1 .

lim
n→∞

n+ 1− n
qn+1 − qn = limn→∞

1

qn(q − 1) =
1

q − 1 · limn→∞

(

1

q

)n

= 0.

From Stolz theorem it follows that

lim
n→∞

n

qn
= lim
n→∞

n+ 1− n
qn+1 − qn = 0 .*

We are to study the sequence
(

n2

qn

)

. As before we shall use Stolz theorem. Let us look at the quotient

of differences of two successive numerators and two successive denominators.

lim
n→∞
(n+ 1)2 − n2
qn+1 − qn = lim

n→∞
2n+ 1

qn(q − 1) =
2

q − 1 limn→∞
n

qn
+
1

q − 1 limn→∞

(

1

q

)n

= 0

— the last equality follows from the theorem for k = 1 which has been proved already. This suggests

a possibility of using mathematical induction. The details (easy) are left to the readers. In the prof

the most important statement is that (n + 1)k − nk is a polynomial in n of degree (k − 1) — it
follows immediately from the Newton binomial formula. Therefore the quotient of the difference of two

successive numerators and the difference of two successive denominators can be written as a sum of at

most k expressions of type c · nj

qn(q−1) , c is a real number and j < k — a natural number. By the

induction hypothesis such a sum converges to 0 .

Let us sketch another proof. Let q = 1 + r . r > 0 because q > 1 . If n > k then

qn = (1 + r)n =

n
∑

j=0

(

n
j

)

rj >
(

n
k+1

)

rk+1 .

The expression
(

n
k+1

)

rk+1 is k + 1–th degree polynomial in n , so

lim
n→∞

nk

( nk+1)rk+1
= 0 and 0 < n

k

qn <
nk

( nk+1)rk+1
.

From three sequence theorem it follows now that lim
n→∞

nk

qn = 0 .

g. Let an =
qn

n! , q be an arbitrary real number. In this situation limn→∞
an = 0 .

From th definition of the sequence (an) it follows that an =
q·q·q·...·q
1·2·3·...·n . The quotient

|q|
n decreases when

* In 1798 an English economist Th.R.Malthus published an essay at which he predicted that the population would grow
as a geometric sequence whereas the a food supplies would grow as as an arithmetic sequence. This in view of just
shown equality would imply that food supplies per person in a long run would decline below acceptable level, in fact
they would tend to 0 even for q≈1 . Although a catastrophe would happen after a long time, n should be big, it did
not look good. Fortunately Malthus did not take into account technological advances in agriculture, e.g. the result of
applying chemical fertilizers and we can safely discuss his theories instead of starving.
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n grows. Moreover lim
n→∞

|q|
n = 0 . This implies that if n is big then an+1 very small when compared

with an . This should imply convergence of the sequence (an) to 0 . Let m ≥ 2|q| be a natural number
and let n > m . Clearly

0 <

∣

∣

∣

∣

qn

n!

∣

∣

∣

∣

=
|qm|
m!
· |q|
m+ 1

· |q|
m+ 2

· . . . · |q|
n
<
|qm|
m!
·
(

1

2

)n−m
.

The last expression approaches 0 because it is a term of a geometric sequence with the quotient 12 .

Now we apply three sequence theorem. It implies lim
n→∞

∣

∣

∣

qn

n!

∣

∣

∣
= 0 . QED

h. lim
n→∞

n!
nn = 0 . It easily follows from 0 <

n!
nn =

1
n · 2n · . . . · nn ≤ 1n and limn→∞

1
n = 0 . QED .

i. Let k > 1 be a natural number, let x1, x2, . . . be non-negative numbers such that lim
n→∞
xn = g . Then

lim
n→∞

k
√
xn = k

√
g . Let

(

k
√
xln
)

be a subsequence of the sequence
(

k
√
xn
)

convergent to x . Since the li-

mit of the product equals to the product of the limits we can write xk =
(

lim
n→∞

k
√
xln

)k

= lim
n→∞
xln = g .

x ≥ 0 because it is the limit of the nonnegative sequence. Therefore x = k
√
g . We have just shown

that all convergent sequences of the sequence
(

k
√
xn
)

converge to k
√
g . From the corollary 1 (cf.

Bolzano–Weierstrass theorem) it follows that the sequence
(

k
√
xn
)

converges to k
√
g . It is clear that the

theorem is true also when g < 0 and k is odd.

One can prove this theorem using the inequality
∣

∣
k
√
x− k
√
y
∣

∣ ≤ k
√

|x− y| instead od Bolzano–Weierstrass
theorem. The only problem is to realize that such an equality holds.

x. We shall explain briefly why some operations have been not defined. Let us write few easy equalities:

lim
n→∞

(

n− (n− 1n )
)

= lim
n→∞

1
n = 0 , this suggests the following definition +∞− (+∞) = 0 ;

lim
n→∞
(n− (n− 1)) = lim

n→∞
1 = 1 , this suggests the following definition +∞− (+∞) = 1 ;

lim
n→∞

(

n− (n− n2 )
)

= lim
n→∞

n
2 = +∞ , this suggests the following definiton +∞− (+∞) = +∞ ;

lim
n→∞
(n− (2n)) = lim

n→∞
(−n) = −∞ , this suggests the following definiton +∞− (+∞) = −∞ .

We have just seen that if two sequences converge to +∞ then nothing can be said of the limit of their
difference. Let an = n and bn = n + (−1)n . Obviously lim

n→∞
an = +∞ , lim

n→∞
bn = +∞ whereas the

difference (an − bn) of sequences (an) i (bn) has no limit at all because it is a geometric sequence
with the quotient equal to −1 . All this proves that if two sequences converge to +∞ then we can say
nothing of existence of the limit of the difference of the two sequences, if the limit exists we can say

nothing of its value. Therefore any definition of +∞− (+∞) would be misleading in many situations.
One can say the same about other indeterminancies, e.g. 00 ,

±∞
±∞ , 1

±∞ , 00 . . .The reader should make

up examples showing that the definitions of the mentioned indeterminancies does not make any sense.

Remark.

Many students in the past had serious problems with the indeterminancies — the future is not known to

the author. The author is sure that students who have made up examples by themselves will have almost

no problems with understanding the indeterminancies.

Before we start proving the theorems we say a little bit about limits and inequalities. One could think
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that if for all natural numbers n the strict inequality an < bn holds and both sequences (an) , (bn)

have limits then lim
n→∞
bn < lim

n→∞
an . Unfortunately it is not so. Let an =

1
2n , bn =

1
n . It is clear that

an =
1
2n <

1
n = bn for all natural numbers n . At the same time limn→∞

an = 0 = lim
n→∞
bn .

18. The Proofs

We are going to prove the theorems that where stated but not proved yet. The first in the row is estimate

theorem.

Proof of the estimate theorem

The first part of the theorem is N1. A number C is less than the limit of the sequence (an) . We have to show

that for n big enough the inequality C < an is satisfied. Assume that the limit lim
n→∞
an is infinite. Since

the limit is greater than the number C the equality lim
n→∞
an = +∞ must be satisfied (note that −∞ < C ).

Right from the the definition it follows then for any real number M the inequality an > M holds for all n

sufficiently big. Therefore it holds for M = C , too.

Now we assume that the limit lim
n→∞
an is finite. Let ε = lim

n→∞
an − C . For sufficiently big n the inequality

|an − lim
n→∞
an| < ε holds so an > lim

n→∞
an − ε = C .

The same proof works for N2. One has only to reverse few inequalities and replace +∞ with −∞ .
Let lim

n→∞
bn < lim

n→∞
an . There exists a number C such that lim

n→∞
bn < C < lim

n→∞
an . From the already proved

part of the theorem it follows that for all sufficiently big n ’s the inequalities bn < C and C < an are

satisfied. From the it follows that bn < an . Part N3 is proved.

Let the inequality bn ≤ an be satisfied for all sufficiently big numbers n . We want to show that lim
n→∞
bn ≤

≤ lim
n→∞
an . Suppose this is no so, i.e. lim

n→∞
bn > lim

n→∞
an . This implies that for all sufficiently big numbers n

the inequality bn > an is satisfied, a contradiction. The proof of the estimate theorem is done.

From the estimate theorem we already deduced that a sequence cannot have two limits, any sequence

has at most one limit and that the sequence with a finite limit is bounded.

Remark on convergence of the opposite sequence

The sequence (cn) has a limit iff the sequence (−cn) has a limit, no matter if the limit is finite or not. If
the limits exist then lim

n→∞
(−cn) = − lim

n→∞
cn .

It is a very simple remark. We stated it because in many cases the use of it shortens proofs, number of

cases to be considered is reduced.

It is time for arithmetic properties of the limit theorem. Let ga = lim
n→∞
an and gb = lim

n→∞
bn . Three

cases will be considered: ga, gb are real numbers, ga is a real number whereas gb is ±∞ , both ga, gb are
infinities of the same sign.

The limits ga, gb are finite.

Let ε > 0 be an arbitrary real number. Let n′ε be na natural number such that if n > n
′
ε then |an − ga| < ε2 .

Let n′′ε be na natural number such that if n > n
′′
ε then |bn − gb| < ε2 . Let nε be the biggest of the two
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numbers n′ε, n
′′
ε . If n > nε then both inequalities are satisfied, so

|an + bn − (ga + gb)| ≤ |an − ga|+ |bn − gb| <
ε

2
+
ε

2
= ε.

We have showed that for sufficiently big n (n > nε ) the absolute value of the difference (an+bn)− (ga+gb)
is less than ε , so lim

n→∞
(an + bn) = ga + gb .

The limit g = lim
n→∞
an is finite and lim

n→∞
bn = +∞

We shall prove that lim
n→∞
(an + bn) = +∞ . Let M be an arbitrary real number. There exists a natural

number n′′M−g+1 such that if n > n
′′
M−g+1 then bn > M − g + 1 . There exists a natural number n′1 such

that if n > n′1 then |an− g| < 1 . Let nM be the biggest of the two numbers n′′M−g+1 and n′1 . For n > nM
both inequalities are satisfied, so

an + bn = bn + g + (an − g) ≥ bn + g − |an − g| > (M − g + 1) + g − 1 =M .

We have showed that if n is big enough then an + bn > M , wie� c lim
n→∞
(an + bn) = +∞ . The proof is done.

The limit g = lim
n→∞
an is finite and lim

n→∞
bn = −∞

It the limit lim
n→∞
an is finite and lim

n→∞
bn = −∞ then from what is proved above it follows that the sequence

(

− an + (−bn)
)

has a limit and lim
n→∞
(−an − bn) = − lim

n→∞
an + lim

n→∞
(−bn) = +∞ . From this and from the

remark preceding the proof one can deduce that the limit lim
n→∞
(an + bn) exists and equals −∞ .

Both limits are infinite: g = lim
n→∞
an = lim

n→∞
bn = −∞ or lim

n→∞
an = lim

n→∞
bn = +∞

From the remark preceding the proof it follows that it is enough to consider one of the two cases. Let

lim
n→∞
an = +∞ = lim

n→∞
bn . If M is an arbitrary real number then there exist natural numbers n

′
M/2 and

n′′M/2 such that if n > n
′
M/2 then an >

M
2 and if n > n

′′
M/2 then bn >

M
2 . Let nM be the bigger of

n > n′M/2 and n > n
′′
M/2 . Then both inequalities hold, so an + bn >

M
2 +

M
2 =M , so for sufficiently big n

th e inequality an + bn > M holds, so lim
n→∞
(an + bn) = +∞

From the remark on convergence of the opposite sequence and the part (A1) of the theorem part (A2)

of the theorem follows right away, it is enough to use the formula x− y = x+ (−y) .
Now we shall prove (A3), i.e. the limit of the product equals the product of the limits. As in the cases

of sum and difference the number of cases may be reduced to the following three: both limits are finite, both

limits equal +∞ and one limit is +∞ and the second one is a real positive number
Both limits are finite

Since the limits are finite, both sequences are bounded. This implies that there is a number K ′ > 0 such

that |an| ≤ K ′ and the number K ′′ such that |bn| < K ′′ for every natural number n . Let K be greater of
the two numbers K ′, K ′′ . Clearly |an|, |bn| ≤ K . Let ga = lim

n→∞
an , gb = lim

n→∞
bn . From estimate theorem

it follows that |ga|, |gb| ≤ K . Let ε > 0 be an arbitrary real number. There exists nε such that if n > nε
then |an − ga| < ε

2K and at the same time |bn − gb| < ε
2K . Therefore

|anbn − gagb| = |(an − ga)bn + ga(bn − gb)| ≤ |an − ga| · |bn|+ |ga| · |bn − gb| < ε
2K ·K +K · ε2K = ε.
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We have proved that for sufficiently large n the distance anbn from gagb is less than ε , this means that

gagb = lim
n→∞

(

an · bn
)

as we wanted to show.

One limit is finite, the second one is infinite

Let ga = lim
n→∞
an be a positive real number and let +∞ = lim

n→∞
bn . Let M be an arbitrary real number. It

follows from the estimate theorem that there is a natural number nM such that if n > nM then an >
1
2ga > 0

and bn >
2|M |
ga
> 0 . So we have anbn >

1
2ga

2|M |
ga
= |M | ≥M , thus lim

n→∞
(anbn) = +∞ . This ends the proof

in this case.

Both limits are infinite

Let lim
n→∞
an = +∞ = lim

n→∞
bn . If M is a real number then there exists an natural number nM such that

for all n > nM the inequalities an > 1 + |M | and bM > 1 + |M | hold. Then for n > nM the inequality
anbn > (1 + |M |)2 > 2 · |M | ≥ |M | ≥M is satisfied.This proves that +∞ = lim

n→∞
anbn .

The theorem about the limit of the product of two sequences has been proved.

The last part of the theorem is related to the limit of the quotient of two sequences. As before we start

with finite limits. Let ga = lim
n→∞
an and gb = lim

n→∞
bn 6= 0 . We shall show that lim

n→∞
an
bn
= gagb . Let ε > 0

be a real number. There exist a number nε such that if n > nε then |bn| > |gb|
2 , |an − ga| <

ε·|gb|
4 ,

|bn − gb| < ε·|gb|2
4(|ga|+1) .* If n > nε then

∣

∣

∣

∣

an
bn
− ga
gb

∣

∣

∣

∣

=
|angb − gabn|
|gbbn|

≤ |angb − gagb|+ |gagb − gabn||gb|2/2
=
2

|gb|
|an − ga|+

2|ga|
|gb|2
|gb − bn| < ε.

The theorem is rpoved in the case of finite limits. If lim
n→∞
an = +∞ whereas lim

n→∞
bn is finite and different

from 0 then the sequence
(

1
bn

)

is convergent to a limit which finite and different from 0 — this follows from

the theorem for finite limits which has been proved already. Now we can apply the theorem about the limit

of the product of the two sequences: lim
n→∞

an
bn
= lim
n→∞

(

an · 1bn
)

= lim
n→∞
an · lim

n→∞
1
bn
= +∞ · lim

n→∞
1
bn
. The last

product is well defined because lim
n→∞

1
bn
6= 0 .

One more case is left: the limit of (an) is finite and the limit of (bn) is infinite. In this case the sequence

(an) is bounded, i.e. there exists K > 0 such that for every n the inequality |an| < K holds. If ε > 0 then
there exists a number nε such that if n > nε then |bn| > Kε . Therefore

∣

∣

∣

an
bn

∣

∣

∣
< K · εK = ε . We have proved

that for n sufficiently large the quotient anbn is less in absolute value than ε . This means that limn→∞
an
bn
= 0 .

The proof has been completed.

Remark

From the proof of the theorem it follows that if a sequence (an) is bounded and lim
n→∞
|bn| = +∞ then

lim
n→∞

an
bn
= 0 — we do not assume that the sequence (bn) has a limit, we assume less, namely that the

sequence
(

|bn|
)

tends to +∞ , the convergence of the sequence (an) has been used in the proof only to
prove that the sequence (an) is bounded.

* We have not assumed that ga 6=0 . Therefore |ga|+1>|ga| occurs in the denominator.
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Next theorem to be proved is the three sequence theorem. For sufficiently large n the double inequality

an ≤ bn ≤ cn is satisfied. The sequences (an) and (cn) converge to the same limit g . We want to show
that the sequence (bn) also tends to g . Assume at first that the limit g is finite. Let ε > 0 an arbitrary

number. There exists a natural number nε such that if n > nε |an − g| < ε and |cn − g| < ε . Therefore
g − ε < an ≤ bn ≤ cn < g + ε so |bn − g| < ε . We have proved that g = lim

n→∞
bn . It is time for the infinite

limits. It suffices to prove the theorem for one type of infinity only, e.g. g = −∞ . Let M be a real number.
Since lim

n→∞
cn = −∞ , there exists a natural number nM such that dla n > nM the inequality bn ≤ cn < M

holds, in particular bn < M . This ends the proof.

Remark

From the proof of the theorem it follows that in the case of an infinite limit, e.g. lim
n→∞
an = ±∞ = lim

n→∞
cn

we need to use one of them only. In the situation discussed above we have not used the sequence (an) at

all. This implies the following theorem if for n big enough the inequality bn ≤ cn holds and lim
n→∞
cn = −∞

then the sequence (bn) tends to −∞ ; if for n big enough the inequality an ≤ bn holds and lim
n→∞
an = ∞

then lim
n→∞
bn = +∞ ..

The proof of the junction theorem.

This proof is very simple. Let the limit g be finite and let ε > 0 . There exist numbers n′ε and n
′′
ε such

that if n > n′ε then |akn − g| < ε , if n > n′′ε then |aln − g| < ε . Since kn → ∞ and ln → ∞ , there
exists nε such that if n > nε and m is chosen so that an = akm or an = alm then m > n

′
ε oraz m > n

′′
ε ,

therefore |an − g| < ε . This means that g = lim
n→∞
an . Small modifications of the proof are required in the

case of an inifite limit.

The proof of Bolzano – Weierstrassa theorem.

If the sequence (an) is not bounded from above then there it contains a strictly increasing subsequence:

let n1 = 1 ; since the sequence (an) is not bounded from above it contains terms greater than an1 with

n > n1 ; let n2 be such a number that n2 > n1 and an2 > an1 ; since the sequence (an) is not bounded

from above it contains terms an such that an > an2 with n > n2 , let n3 be the index of one of them,

so n3 > n2 oraz an3 > an2 ; we can go on with this construction. When the sequence is unbounded from

below one can construct a decreasing subsequence making very little changes in the proof in the previous

case. Most important case is a bounded sequence.

Let c, d be such real numbers that the inequality c ≤ an ≤ d holds for every n ; in this situation c is a lower
bound of the sequence (an) while d is an upper bound. If the sequence (an) contains a constant sequence

then this sequence is convergent. Let us assume that (an) contains no constant subsequence. This means

that every real number may show up in the sequence at most finitely many times. This observation is not

very significant but makes the presentation of the proof shorter. Let n1 = 1 , c1 = c , d1 = d . One of the two

halves of the interval [c, d] (or both) contains infinitely many terms of the sequence (an) , let [c2, d2] be this

half (if the interval
[

c, c+d2
]

contains infinitely many terms of the sequence (an) then we set c2 = c1 = c

and d2 =
c+d
2 , if the interval

[

c, c+d2
]

contains only finitely many terms of the sequence (an) then there are
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infinitely many of them in
[

c+d
2 , d

]

, in such case we set c2 =
c+d
2 and d2 = d1 = d ), let n2 > n1 be such

a number that an2 ∈ [c2, d2] . Now we repeat the same procedure taking into account the interval [c2, d2]
instead of [c1, d1] and the sequence terms that follow an2 rather than an1 . At the end we get a natural

number n3 > n2 and an interval [c3, d3] ⊆ [c2, d2] that contains infinitely many terms of the sequence (an) ,
among them an3 . For j = 1, 2, 3 the inequalities cj ≤ anj ≤ dj , c1 ≤ c2 ≤ c3 and d1 ≥ d2 ≥ d3 and the
equality dj − cj = d−c2j are satisfied. If we shall continue the procedure a non-decreasing sequence (cj) and
non-increasing sequence (dj) such that dj − cj = d−c2j will be obtained. Both sequences have limits because
they are monotone. These limits are equal because lim

n→∞
(dj − cj) = lim

n→∞
1
2j · (d− c) = 0 . Since cj ≤ anj ≤ dj

for all indices j , the sequence (anj ) converges to the same limit. This ends the proof.

Proof of the corollary 1

In view of Bolzano–Weierstrass theorem it is enough to prove that the sequence (an) which does not have

any limit contains two subsequences with distinct limits (finite or not). Let us assume that the sequence

(an) contains a sequence tending to +∞ . Since +∞ is not a limit of (an) there exists a real number B
such that for infinitely many n the inequality an < B is satisfied. Let akn be a susequence of the sequence

(an) consisting of those terms of an which are less than B . It follows from Bolzano–Weierstrass theorem

that the sequence (akn) contains a sequence with a limit g . Obviously g ≤ B . Therefore the sequence
(an) contains two subsequences: one tends to +∞ , the other one to g ≤ B < +∞ . If the sequence (an)
contains a subsequence tending to −∞ then we replace it with the sequence (−an) and apply to it the
already proved part ot the theorem to see that the sequence (−an) contains two subsequences with distinct
limits. Now we shall consider a sequence (an) which does not contain any subsequence with an infinite

limit. Since (an) contains no subsequence tending to +∞ , it must be bounded from above. In the same
way we may notice that it is bounded from below. Therefore the sequence (an) is bounded. It contains a

subsequence (an) convergent to some number g . Since g is not a limit of (an) , there exists a number

ε > 0 such that outside of the interval (g − ε, g + ε) there are infinitely many terms of the sequence (an) .
Bolzano–Weierstrass theorem guarantees that it is possible to choose a convergent subsequence out of them.

The chosen subsequence cannot converge to g , if fact the distance from its limit to g cannot be less than ε .

The proof has been completed.

Remark.

It is pretty clear that infinite limits look different from the finite ones. On the other hand the theorems on

them are not very different from the theorems on finite limits, also the ideas of proofs are quite close. Some

differences could vanish if we decided to define a distance from ±∞ . This could be done so that the new way
of measuring the distances would change neither the set of convergent sequences nor their limits (including

the infinite limits).* There are many ways of defining such a „distance”. We shall give one example.

Let f(x) = x√
1+x2

for every real number x , f(+∞) = 1 and f(−∞) = −1 . Clearly lim
n→∞
xn = g iff

* A sequence (an) converges to a limit g iff the distance from an to g tends to 0 as n→∞ .
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lim
n→∞
f(xn) = f(g) . The last equality is equivalent to lim

n→∞
|f(xn) − f(g)| = 0 . Therefore it makes sense to

say that the distance from x to y is equal to |f(x) − f(y)| . In this definition x or y mah be infinite.
The idea is to identify real numbers with the points of (−1, 1) , +∞ with 1 , −∞ with −1 . There some
disadvantages. One of them is that f(x+ y) 6= f(x) + f(y) , so the proposed identification is not related to
addition or multiplication.

We are going to prove that the Cauchy condition is equivalent to existence a finite limit for the se-

quence. If a sequence (an) is convergent to g and ε > 0 , then for all sufficiently big natural numbers

n the inequality |an − g| < ε
2 holds. Therefore if natural numbers k and l are sufficiently large then

|ak − al| = |ak − g + g − al| ≤ |ak − g|+ |g − al| < ε2 + ε2 = ε . This proves that for a sequence convergent to
a finite limit the Cauchy condition is satisfied.

Let a sequence (an) satisfies the Cauchy condition. There exists a number n1 such that if k, l > n1

then |ak − al| < 1 . Let l = n1 + 1 . Then |ak| − |al| ≤ |ak − al| < 1 so |ak| ≤ 1 + |al| for all k big enough.
This implies that the sequence (an) is bounded, therefore it contains a convergent subsequence (anm) . Let g

be its limit. We shall prove that g is a limit of the whole sequence. If ε > 0 then for k, k̃,m big enough the

inequalities |ak − ak̃| < ε2 and |anm − g| < ε2 hold. Numbers m, k̃ are chosen arbitrarily, the only condition
imposed of the choice is that both numbers must be sufficiently big. Since nm ≥ m , we may choose k̃ so
that k̃ = nm . For k sufficiently large we have |ak − g| ≤ |ak − ak̃| + |anm − g| < ε2 + ε2 = ε . This implies
that g = lim

n→∞
an .

The last and the most difficult theorem in this chapter is Stolz theorem. The students who really want

to understand the theory should study this proof carefully. Everyone who will understand the proof will be

able to understand many later theorems faster than without it. At the same time one must say that one can

study economy or even mathematics without this theorem.

Proof of the Stolz theorem

There is no loss of generality if one assumes that the sequence (bn) is strictly increasing — if necessary we

can replace the sequence (bn) with the sequence (−bn) . Let m,M be such real numbers that m < g < M ,
in case of g = −∞ only M is considered, if g = +∞ only m is considered. Choose m′,M ′ so that
m < m′ < g < M ′ < M . Since the limit of the sequence

(

an+1−an
bn+1−bn

)

equals g there exists a number n0

such that if n > n0 then m
′ < an+1−anbn+1−bn < M

′ . Multiplying this inequality by bn+1 − bn > 0 we obtain:

m′(bn+1 − bn) < an+1 − an < M ′(bn+1 − bn) . (Nn,n+1)

Add the inequalities (Nn,n+1) , (Nn+1,n+2) , ..., (Nn+k−1,n+k) to get

m′(bn+k − bn) < an+k − an < M ′(bn+k − bn) (Nn,n+k)

We use the assumption (ii). The sequence (bn) increases (strictly) and converges to 0 , so its terms are

less than 0 . Therefore

−mbn < −m′bn = lim
k→∞
m′(bn+k − bn) ≤ −an = lim

k→∞
(an+k − an) ≤ lim

k→∞
M ′(bn+k − bn) = −M ′bn < −Mbn.
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Let us divide the inequality by −bn > 0 . The result is m < anbn < M . The numbers m,M have been

chosen arbitrarily, so g = lim
n→∞

an
bn
. Case (ii) is finished.

Now we use hypothesis (i). The increasing sequence (bn) tends to +∞ , so its terms are positive except
for finitely many of them. In the sequel we assume that an > 0 for n > n0 , this may require some increase

of n0 already chosen. Divide the inequality (Nn,n+k) by bn+k . The result is

m′
(

1− bn
bn+k

)

<
an+k
bn+k

− an
bn+k

< M ′
(

1− bn
bn+k

)

,

so

m′
(

1− bn
bn+k

)

+
an
bn+k

<
an+k
bn+k

< M ′
(

1− bn
bn+k

)

+
an
bn+k
.

Since

lim
k→∞

[

m′
(

1− bn
bn+k

)

+
an
bn+k

]

= m′ > m, oraz lim
k→∞

[

M ′
(

1− bn
bn+k

)

+
an
bn+k

]

=M ′ < M,

there exists kn such that if k > kn then the inequalities

m′
(

1− bn
bn+k

)

+ an
bn+k
> m and M ′

(

1− bn
bn+k

)

+ an
bn+k
< M

hold, so m < an+kbn+k
< M for n > n0 and k > kn . This implies that lim

m→∞
am
bm
= g . The case (i) is fully

discussed.

19. Exponential function exp(x) , number e .

We have shown already (cf. 14.) that for every real number x there exists a finite limit lim
n→∞

(

1 + xn
)n
.

The limit has been denoted by exp(x) . This means that a function has been defined on the whole real line.

We are going to study the most important properties of this function.

a. exp(x) > 0 for real numbers x .

It is so because from some place (n > −x ) the sequence
(

(

1 + xn
)n
)

is non-decreasing and its terms

are posiotive.

b. For every real number x the inequality exp(x) ≥ 1 + x is satisfied.
For n > −x we have xn > −1 so — Bernoulli inequality implies that

(

1 + xn
)n ≥ 1 + n · xn = 1 + x .

Since from some place all terms of the sequence are greater than or equal to 1 + x , so is the limit of

this sequence.

Later on we shall see that for x 6= 0 the inequality is sharp.
c. Lemma on limits of n -th powers of the sequences „converging quickly” to 1

If lim
n→∞
n · an = 0 then lim

n→∞
(1 + an)

n
= 1 .

Proof.

Since lim
n→∞
n · an = 0 , there exists n0 such that if n > n0 then |n · an| < 12 . For such n we have

|an| = 1n · (|n · an|) < 1n · 12 ≤ 12 . Therefore for every n > n0 three inequlities n · an > − 12 > −1 ,
an
1+an

> −1 and n·an
1+an

< 1 are satisfied. Therefore below we can apply twice Beronulli inequality

1 + n · an ≤ (1 + an)n =
1

(

1− an
1+an

)n ≤
1

1− nan
1+an
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Note please that n0 has been chosen so that the denominators are positive, so we can switch to the

reciprocal expressions after the Bernoulli inequality has been applied. The assertion follows from the

three sequence theorem because lim
n→∞
(1 + n · an) = 1 = lim

n→∞
1

1− nan
1+an

. The Lemma is proved.

d. Basic equation

For any real numbers x, y the equation exp(x + y) = exp(x) · exp(y) is satisfied.
We shall use the definition of the number exp(x) and its previously proved properties, in particular the

inequality exp(x) > 0 . The equation to be proved is equivalent to exp(x)·exp(y)exp(x+y) = 1 . We have

exp(x) · exp(y)
exp(x+ y)

= lim
n→∞

(

(1 + xn )(1 +
y
n )

1 + x+yn

)n

= lim
n→∞

(

1 +
xy
n2

1 + x+yn

)n

= 1

The last equation follows from the lemma on powers of sequences converging quickly to 1 and the

equation lim
n→∞

(

n ·
xy

n2

1+ x+yn

)

= 0 .

e. For every real number x the equation exp(−x) = 1
exp(x) holds.

Notice that exp(0) = exp(0 + 0) = exp(0) · exp(0) , +∞ > exp(0) > 0 so exp(0) = 1 .* Therefore
1 = exp(0) = exp(−x+ x) = exp(−x) · exp(x) so exp(−x) = 1

exp(x) .

f. For every real number x , any integer p and any positive integer q the equation: exp( pqx) = (exp(x))
p/q

holds.

If m is a natural number, y — a real number then exp(my) = exp(y + y + . . .+ y) =

= exp(y) · exp(y) · . . . · exp(y) = (exp(y))m . This implies that exp(xq ) = q
√

exp(x) = (exp(x))1/q , the

previous equation is applied with y = x
m and m = q . Thus for p > 0 the equality

exp(pqx) =
(

exp(xq )
)p

=
(

(exp(x))1/q
)p
= (exp(x))p/q

is satisfied. If p < 0 then exp( pqx) =
1

exp(−pq x)
= 1
(exp(x))−p/q

= (exp(x))
p/q
. QED.

g. Definition of e

Number e is equal to lim
n→∞

(

1 + 1n
)n
, i.e. e = exp(1) .

The study of this number and functions related to it, e.g. ex was initiated by L.Euler, Swiss mathema-

tician who worked at St Petersburg Academy of Sciences (1727-1744,1766-1783) and Berlin Academy

of Science (1744-1766). The number e is one of the most important in mathematics. In this course it

is the most important base of powers and logarithms. From the already proved theorems it follows that

exp(w) = ew for all rational numbers w — it suffices to set pq = w and x = 1 in f. We know that

e = exp(1) ≥ 1 + 1 = 2 .

h. If x < 1 then the double inequality 1 + x ≤ exp(x) ≤ 1
1−x is satisfied.

The left hand side inequality has been proved already (cf. b) for all real x . Let us switch to the right hand

side. Substitute −x for x in exp(x) ≥ 1+x to get exp(−x) ≥ 1−x . Thus exp(x) = 1
exp(−x) ≤ 1

1−x .

* another proof: exp(0)=limn→∞(1+ 0n )
n
=limn→∞1=1 .

24



i. Continuity of the function exp

If lim
n→∞
xn = x then lim

n→∞
exp(xn) = lim

n→∞
exp(x) , too.

This property of the function exp is called continuity of it. Properties of continous functions will be

studied later in this course. Now we shall prove that the function exp is continuous. Let |h| < 12 . Then
h ≤ exp(h)− 1 ≤ 1

1−h − 1 = h
1−h . Therefore if |h| < 12 then | exp(h) − 1| ≤ 2|h| . If limn→∞xn = x then

for all n sufficiently large |xn − x| < 12 so
0 ≤ | exp(xn)− exp(x)| = | exp(x) (exp(xn − x)− 1) | ≤ exp(x) · 2 · |xn − x| .

Now it is enough to apply the three sequence theorem.

j. The characterization of the exponential function

Suppose that a function f defined on the set of all real numbers has the properties:

(i) if lim
n→∞
xn = x then lim

n→∞
f(xn) = f(x) , i.e the function f is continuous;

(ii) for arbitrary real numbers x, y the equation f(x+ y) = f(x)f(y) is satisfied;

(iii) f(1) = e = exp(1) .

In this situation for every real number x the equality f(x) = exp(x) holds.

According to this theorem the properties (i) and (ii) define an exponential function. The property (iii)

fixes the base of the exponential function. Had we omitted in the formulation the property (iii), the

assertion was f(x) = (f(1))
x
. Now we are going to prove the theorem.

f(x) = f(x2 +
x
2 ) = f(

x
2 ) · f(x2 ) = f(x2 )2 ≥ 0 for all x ∈

�
. If for some real number x1 the equality

f(x1) = 0 is satisfied then f(x) = f(x1)f(x−x1) = 0 for all real numbers x . Therefore the function f is
either positive at all points or is constant and equal to 0 . In our case f(1) 6= 0 so our function is positive
everywhere. We can repeat everything said in f about the function exp , replacing exp with f . In this

way we can see that for every real number x , every integer p and every positive integer q the equation

f(pqx) = (f(x))
p/q
holds. In particular for x = 1 . This means that f( pq ) = (f(1))

p/q = ep/q = exp( pq ) .

We have just shown that f coincides with exp on the set of all rational numbers. For every real number

x there exists a sequence of rational numbers (wn) convergent to x . Therefore using the continuity of

both functions f and exp we can write f(x) = lim
n→∞
f(wn) = lim

n→∞
exp(wn) = exp(x) . * This ends the

proof.

k. The values of the exponential function exp .

For every real number y > 0 there exists a real number x such that y = ex = exp(x) .

Let us give a proof of this statement. It follows right away from the properties of the geometric series

that lim
n→∞
en = +∞ and lim

n→∞
e−n = 0 . From this it follows that there exists a natural number n such

that e−n < y < en . Let c = e−n , d = en . There are two possibilities exp
(

c+d
2

)

≤ y or exp
(

c+d
2

)

> y .

In the first case we define: c1 =
c+d
2 , d1 = d , in the second one: c1 = c , d1 =

c+d
2 . In both cases the

* The author has no idea how a power ax with irrational x is defined at high schools, this may depend on a teacher,
on the book or other factors and suspects that majority of high school students can give no definition of a power with
an irrational exponent. In fact all possible definitions of it must somehow refer to continuity and the definition of the
function for the rational exponents, this may be done implicitly or explicitly, instead of continuity one may talk of

monotonicity. One way of avoiding this long path is to set ex=limn→∞(1+ xn)
n
.
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interval [c1, d1] contained in [c, d] is twice shorter than [c, d] and exp(c1) ≤ y ≤ exp(d1) . In the same
way one can replace the interval [c1, d1] with an interval [c2, d2] twice shorter than [c1, d1] contained in

[c1, d1] with exp(c2) ≤ y ≤ exp(d2) . This process can be continued. At the end we obtain two sequences
(cn) and (dn) such that dn − cn = d−c2n , cn ≤ cn+1 , dn ≥ dn+1 and exp(cn) ≤ y ≤ exp(dn) for every
natural number n . Obviously the sequences (cn) and (dn) converge to the same finite limit that we

denote by g . Therefore exp(g) = lim
n→∞
exp(cn) ≤ y and exp(g) = lim

n→∞
exp(dn) ≥ y . It follows from the

last two inequalities that exp(g) = y . QED.

l. Monotonicity of the exponential function

The function exp is strictly increasing, i.e. if x < y then exp(x) < exp(y) .

Proof: exp(y) = exp(y − x) · exp(x) > (1 + y − x) · exp(x) > 1 · exp(x) = exp(x) .
m. Important limit *

If hn 6= 0 for every n and lim
n→∞
hn = 0 then lim

n→∞
exp(x+hn)−exp(x)

hn
= exp(x) .

It is enough to prove that lim
n→∞

exp(hn)−1
hn

= 1 because exp(x+hn)−exp(x)
hn

= exp(x) · exp(hn)−1hn
. Let

0 6= h < 12 . This implies that 0 < 1
1−h < 2 . The equality

exp(h)−1
h − 1 = exp(h)−1−hh holds. From the

inequality 1
1−h ≥ exp(h) ≥ 1 + h it follows immediately that

0 ≤ exp(h)− 1− h ≤ 1
1−h − 1− h = h2

1−h =
|h|
1−h · |h| .

Divide the inequality by |h| > 0 to obtain

0 ≤
∣

∣

∣

∣

exp(h)− 1
h

− 1
∣

∣

∣

∣

=

∣

∣

∣

∣

exp(h)− 1− h
h

∣

∣

∣

∣

≤ 1

1− h · |h| < 2|h|. (19.m)

The theorem follows from this inequality and the three sequence theorem.

n. Estimates, finding decimal estimates of the number e

We know already quite a lot about the number e and the exponential function with base e . It is time for

some explanations. We know already that the sequence
(

1 + xn
)n
converges to ex = exp(x) . A natural

question arises: how big the number n should be to know that the distance from the sequence term to

the limit is small. It is not quite clear what „small” means. If we want to find the dimensions of the

desk on which the device used for writing these sentences stands then an error of 1m is incredibly large

because the desk is 182 cm long. If we talk of the distance from Warsaw to Kraków then it is impossible

or at least it is very hard to define this distance with such a precision. Usually we interested in a relative

errors. The inequality (19.m) may be read this way. An approximate formula eh = exp(h) ≈ 1 + h is
used. We are interested if the error is small when compared to h . If |h| < 1

200 then the relative error,

i.e. the quotient e
h−1−h
h is less than 1

100 , so it is less than 1%. If we know only that |h| < 1 then the
inequality (19.m) allows to say only that the relative error is less than 200%, this is of no help in any

problem, moreover we do not know what is the real size of the error, we have only an estimate from

above. We shall prove later that for h ≈ 1 the precision of an estimate is unsatisfactory. The situation

* In this paragraph the derivative of exp will be found, the definition of the derivative will be given in the later chapters!
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is very different if small h are considered. In the case of a small number h the precision is high. This

means that in particular in the case of a bank account with a low interest considered in a relatively

short period of time it is not important how one interprets the rules of compounding interest. The

situation becomes different if long periods of time are under consideration or the interest rate is high.

We mentioned before a problem of another type at which an exponential function shows up, namely the

length of a steel rail considered as a function of temperature. In this situation h is very small because it

depends on a coefficient which is very small and on the change of the temperature which is moderate. In

this situation it makes no sense to look at the precise formula with the exponential function, because its

linear approximation does the job with sufficient precision and its easier in use. In case of the radioactive

decay also mentioned before the error is much too big, in this case one has to use an exponential! How

one can estimate the error we shall show when Taylor’s formula will appear. In general precise estimates

are hard to get, although theoretically it is possible to find them.

In the next part of this chapter we shall show some estimates. They will be obtained with very elementary

techniques and therefore sometimes students with smaller experience in mathematics may find them

lengthy or hard. The author’s suggestion is: omit the calculations and go straight to the results. If one

finds the results interesting he/she may try to go back to the estimates but have in mind that in the

next chapters some theorems will be shown which will allow many simplifications in these proofs. Next

important thing to realize is that there is no need to memorize the details though it is worth to go through

the harder parts of the book to understand better how mathematicians work. Another reason is that after

some study of elementary proofs it will be much easier to realize the advantages of the calculus presented

later.

At this point we should say that although e = lim
n→∞

(

1 + 1n
)n
the initial terms of the sequence do not give

reasonable approximation of e ≈ 2, 718281828459 . . . , in the paragraph 13 the decimal approximations
of the first 10 terms of the sequence are given and even in the tenth one we do not see the digit 7 . This

means that although the sequence converges to e , the better precision, the smaller difference from the

sequence term will be seem for much bigger n . There is another sequence that converges to ex . We are

going to show that for every real number x the equality

ex = lim
n→∞

n
∑

j=0

xj

j!
= lim
n→∞

(

1 +
x

1!
+
x2

2!
+ · · ·+ x

n

n!

)

holds. Usually we use the symbol

∞
∑

k=0

xk

k! to denote limk→∞

(

1 + x+ x
2

2! + . . .+
xk

k!

)

. The new notation

allows to write ex =

∞
∑

k=0

xk

k! for x ∈ IR .

We start with x > 0 because in this case the estimates are somewhat easier than for negative x . Let k

be a fixed natural number and let n be a number not less than k . Then
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(

1 + xn
)n
=
n
∑

j=0

(

n
j

) (

x
n

)j ≥
k
∑

j=0

(

n
j

) (

x
n

)j
=

= 1 + nn
x
1! +

n
n · n−1n · x

2

2! +
n
n · n−1n · n−2n · x

3

3! + . . .+
n
n · n−1n · n−2n · . . . ·

n−(k−1)
n

xk

k! =

= 1+ x+
(

1− 1n
)

x2

2! +
(

1− 1n
)

·
(

1− 2n
)

x3

3! + . . .+
(

1− 1n
)

·
(

1− 2n
)

· . . . ·
(

1− k−1n
)

xk

k! . It is clear that

lim
n→∞

{

1 + x+
(

1− 1n
)

x2

2! + . . .+
(

1− 1n
)

·
(

1− 2n
)

· . . . ·
(

1− k−1n
)

xk

k!

}

= 1 + x+ x
2

2! + . . .+
xk

k! .

Therefore for every natural number k and every real number x > 0 the inequality

ex = exp(x) ≥ 1 + x+ x22! + . . .+ x
k

k!

is satisfied. The previous inequalities (set n = k ) imply that 1 + x+ x
2

2! + . . .+
xk

k! ≥
(

1 + xk
)k
. Thus

ex ≥ 1 + x+ x22! + . . .+ x
k

k! ≥
(

1 + xk
)k

This and the three sequence theorem imply that ex = exp(x) = lim
k→∞

(

1 + x+ x
2

2! + . . .+
xk

k!

)

.

Now let x < 0 . We must change somehow the estimates because the expression
(

n
j

) (

x
n

)j
is positive for

an even j whereas for an odd j this expression is negative. If n > j > |x| then

0 >
( nj+1)(

x
n)
j+1

(nj)(
x
n)
j = n−jj+1 · xn =

n−j
n · xj+1 > −1 .

This means that from some place on the absolute values of the summands in

n
∑

j=0

(

n
j

) (

x
n

)j
decrease. This

together with the fact that these summands are positive for even j and negative for odd j implies the

inequality
(

1 + xn
)n ≥ 1 + x+

(

1− 1n
)

x2

2! +
(

1− 1n
)

·
(

1− 2n
)

x3

3! + . . .+
(

1− 1n
)

·
(

1− 2n
)

· . . . ·
(

1− k−1n
)

xk

k!

is satisfied for an odd k and n > k > |x| = −x ; if k is even then the reverse inequality is satisfied. Let
k be an even number. We can write:

1 + x+

(

1− 1
n

)

x2

2!
+

(

1− 1
n

)

·
(

1− 2
n

)

x3

3!
+ . . .+

(

1− 1
n

)

·
(

1− 2
n

)

· . . . ·
(

1− k − 1
n

)

xk

k!
≥

≥
(

1 +
x

n

)n

≥

≥ 1 + x+
(

1− 1
n

)

x2

2!
+

(

1− 1
n

)

·
(

1− 2
n

)

x3

3!
+ . . .+

(

1− 1
n

)

·
(

1− 2
n

)

· . . . ·
(

1− k
n

)

xk+1

(k + 1)!
.

Look at the limits as n→∞ :

1 + x+
x2

2!
+ . . .+

xk

k!
≥ ex ≥ 1 + x+ x

2

2!
+ . . .+

xk

k!
+
xk+1

(k + 1)!
.

This implies that

0 ≥ ex −
(

1 + x+
x2

2!
+ . . .+

xk

k!

)

≥ xk+1

(k + 1)!

Taking into account that lim
k→∞

xk+1

(k+1)! = 0 one can write

ex = exp(x) = lim
k→∞

(

1 + x+
x2

2!
+ . . .+

xk

k!

)

=

∞
∑

k=0

xk

k!
.
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Look at the decimal approximations of the first ten terms of the sequence
(

1 + 11! +
1
2! + . . .+

1
n!

)

:

2, 000000000 , 2, 500000000 , 2, 666666667 , 2, 708333333 , 2, 716666667 ,

2, 718055556 , 2, 718253968 , 2, 718278770 , 2, 718281526 , 2, 718281801 .

In this case the digit 7 can be seen already in the fourth term of the sequence, the first eight digits of

the tenth term are exact — the ninth is 0 instead of 2 . This is quite good precision at a little cost.

We shall show later that this is not a result of an unexplainable luck but the result of the very fast

convergence of the sequence to its limit e .

It is clear that

e−
(

1 + 11! +
1
2! + . . .+

1
k!

)

= lim
n→∞

(

1
(k+1)! +

1
(k+2)! +

1
(k+3)! + . . .+

1
(k+n)!

)

.

For n ≥ 2 the inequality
1

(k+1)! +
1

(k+2)! +
1

(k+3)! + . . .+
1

(k+n)! ≤ 1
(k+1)! +

1
(k+2)(k+1)! +

1
(k+2)2(k+1)! + . . .+

1
(k+2)n−1(k+1)! =

= 1
(k+1)! ·

1− 1
(k+2)n

1− 1
k+2

< 1
(k+1)! · 1

1− 1
k+2

= k+2
(k+1)!·(k+1) =

k+2
k!(k+1)2 =

k+2
k![k(k+2)+1] <

1
k·k!

— holds, obvious inequalities: k + 3 ≥ k + 2 , k + 4 ≥ k + 2 , . . . , k + n ≥ k + 2 have been used. We
have shown that the k -th term of the sequence

(

1 + 11! +
1
2! + . . .+

1
n!

)

differs from the number e less

than 1
k·k! , clearly this number is little even if k is not very big .

Before we suggested that the difference between
(

1 + 1n
)n
and e is not so small — this was the result

of the numerical experiment with the first ten terms of the sequence. We are going to show that it was

not random. Stolz theorem will be applied to show that the limit lim
n→∞

e−(1+ 1n )
n

1/n equals to e2 . This

means that the difference e −
(

1 + 1n
)n
is approximately equal to the quotient of this limit and the

number n , i.e. e2n >
1
n , of course for n sufficiently large. The result tells us that this approximation

e ≈
(

1 + 1n
)n
is not very useful because for small error one needs a very big n , this requires lengthy

calculations. Even if a calculator or a computer is used we have a problem due to the truncation error

that may accumulate and we cannot control this error — the electronic devices use approximations of

the numbers!

Both the numerator and the denominator of the fraction
e−(1+ 1n )

n

1/n tend to 0 , the denominator decreases

as n increases. Therefore we can look at the quotient of the differences of the two subsequent numerators

and the two subsequent denominators, i.e. we can try to find the limit of the expression

(

e−
(

1 + 1
n+1

)n+1
)

−
(

e−
(

1 + 1n

)n
)

1
n+1 − 1n

=

(

1 + 1
n+1

)n+1

−
(

1 + 1n

)n

1
n − 1

n+1

.

To simplify the notation we set x = 1
n+1 . Then n =

1
x − 1 = 1−xx so 1 + 1n = 1 +

x
1−x =

1
1−x . The

expression which we want to study looks like this (we do not use x in the exponents):

(1 + x)
n+1 −

(

1
1−x

)n

x
1−x − x

=
(1 + x)n+1 − 1

(1−x)n
x−x(1−x)
1−x

=

(

1− x2
)n+1 − (1− x)
x2(1− x)n .
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Clearly lim
n→∞
(1 − x)n = lim

n→∞

(

1− 1
n+1

)n

= lim
n→∞
(1− 1

n+1 )
n+1

1− 1
n+1

= e−1

1 =
1
e . We need to find the limit

lim
n→∞
(1−x2)n+1−(1−x)

x2 . Newton’s binomial formula will be used for the numerator :

(1− x2)n+1 − 1 + x = 1−
(

n+1
1

)

x2 +
(

n+1
2

)

x4 −
(

n+1
3

)

x6 + · · ·+ (−x2)n − 1 + x =
= x− (n+ 1)x2 +

(

n+1
2

)

x4 −
(

n+1
3

)

x6 + · · ·+ (−x2)n =
(

n+1
2

)

x4 −
(

n+1
3

)

x6 + · · ·+ (−x2)n

— the last equality follows from the equation x = 1
n+1 which is equivalent to the equation x(n+1) = 1 .

Obviously lim
n→∞
(n+12 )x

4

x2 = lim
n→∞

(n+1)·n
2(n+1)2 =

1
2 . If n ≥ k − 1 and k ≥ 3 then

(

n+1
k

)

x2k = (n+1)n...(n+2−k)k! x2k ≤ (n+1)
k

k! x
2k < 1

(n+1)k
.

Therefore
(n+13 )x

6

x2 ≤ 1
n+1 oraz

∣

∣

(

n+1
4

)

x8 −
(

n+1
5

)

x10 + · · ·+ (−x2)n
∣

∣ ≤ (n − 3) 1
x2(n+1)4 <

1
n+1 . So we

can write
∣

∣−
(

n+1
3

)

x6 +
(

n+1
4

)

x8 −
(

n+1
5

)

x10 + · · ·+ (−x2)n
∣

∣

x2
≤ 2

n+ 1
−−−−→
n→∞

0 .

This together with lim
n→∞
(n+12 )x

4

x2 = 12 implies that limn→∞
(1−x2)n+1−1+x

x2 = 12 . From this formula and from

the equality lim
n→∞
(1− x)n = 1e the equation follows

lim
n→∞

(

e−
(

1 + 1
n+1

)n+1
)

−
(

e−
(

1 + 1n

)n
)

1
n+1 − 1n

=

(

1 + 1
n+1

)n+1

−
(

1 + 1n

)n

1
n − 1

n+1

=
e

2
.

Now we apply Stolz theorem

lim
n→∞
n

(

e−
(

1 +
1

n

)n
)

=
e

2
.

The result tells us something of an error made when we use the approximate formula
(

1 + 1n
)n ≈ e but

only for sufficiently big n the error is e
2n . We do not know what sufficiently big means. Now we shall

show a better result although majority of economists never saw them and they do not need them. The

reader who is not interested in these considerations can simply go on without reading, nothing in the

later parts of the course depends on these results. We shall prove that if n ≥ 1 then

e−
(

1 +
1

n

)n

≥ 1

n+ 2
.

Let us start with an estimate from below of the difference of two subsequent terms if the sequence:

(

1 +
1

n+ 1

)n+1

−
(

1 +
1

n

)n

=

(

1 +
1

n

)n{(

1 +
1

n+ 1

)(

1− 1

(n+ 1)2

)n

− 1
}

.

For n > 3 we have
(

1− 1
(n+1)2

)n

> 1− n
(n+1)2 +

n(n−1)
2(n+1)4 −

n(n−1)(n−2)
6(n+1)6

— it is so because for j < n the inequality
(

n
j

)

(

n
(n+1)2

)j

>
(

n
j+1

)

(

n
(n+1)2

)j+1

holds, therefore after

Newton’s binomial formula is applied we get the sum of n+1 terms the absolute values of which decrease
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with j , any two terms in a row differ in the sign, so if we stop adding at a negative term we get a sum

smaller than the sum of all terms, if we stop adding at a positive term the obtained sum is greater than

the sum of all terms. We have

1− n
(n+1)2 +

n(n−1)
2(n+1)4 −

n(n−1)(n−2)
6(n+1)6 =

= 1− 1
n+1

(

1− 1
n+1

)

+ 1
2(n+1)2

(

1− 1
n+1

)(

1− 2
n+1

)

− 1
6(n+1)3

(

1− 1
n+1

)(

1− 2
n+1

)(

1− 3
n+1

)

.

We shall show that

(

1 +
1

n+ 1

)(

1− n

(n+ 1)2
+
n(n− 1)
2(n+ 1)4

− n(n− 1)(n− 2)
6(n+ 1)6

)

− 1 > 1

2(n+ 1)2
− 1

2(n+ 1)3
.

Let y = 1
n+1 . Then

n
n+1 = 1− y , n−1n+1 = 1− 2y , n−2n+1 = 1− 3y . We should prove that

(1 + y)

(

1− y(1− y) + 1
2
y2(1− y)(1− 2y)− 1

6
y3(1− y)(1− 2y)(1− 3y)

)

− 1 > 1
2
(y2 − y3) .

This is equivalent to (multiply and reorder to see it):

1

2
(y2 − y3) < 1

2
y2 − 1

6
y3 +

1

3
y4 +

1

6
y5 − 5

6
y6 + y7 =

1

2
y2 − 1

2
y3 +

1

3
y3 +

1

3
y4 +

1

6
y5 − 5

6
y6 + y7.

Recall that 0 < y < 1 , so y3 > y6 , y4 > y6 , y5 > y6 , therefore

1

3
y3 +

1

3
y4 +

1

6
y5 − 5

6
y6 > y6

(

1

3
+
1

3
+
1

6
− 5
6

)

= 0 ,

so the above inequality is proved. We have transformed many times different expressions but are coming

to an end:

(

1 +
1

n+ 1

)(

1− n

(n+ 1)2

)n

− 1 > 1

2(n+ 1)2
− 1

2(n+ 1)3
=

n

2(n+ 1)3
>

1

2(n+ 2)(n+ 3)
.

Notice that 1
2(n+2)(n+3) =

1
2

(

1
n+2 − 1

n+3

)

. If n and k > n are natural numbers then to

(

1 + 1k
)k −

(

1 + 1n
)n
=
(

1 + 1k
)k −

(

1 + 1
k−1

)k−1
+
(

1 + 1
k−1

)k−1
−
(

1 + 1
k−2

)k−2
+

+ · · ·+
(

1 + 1
n+2

)n+2

−
(

1 + 1
n+1

)n+1

+
(

1 + 1
n+1

)n+1

−
(

1 + 1n
)n
>

> 12

(

1 + 1
k−1

)k−1 (
1
k+1 − 1

k+2

)

+ 12

(

1 + 1
k−2

)k−2 (
1
k − 1

k+1

)

+ · · ·+

+ 12

(

1 + 1
n+1

)n+1 (
1
n+3 − 1

n+4

)

+ 12
(

1 + 1n
)n
(

1
n+2 − 1

n+3

)

>

> 1
2

(

1 + 1n
)n
{

1
k+1 − 1

k+2 +
1
k − 1

k+1 + · · · + 1
n+3 − 1

n+4 +
1
n+2 − 1

n+3

}

= 1
2

(

1 + 1n
)n
(

1
n+2 − 1

k+2

)

— the second inequality in the row follows from the monotonicity of the sequence
((

1 + 1n
)n)
which

is increasing. We find the limits of the left hand side and of the right hand side as k −→ ∞ , we may
forget of all middle terms. The conclusion is

e−
(

1 +
1

n

)n

≥ 1

2(n+ 2)

(

1 +
1

n

)n

.
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From this inequality it follows that for natural numbers n the inequality

e−
(

1 + 1n
)n ≥ 1

n+2

holds, recall that
(

1 + 1n
)n ≥ 2 . The obtained result tells us that the sequence

((

1 + 1n
)n)
converges

very slowly to the number e . For example

e−
(

1 + 1
998

)998 ≥ 1
1000 , the situation is even worse because if n ≥ 6 then

(

1 + 1n
)n ≥ 52 , so

e −
(

1 + 1n
)n ≥ 2,5

2(n+2) =
5

4(n+2) , surely e −
(

1 + 1
1248

)1248 ≥ 1
1000 , so the fourth digit of the number

(

1 + 1
1248

)1248
differs from that of the number e . It is clear that finding the decimal approximations of

the number e with the sequence
((

1 + 1n
)n)
no sense at all.

At the end we should say once again that we shall learn in the near future how to derive such estimates

and many other theorems in a much shorter way. This requires some knowledge. We shall develop the theory

which is used in many branches of science. The readers will have an opportunity to compare the amount

of work necessary to get some results (as above) with bare hands with the amount of work when using

differential calculus.

20. Natural logarithms

We proved that for every real number y > 0 there exists a real number x such that y = ex .

Definition of the natural logarithm

The natural logarithm (logarithm to the base e ) of the positive number y is a real number x such that

y = ex . We write x = lny .

Since the inequality x1 < x2 implies that e
x1 < ex2 , the function ln is well defined: assigned to the

number y is precisely one number x , moreover ln y grows with y .

Since ex1 · ex2 = ex1+x2 , the equality ln(y1 · y2) = lny1 + lny2 holds for all y1, y2 > 0 .
If a > 0 them a power of a can be defined with a formula ax = exlna = exp (xlna) . This implies

immediately that ln (ax) = xlna . Using the definition of the exponential function and the properties of ex

one can see that że

ax1+x2 = ax1 · ax2 and (ax1)x2 = exp (x2lnax1) = exp (x2x1lna) = ax1x2 .
Some inequalities will be useful. We know that 1 + x ≥ ex for every real number x . This implies that
ln(1 + x) ≤ x for x > −1 , because the number 1 + x must positive if we want to talk about its logarithm.
If x < 1 then ex ≤ 1

1−x , cf. 19.g. Taking logarithms of both sides one gets x ≤ ln
(

1
1−x

)

= ln
(

1 + x
1−x

)

.

Let y = x
1−x . Then x =

y
1+y , notice that x < 1 iff y > −1 . If y > −1 then

y

1 + y
≤ ln(1 + y) ≤ y . 20.1

This implies that if y > 0 then 1
1+y ≤

ln(1+y)
y ≤ 1 , if −1 < y < 0 then: 1

1+y ≥
ln(1+y)
y ≥ 1 . From these

inequalities and the three sequence theorem it follows that if a sequence (yn) converges to 0 and yn 6= 0
for all n then

lim
n→∞
ln(1 + yn)

yn
= 1 . 20.2
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Let lim
n→∞
xn = x for some positive real numbers x, x1, x2, . . . . Let yn =

xn−x
x . Then

lnxn − lnx = ln
(

1 + xn−xx
)

= ln(1 + yn) =
ln(1+yn)
yn

· yn−−−−−→
n→∞

1 · 0 = 0 .
Therefore if lim

n→∞
xn = x then lim

n→∞
lnxn = lnx . It is worth to show another proof of this statement. The

reader may recall how we proved that if lim
n→∞
xn = g then lim

n→∞
k
√
xn = k

√
g . This will not be done now but

in the chapter at which we shall give basic properties of continuous functions, among them a theorem that

guarantees continuity of an inverse function. In fact the proof of continuity of a root given in 17. will be

rewritten in the general case.

The equality (20.2) gives some information about the magnitude of the natural logarithm of numbers

close to 1 . It tells nothing of logarithms of other numbers.

From the formulas derived in 19 it follows that if x > 0 then for every natural number k the inequality

ex > xk+1

(k+1)! holds. This implies that if limn→∞
xn = +∞ then lim

n→∞
xkn

exp(xn)
= 0 .

If (xn) is a sequence of positive numbers then lim
n→∞
xn = +∞ iff lim

n→∞
lnxn = +∞ . To prove it note

that if M is a real number and lim
n→∞
xn = +∞ then for n sufficiently large xn > eM , so lnxn > M ,

therefore lim
n→∞
lnxn = +∞ . If M is a real number and lim

n→∞
lnxn = +∞ then for all n sufficiently large the

inequality lim
n→∞
xn > M holds, so xn > e

M ≥ 1 +M >M , therefore lim
n→∞
xn = +∞ .

Let lim
n→∞
xn = +∞ and xn > 0 for all n . Let yn = lnxn . In this situation lim

n→∞
yn = +∞ . Therefore

0 = lim
n→∞

yn
exp(yn)

= lim
n→∞

lnxn
xn
. We have shown that for n sufficiently large the number lim

n→∞
xn incomparably

smaller than the number xn .

It is easy to find an estimate that shows that if x is a big positive number then the quotient lnxx is very

small. We know that lim
n→∞
x ≤ x − 1 for all positive x . Therefore 12 lnx = ln(

√
x) ≤ √x− 1 < √x , hence

lnx
x <

2
√
x
x =

2√
x
.

Let us give an example with specific numbers. e10 > 2, 710 = 7, 295 > 75 = 16807 , ln(e10) = 10 .

Therefore

ln16807

16807
<
ln
(

e10
)

16807
=
10

16807
< 0, 0006

Also e100 =
(

e10
)10
> 1680710 > 1600010 = 240 · 1030 = 10244 · 1040 > 1032 . It implies that

ln
(

1042
)

1042
<
ln(e100)

1042
= 10−40 = 0, 0000000000 0000000000 0000000000 0000000001

It was proved that

the natural logarithm of a big positive number is very little compared with this number

and for those readers who like to see concrete numbers we provided two examples and electronic devices were

not necessary for the calculations!

This property of logarithms is the reason for which they are used in situations where people have to

deal with numbers very big and also with numbers very close to 0 they may vary a lot. Usually instead of

natural logarithms logarithms to base 10 are used. Chemists use pH factor. It is minus logarithm of of the
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molar concentration of hydronium ions. If a plain water is considered than the concentration of hydronium

ions in it is around 0, 0000001 = 10−7 , so in this case pH equals 7. Another example is Richter scale for

the magnitude of earthquakes. It also logarithmic. Instead of having many zeros at the end on the number

or in front one deals with logarithms of these numbers and they turn out to be of moderate size. It is also

worth to mention that it is easier to sketch graphs of functions after changing the scale, sometimes without

swtitching to the logarithms it is impossible to sketch a graph.

Logarithms were invented in the XVII century by J.Napier. People who performed complicated calcu-

lations wanted to replace multiplication with addition (try to multiply 5 digit numbers without calculator

or computer). It was possible to do it using logarithms and the formula ln(xy) = lnx + lny . Tables of

logarithms were made. People multiplied numbers finding their logarithms in the table, then adding them,

then finding the result in the table and the number corresponding to it. It was possible to find quite fast

roots of different degrees, powers. Today these methods are not used because computers and calculators are

everywhere around. But it was not so until 1979 or 1980.

Logarithms of infinities

In the future we shall use the following notation ln(+∞) =∞ and ln0 = −∞ .

It is consistent with the formulas e+∞ = +∞ i e−∞ = 0 adopted earlier. Even more important reason for
these definition is that if xn → +∞ then lnxn → +∞ , if 0 < xn → 0 then lnxn → −∞ .

21. Trigonometric functions

We are going to recall the high school definitions of the sine and cosine. At the beginning one should

say that most often used unit for measuring angles is rather artificial. Why to divide a right angle into 90

equal parts? Maybe 100 would be better (France after the Revolution) or maybe 8 is better (sailors liked

consequitive divisions by 2 ). In the theoretical considerations something less artificial is useful. These are

radians.

We assume that the angles are oriented, this means that we have decided which arm is first an which

is second, if we change the names of the arms of the angle then the angle changes to minus the initial one.

Angles measured clockwise are called negative, angles measured counterclockwise are positive. Let us place

an angle so that its first arm coincide with the positive x–axis, i.e. with the set of all points of the form

(x, 0) with x ≥ 0 . The value of a positive angle is t if the second arm of the angle meets the unit circle
centered at the origin at a point P such that the length of the arc that starts at the point (1, 0) and ends at

C equals t . So the value of the positive right angle is π2 instead of 90
◦ . The value of the negative right angle

is of course −π2 , the second arm of it contains the point (0,−1) . We are allowed to talk of angles greater
than 2π . If the value of the angle is 9π4 the it means that we go around the unit circle counterclockwise and

then further by 18 of the circle; the angle of value
−5π
2 is the angle measured clockwise: we go around the

circle once and then further by a quarter of the circle, all the time clockwise.

Let P be the end point of an arc of length t that starts at (1, 0) . We say that the first coordinate
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of P is cos t , the second one is sin t .* This is the definition of cosine and sine e.g. cos π2 = 0 , sin
π
2 = 1 ,

cos 3π2 = 0 , sin
3π
2 = −1 , cos −π4 =

√
2
2 , sin

−π
4 = −

√
2
2 . Let us remind that tan t =

sin t
cos t , cot t =

cos t
sin t ,

sec t = 1
cos t , csc t =

1
sin t . In this book we shall use cosine, sine and tangent.

We give some basic properties of cosine and sine.

T1. For every real number t the formula sin2 t+ cos2 t = 1 is satisfied.

T2. For all real numbers t, s the formula sin(s+ t) = sin s cos t+ sin t cos s is satisfied.

T3. For all real numbers t, s the formula cos(s+ t) = cos s cos t− sin s sin t is satisfied.
T4. For every real number t the equations cos(−t) = cos t and sin(−t) = − sin t is satisfied because the

points (cos t, sin t) and (cos(−t), sin(−t)) are symmetric relative to the x–axis.
T5. For every real number t the equations cos(t+ π2 ) = − sin t and sin(t+ π2 ) = cos t is satisfied

— these equations follow from the fact that counterclockwise rotation by π2 radians around (0, 0) brings

a point (x, y) onto the point (−y, x) , one may derive them also from T2 and T3 and obvious statements
cos π2 = 0 , sin

π
2 = 1 .

T6. For every real number t the equation cos(t + 2π) = cos t and sin(t + 2π) = sin t is satisfied. It is so

because rotation by 2π moves no point. One can also use four times T5.**

T7. For all real numbers s, t the equations: sin s± sin t = 2 sin s±t2 cos s∓t2 , cos s+ cos t = 2 cos s+t2 cos s−t2
oraz cos s− cos t = −2 sin s−t2 sin s+t2 are satisfied — this is an easy consequence of T2, T3 i T4.

T8. If 0 < t < π2 then 0 < sin t < t < tg t .

The proof of the inequality will follow. Let O = (0, 0) , A = (1, 0) , P = (cos t, sin t) , Q = (1, tg t) .

The isosceles triangle POA is contained in the sector
�

POA , and this sector is contained in the right

triangle QOA . Therefore the area of the triangle POA is less than the area of the sector
�

POA the area

of which is less than that of the sector QOA . Computing these areas with very well known formulas

we obtain the inequality 12 · 1 · sin t < t
2π · π · 12 < 1

2 · 1 · tg t obviously equivalent to the one we are
proving.

The inequality sin t < t is satisfied for positive numbers t because if t ≥ π
2 then t > 1 ≥ sin t .

Due to the equality sin(−t) = − sin t , for t 6= 0 the inequality | sin t| < |t| holds. Therefore | sin s −
sin t| =

∣

∣2 sin s−t2 cos
s+t
2

∣

∣ ≤ 2 ·
∣

∣

s−t
2

∣

∣ · 1 = |s − t| for all numbers s, t . In the same way one proves that
| cos s− cos t| ≤ |s− t| . So we proved that

T9. For all numbers s, t the inequalities | sin s− sin t| ≤ |s− t| and | cos s− cos t| ≤ |s− t| are satisfied.
T10. If lim

n→∞
tn = t then lim

n→∞
sin tn = sin t and lim

n→∞
cos tn = cos t , so sine and cosine are continuous

functions — the proof follows from the three sequence theorem and the property T9.

T11. If lim
n→∞
tn = 0 and tn 6= 0 for all n then lim

n→∞
sin tn
tn
= 1 .

We shall prove this theorem. sin(−t)−t =
sin t
t , so we may assume that tn > 0 for all n . Since limn→∞

tn = 0 ,

* These names come in an alphabetic order.
** There many more formulas of that sort. All these formulas are very easy, in fact obvious for people who draw a figure
instead of trying to recall the formula seen some time ago or try to find somewhere in the net or in a book.
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for n big enough the inequality |tn| < 1 is satisfied, so 0 < tn < 1 because tn > 0 . For such numbers
t , due to T8, the inequality t(1 − t2) < t(1 − sin2 t) = t cos2 t < t cos t < sin t < t holds. Therefore
t− t3 < sin t < t and 1− t2 < sin tt < 1 . Now we can apply the three sequence theorem.
The above proof may shortened. It follows from T8. then cos tn <

sin tn
tn
< 1 and since lim

n→∞
cos tn =

cos 0 = 1 , the theorem follows from the three sequence theorem. A longer proof has been provided to

obtain a concrete estimate of the error resulting from replacing sin t with t ≈ 0 . This estimate is not
the best known. Later on we shall be able to show easily that t − t36 < sin t for t > 0 . This will not
change much.

So if 0 < t < 0.1 then 0 < t− sin t < t3 < 0.01 · t . This means that the relative error due to replacement
of sin t with t is less than 1% of the number t (in fact less than < 16%). It is quite reasonable precision,

do not forget that we express all angles in radians ( 0.1 rad is more than 5◦ ). Such angles appear if one

considers problems in geometric optics, mathematical pendulum or gun shooting to far away located

goals.

At high school textbooks one can easily find a theorem: the period of the mathematical pendulum is

independent of the amplitude. Not too many people some attention to the hypothesis: amplitude has

to be sufficiently small. It must be so in order to guarantee that the error in the approximate formula

sin t ≈ t would not interfere. It is easy to notice that if the amplitude is quite big, say greater than π2
then the period of the pendulum grows significantly. In the case of very little amplitudes the differences

in periods are so little that it is very hard to measure the periods so precisely that they appeared

noticable.

��� ����� �	� 	

0. Show that for any natural number n and arbitrary real numbers a, b the following equalities hold:

(a) (a+ b)n = an +
(

n
1

)

an−1b+
(

n
2

)

an−2b2 + · · ·+
(

n
n−2
)

a2bn−2 +
(

n
n−1
)

abn−1 + bn , where

(

c
k

)

=
c(c−1)(c−2)...

(

c−(k−1)
)

k! for every real number c and k ∈ {1, 2, 3, . . .} ,
(b) an − bn = (a− b)

(

an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1
)

.

(c) a2n+1 + b2n+1 = (a+ b)
(

a2n − a2n−1b+ a2n−2b2 − a2n−3b3 + · · ·+ b2n
)

.

1. Let an+1 = qan for n = 1, 2, . . . , a1 ∈
�
. Prove that an = a1q

n−1 for every n . Prove that for q 6= 1
the equality a1 + a2 + ...+ an = a1

1−qn
1−q holds.

2. Write the number 0.12345123451234512345 . . .= 0.(12345) as a quotient of two integers.

3. What is greater the number 1 or the number 0.99999 . . . = 0,(9) ? — give the detailed explanation.

4. Show that if for every natural number n the equality an+1 = qan+p is satisfied, p and q are arbitrary

fixed real numbers, then for every n the equality an =
p
1−q + (a1 −

p
1−q )q

n−1 holds. In particular

if a1 =
p
1−q , then the term of the sequence (an) does not depend on n (this sequence is called by

economists an equilibrium of the equationan+1 = qan + p ).

5. The price of the fuel went up 10 times, each time by 3% . Give an estimate of the price increase after
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all 10 changes. The allowed error is at most 0,1 .

6. ( cobweb model). Let Pt be the price of a good at the time t , Dt be the demand for the good at

the time t , St be the supply of the good at the time t . Let for every non-negative integer t and some

positive numbers t α, β, γ, δ that do not depend on t the following equations be fulfilled St = Dt ,

Dt = α − βPt , St+1 = γ + δPt . The first of these equations means that the manufacturer makes
as much good as he can sell at the price Pt , the second equation implies that the demand decays if

the price grows, from the third one one can deduce that the manufacturer supplies more good when

the price grows. Find explicit formulas for Pt and St in terms of t and constants α, β, γ, δ . Explain

what happens to the demand and the supply as t grows. The description of the model can be found

in many books, in particular in A.Ostaszewski, Mathematics in Economics. Models and methods”, or

A.C.Chianga, Foundations of Mathematical Economy.

7. There is a fund of 1000000, kept at a bank, interest rate is 8% per year. Each year 300000 is used for

scholarships paid at the end of the year after the interes was compounded starting from the year after

the money was put into the bank. How long under these circumstances the fund will last? What would

happen if the scholarships had been ten times smaller, i.e. 30000 yearly?

8. In some country the rate of inflation is 5% monthly. What will be the rate of inflation after a year.

Give the answer so that the error will not exceed 1%. Instead of a calculator or a computer try to use

Newton’s binomial formula.

9. Assuming that the population growth rate on the Earth is 1,3% per year find out after what time the

population will be doubled.

10. Show that a sequence convergent to a finite limit must be bounded.

11. Show that a sequence (an) converges to 0 iff the sequence (|an|) converges to 0 .

12. Prove that the product (anbn) of the sequence (an) that converges to 0 and of a bounded sequence

(bn) converges to 0 .

13. Prove that if n > 1000000 then n
√
2 < 1.000001 .

14. Prove that for sufficiently big numbers n the inequalities: n! > 1000000n oraz 1.000001n > n1000000

are satisfied. In both cases prove that they are not satisfied for n = 2, 3, 4, 5 and find a number n0

(not necessarilly the smallest one!) such that if n > n0 then the first set of inequalities is satisfied.

15. Find the limit of the sequence (an) if it exists, an =
√

n+ 3
√
n−√n .

16. Find the limit of the sequence (an) if it exists, an =
√

n+
√
n−√n .

17. Find the limit of the sequence (an) if it exists, an =
n
√
3n − 2n .

18. Find the limit of the sequence (an) if it exists, an =
n
√
3n + sinn .

19. Find the limit of the sequence (an) if it exists, an = 1 +
n
n+1 cos

nπ
2 .

20. Find the limit of the sequence (an) if it exists, an = sinn .

21. Find the limit of the sequence (an) if it exists, an =
ln(n2+n+1000)
ln(n1000+999n−1) .
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22. Find the limit of the sequence (an) if it exists, an =
n2+n+1000
n1000+999n−1 .

23. Find the limit of the sequence (an) if it exists, an =
(

1 + sin 1n
)n
.

24. Find the limit of the sequence (an) if it exists, an =
n
√
n! .

25. Find the limit of the sequence (an) if it exists, an =
10·11·12·....·(n+9)
1·3·5·...·(2n−1) .

26. Find the limit of the sequence (an) if it exists, an =
(

1 + sinnn2
)n
.

27. Find the limit of the sequence (an) if it exists, an =
(

1− 12
) (

1− 13
)

...
(

1− 1n
)

.

28. Find the limit of the sequence (an) if it exists, an =
(

1− 1
22

) (

1− 1
32

)

...
(

1− 1
n2

)

.

29. Find the limit of the sequence (an) if it exists, an =
3n−2n
3n+n2·2n .

30. Find the limit of the sequence (an) if it exists, an =
3n+2n·sinn
3n+1+n2002 .

31. Does the inequality

a. lim
n→∞
an ≤ lim

n→∞
bn imply that for sufficiently large natural numbers n the inequality an ≤ bn

holds?

b. lim
n→∞
an < lim

n→∞
bn imply that for sufficiently large natural numbers n the inequality an < bn

holds?

32. Let lim
n→∞
an = g . Show that lim

n→∞

(

1 + ann
)n
= eg . In the proof one can use the theorem about the

limits of n -th powers of sequences converging quickly to 1 .

33. Find sequences (an) , (bn) such that lim
n→∞
an = 0 = lim

n→∞
bn and:

a. lim
n→∞
abnn = 1 , b. lim

n→∞
abnn = 0 , c. limn→∞ abnn =

2
3 .

34. Evaluate lim
n→∞

(

n+ 5
√
n5+160n4

2n+2

)n

. Hint: lim
x→0
(1 + x)a − 1

x
= a .

35. Let an =

(

1 +
1

n
sin
nπ

200

)n

. Find lim
n→∞
an if the limit exists. If not find two subsequences with different

limits.

36. Lest an =

(

1 +
1

n3
cos
nπ

200

)n2

. Find lim
n→∞

an if it exists. If it does not find two subsequences with

distinct limits.

37. Let an =

(

n+ ncos 1n
n+
√
n

)n

. Find lim
n→∞
an if it exists. If it does not find two subsequences with distinct

limits.

38. Let an =

(

n+ nsin 1n
n− 1

)n

. Find lim
n→∞
an if it exists. If it does not find two subsequences with distinct

limits.

39. Find limn→∞ an , if it exists, an =
(

1 + 2
n+2

)n

.

40. Find limn→∞ an , if it exists, an =
(

n2+5n−3
n2+13

)n

.

41. Find limn→∞ an , if it exists, an =
(

0.999999+ 1n
)n
.

42. Find limn→∞ an , if it exists, an =
(

1.000001+ 1n
)n
.

43. Find limn→∞ an , if it exists, an =
1000000n

n! .

44. Find limn→∞ an cia� gu (an) if it exists, an =
n100000

1.000001n .
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45. Let an =
1
n+1 +

1
n+2 + · · ·+ 1

n+n . Prove that the sequence (an) has a limit. Is the limit finite or not?

Is the limit equal 0 ?

46. Let an = 1 +
1
1·2 +

1
2·3 + · · · + 1

n(n+1) . Prove that the sequence (an) has a limit. Is the limit finite or

not?

47. Let an =
1
12 +

1
22 +

1
32 + · · ·+ 1

n2 . Prove that the sequence (an) has a limit. Is the limit finite or not?

48. Let an =
1
1 +

1
2 +

1
3 + · · ·+ 1n . Prove that the sequence (an) has a limit. Is the limit finite or not?

49. Let a0 be an arbitrary non-negative number. Let an =
√
6 + an−1 for n = 1, 2, . . . . Prove that the

sequence (an) has a limit. Is the limit finite or not? Find the limit.

50. Let a0 be an arbitrary positive number. Let an =
1
2

(

an−1 +
5
an−1

)

dla n = 1, 2, 3, . . . . Find

limn→∞ an , if it exists. Hint: Prove that if n = 0, 1, 2 . . . then an+1 ≥
√
5 and an+1 ≥ an+2 .

51. Let an =
(

1 + 1
12

) (

1 + 1
22

) (

1 + 1
32

)

. . .
(

1 + 1
n2

)

. Prove that the sequence (an) has a limit. Is the limit

finite or not? Hint: Use the inequality 1 + x ≤ ex .
52. Let an =

(

1− 1
21

) (

1− 1
22

) (

1− 1
23

)

. . .
(

1− 1
2n

)

. Prove that the sequence (an) has a finite limit. Is it

true that limn→∞ an = 0?

Hint: show that for all x < 1 the inequality 1− x = 1
1+ x

1−x
≥ e−x/(1−x) holds.

53. Find the limit lim
n→∞

(

1 +
n√2
n

)n

.

54. Find the limit limn→∞
(

1 + n
√
2
)n
.

55. Find the limit lim
n→∞

lnn
n ;

56. Find the limit limn→∞
ebn−1
bn
, bn is an n -th term of a sequence that converges to 0 , bn 6= 0 for

n = 1, 2, . . . Hint: 1 + x ≤ ex ≤ 1
1−x for x < 1 .

57. Find the limit lim
n→∞

n√2−1
1/n ;

58. Find the limit lim
n→∞

(

1+ n
√
2

2

)n

;

59. Find the limit lim
n→∞
(n− lnn) ;

60. Find the limit lim
n→∞

15+25+35+···+n5− 16n
6

n5 ;

61. Find the limit lim
n→∞

1
(n+1)2

+ 1
(n+2)2

+ · · ·+ 1
(2n)2
.

62. Find the limit lim
n→∞
n2
(

1
(n+1)2

+ 1
(n+2)2

+ · · ·+ 1
(2n)2

)

.

63. Find the limit lim
n→∞

n
(

1
(n+1)2

+ 1
(n+2)2

+ · · ·+ 1
(2n)2

)

;

64. Find the limit lim
n→∞

1
n

(

1 + 12 +
1
3 + · · ·+ 1n

)

;

65. Find the limit lim
n→∞

1
lnn

(

1 + 12 +
1
3 + · · ·+ 1n

)

.

66. Find the limit lim
n→∞

1√
n

(

1 + 12 +
1
3 + · · ·+ 1n

)

.

67. Let a0 =
1
10 and an+1 = sin an for n = 0, 1, 2, . . . . Find the limit limn→∞

an or prove that if does not

exist.

68. Let a0 =
1
10 oraz an+1 = 2

an − 1 . Find the limit lim
n→∞
an or prove that if does not exist.
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69. Let a0 =
1
10 oraz an+1 = −an + 12a3n . Find the limit limn→∞an or prove that if does not exist.

70. Let an =
1
22 +

1
33 +

1
44 + · · ·+ 1

nn . Does the sequence (an) have a limit? If the limit exists, is it finite

or not?

71. Let an =
1√
2
+ 1

3√3 +
1
4√4 + · · ·+

1
n
√
n
. Does the sequence (an) have a limit? If the limit exists, is it finite

or not?

72. Let an =
1
2 +

1
2·22 +

1
3·33 + · · · + 1

n·nn . Does the sequence (an) have a limit? If the limit exists, is it

finite or not?

73. Let an =
1
2 +

2
22 +

3
23 + · · ·+ n

2n . Does the sequence (an) have a limit? If the limit exists, is it finite or

not?

74. Let an =
ln2
22 +

ln3
33 +

ln4
44 + · · ·+ lnnnn Does the sequence (an) have a limit? If the limit exists, is it finite

or not?

75. Let an = 1+
1
2 − 13 − 14 + 15 + 16 − 17 − 18 + · · ·+ 1

4n−3 +
1
4n−2 − 1

4n−1 − 1
4n . Does the sequence (an) have

a limit? If the limit exists, is it finite or not?
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