December 10-th, 2020, 8 a.m. 45 - minutes test for people whose student's number is even

Solution of each problem should be written on a separate page. If you write with a pen on a sheet of paper please keep a distance at least one inch (2.5 cm) from each border.

Sign each paper with your first name, your last name and your students number.
The name of file is: your last name dash your first name dash problem number. For example Vladimir-Putin-3. The files should be turned into .pdf

At the end of your test please add a statement (if it is true as it should be): I solved the problems by myself without any assistance.

1. Let $A=\left(\begin{array}{ll}1 & 1 \\ 3 & 2 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{lll}1 & 3 & 1 \\ 1 & 4 & 0\end{array}\right), C=\left(\begin{array}{rrr}3 & -1 & -1 \\ -1 & 5 & 2 \\ 1 & -2 & -1\end{array}\right)$ and $D=\left(\begin{array}{rrr}3 & -1 & -1 \\ 1 & 3 & 1 \\ -1 & 2 & 1\end{array}\right)$.

Compute the determinants of all five matrices $A \cdot B, B \cdot A, C, C^{-2}$ and $C^{3} \cdot D^{2}$.
Solution. Let us start with saying that the determinant of the matrix $A B$ is 0 because the range of a linear map from \mathbb{R}^{3} to \mathbb{R}^{2} defined by the matrix B is at most 2 . Therefore the dimension of the range of $A B$ is also at most 2 because the map defined by the matrix A starts from the two dimensional space so the range of it cannot exceed 2 .
If one does not notice it then she or he computes the product $A B=\left(\begin{array}{rrr}2 & 7 & 1 \\ 5 & 17 & 3 \\ 1 & 3 & 1\end{array}\right)$ evaluating all 18 products and adding them as required. Then using the properties of determinants we can compute $\left|\begin{array}{rrr}2 & 7 & 1 \\ 5 & 17 & 3 \\ 1 & 3 & 1\end{array}\right|=\left|\begin{array}{rrr}0 & 1 & -1 \\ 0 & 2 & -2 \\ 1 & 3 & 1\end{array}\right|=\left|\begin{array}{rrr}0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & 3 & 1\end{array}\right|=0$. Now $B A=\left(\begin{array}{ll}11 & 7 \\ 13 & 9\end{array}\right)$ and $\left|\begin{array}{ll}11 & 7 \\ 13 & 9\end{array}\right|=\left|\begin{array}{rr}11 & 7 \\ 2 & 2\end{array}\right|=2\left|\begin{array}{rr}11 & 7 \\ 1 & 1\end{array}\right|=2\left|\begin{array}{ll}4 & 0 \\ 1 & 1\end{array}\right|=8$. We proceed in the same way: $\operatorname{det}(C)=\left|\begin{array}{rrr}3 & -1 & -1 \\ -1 & 5 & 2 \\ 1 & -2 & -1\end{array}\right|=\left|\begin{array}{rrr}0 & 5 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & -1\end{array}\right|=\left|\begin{array}{ll}5 & 2 \\ 3 & 1\end{array}\right|=-1$ and $\operatorname{det}(D)=\left|\begin{array}{rrr}3 & -1 & -1 \\ 1 & 3 & 1 \\ -1 & 2 & 1\end{array}\right|=$ $=\left|\begin{array}{rrr}0 & 5 & 2 \\ 0 & 5 & 2 \\ -1 & 2 & 1\end{array}\right|=\left|\begin{array}{rrr}0 & 0 & 0 \\ 0 & 5 & 2 \\ -1 & 2 & 1\end{array}\right|=0$. This implies that $\operatorname{det}\left(C^{-2}\right)=(\operatorname{det}(C))^{-2}=(-1)^{-2}=1$ and $\operatorname{det}\left(C^{3} D^{2}\right)=\operatorname{det}\left(C^{3} D\right) \cdot \operatorname{det}(D)=\operatorname{det}\left(C^{3} D\right) \cdot 0=0$.
2. Let φ be the symmetry with respect to the line $2 x-3 y=0$

Find $\varphi\binom{9}{6}, \varphi\binom{-3}{-2}, \varphi\binom{2}{-3}$.
Let $A=\left\{\binom{-3}{-2},\binom{2}{-3}\right\}, B=\left\{\binom{-6}{6},\binom{6}{6}\right\}$ and $s t=\left\{\binom{1}{0},\binom{0}{1}\right\}$.
Find $M(\varphi)_{A}^{A}, M_{A}^{s t}, M_{s t}^{A}, M_{B}^{s t}, M_{s t}^{B}$ and $M(\varphi)_{s t}^{s t}$.
Solution. All points from the line $2 x-3 y=0$ are mapped to themselves (these are fixed points of the symmetry) so $\varphi\binom{9}{6}=\binom{9}{6}$ and $\varphi\binom{-3}{-2}=\binom{-3}{-2}$. The vector $\binom{2}{-3}$ is perpendicular to the line $2 x-3 y=0$ so by the definition of the symmetry we have $\varphi\binom{2}{-3}=-\binom{2}{-3}$. The last two equations imply that $M(\varphi)_{A}^{A}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. $M_{A}^{s t}=\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)$ which means that $\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)\binom{1}{0}=\binom{-3}{-2}$ and $\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)\binom{0}{1}=\binom{2}{-3}$. This implies that $x\binom{1}{0}+y\binom{0}{1}=\binom{x}{y}=$ $=\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)\binom{u}{v}=u\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)\binom{1}{0}+v\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)\binom{0}{1}=$ $=u\binom{-3}{-2}+v\binom{2}{-3}$, so the vector written as a linear combination of the elements of the standard basis of \mathbb{R}^{2} was written as a linear combination of the elements if the basis A. The formulas are: $x=-3 u+2 v$ and $y=-2 u-3 v$. To express the numbers u, v with x, y we can solve the system of equations (the last two equations) for u and $v: 3 x+2 y=$ $=3(-3 u+2 v)+2(-2 u-3 v)=-13 u$ so $u=\frac{-1}{13}(3 x+2 y)$ and in the same way $v=\frac{1}{13}(2 x-3 y)$. This is equivalent to the formula $\binom{u}{v}=\frac{1}{13}\left(\begin{array}{rr}-3 & -2 \\ 2 & -3\end{array}\right)\binom{x}{y}$. This proves the equlity $M_{s t}^{A}=\frac{1}{13}\left(\begin{array}{rr}-3 & -2 \\ 2 & -3\end{array}\right)$. We could have also written $M_{s t}^{A}=\left(M_{A}^{s t}\right)^{-1}=\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right)^{-1}$.
Now shortly $M_{B}^{s t}=\left(\begin{array}{rr}-6 & 6 \\ 6 & 6\end{array}\right), M_{s t}^{B}=\left(M_{B}^{s t}\right)^{-1}=\frac{-1}{72}\left(\begin{array}{rr}6 & -6 \\ -6 & -6\end{array}\right)$. The last step in this solution is $M(\varphi)_{s t}^{s t}=M_{A}^{s t} \cdot M(\varphi)_{A}^{A} \cdot M_{s t}^{A}=\left(\begin{array}{rr}-3 & 2 \\ -2 & -3\end{array}\right) \cdot\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \cdot \frac{1}{13}\left(\begin{array}{rr}-3 & -2 \\ 2 & -3\end{array}\right)=$ $=\frac{1}{13}\left(\begin{array}{rr}5 & 12 \\ 12 & -5\end{array}\right)$. We can write $\varphi\binom{x}{y}=\frac{1}{13}\left(\begin{array}{rr}5 & 12 \\ 12 & -5\end{array}\right)\binom{x}{y}$.
Obviously there was no need to solve the system if the linear equations. We could find the inverse of the matrix. I included the solution above just to show that everyhing could be done
using ,school mathematics" only. I hope that some students will understand better what is going on and take an adentage of looking in a better way at some problems. It may help to understand the way used to answer questions.

Solution of each problem should be written on a separate page. If you write with a pen on a sheet of paper please keep a distance at least one inch (2.5 cm) from each border.

Sign each paper with your first name, your last name and your students number.
The name of file is: your last name dash your first name dash problem number. For example Vladimir-Putin-3. The files should be turned into .pdf

At the end of your test please add a statement (if it is true as it should be): I solved the problems by myself without any assistance.

1. Let $A=\left(\begin{array}{rr}1 & -1 \\ 2 & 1 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{rrr}1 & 2 & 0 \\ -1 & 1 & 1\end{array}\right), C=\left(\begin{array}{rrr}3 & 3 & -1 \\ 3 & 5 & -2 \\ -1 & -2 & 1\end{array}\right)$ and $D=\left(\begin{array}{rrr}3 & 3 & -1 \\ 1 & -1 & 1 \\ -1 & -2 & 1\end{array}\right)$.

Compute the determinants of all five matrices $A \cdot B, B \cdot A, C^{2}, C^{-1}$ and $C^{2} \cdot D^{3}$.

$$
A B=\left(\begin{array}{rrr}
2 & 1 & -1 \\
1 & 5 & 1 \\
-1 & 1 & 1
\end{array}\right),\left|\begin{array}{rrr}
2 & 1 & -1 \\
1 & 5 & 1 \\
-1 & 1 & 1
\end{array}\right|=0, \quad B A=\left(\begin{array}{ll}
5 & 1 \\
1 & 3
\end{array}\right),\left|\begin{array}{ll}
5 & 1 \\
1 & 3
\end{array}\right|=14
$$

$$
\operatorname{det}(C)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{-2}\right)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{3} D^{2}\right)=0
$$

2. Let φ be the symmetry with respect to the line $2 x+3 y=0$

Find $\varphi\binom{9}{-6}, \varphi\binom{-6}{-4}, \varphi\binom{2}{3}$.
Let $A=\left\{\binom{3}{-2},\binom{2}{3}\right\}, B=\left\{\binom{-6}{6},\binom{6}{6}\right\}$ and $s t=\left\{\binom{1}{0},\binom{0}{1}\right\}$.
Find $M(\varphi)_{A}^{A}, M_{A}^{s t}, M_{s t}^{A}, M_{B}^{s t}, M_{s t}^{B}$ and $M(\varphi)_{s t}^{s t}$.
$\varphi\binom{x}{y}=\frac{1}{13}\left(\begin{array}{rr}5 & -12 \\ -12 & -5\end{array}\right)\binom{x}{y}$,
$\varphi\binom{9}{-6}=\frac{1}{13}\left(\begin{array}{rr}5 & -12 \\ -12 & -5\end{array}\right)\binom{9}{-6}=\binom{9}{-6}$,
$\varphi\binom{-6}{-4}=\frac{1}{13}\left(\begin{array}{rr}5 & -12 \\ -12 & -5\end{array}\right)\binom{-6}{-4}=\frac{1}{13}\binom{18}{92}$,
$\varphi\binom{2}{3}=\frac{1}{13}\left(\begin{array}{rr}5 & -12 \\ -12 & -5\end{array}\right)\binom{2}{3}=\binom{-2}{-3}$,
$M(\varphi)_{A}^{A}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), M_{A}^{s t}=\left(\begin{array}{rr}3 & 2 \\ -2 & 3\end{array}\right), M_{s t}^{A}=\frac{1}{13}\left(\begin{array}{rr}3 & -2 \\ 2 & 3\end{array}\right)$,
$M_{B}^{s t}=\left(\begin{array}{rr}-6 & 6 \\ 6 & 6\end{array}\right), M_{s t}^{B}=\frac{-1}{72}\left(\begin{array}{rr}6 & -6 \\ -6 & -6\end{array}\right), M(\varphi)_{s t}^{s t}=\frac{1}{13}\left(\begin{array}{rr}5 & -12 \\ -12 & -5\end{array}\right)$.

Solution of each problem should be written on a separate page. If you write with a pen on a sheet of paper please keep a distance at least one inch (2.5 cm) from each border.

Sign each paper with your first name, your last name and your students number.
The name of file is: your last name dash your first name dash problem number. For example Vladimir-Putin-3. The files should be turned into .pdf

At the end of your test please add a statement (if it is true as it should be): I solved the problems by myself without any assistance.

1. Let $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 1 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{lll}2 & 1 & 0 \\ 3 & 1 & 1\end{array}\right), C=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 10 & 3 \\ 0 & 3 & 1\end{array}\right)$ and $D=\left(\begin{array}{rrr}5 & -2 & 0 \\ 5 & 4 & 2 \\ 0 & 3 & 1\end{array}\right)$.

Compute the determinants of all five matrices $A \cdot B, B \cdot A, C, C^{-2}$ and $C^{3} \cdot D^{2}$.
$A B=\left(\begin{array}{rrr}13 & 5 & 3 \\ 5 & 2 & 1 \\ 3 & 1 & 1\end{array}\right),\left|\begin{array}{rrr}13 & 5 & 3 \\ 5 & 2 & 1 \\ 3 & 1 & 1\end{array}\right|=0, \quad B A=\left(\begin{array}{rr}5 & 7 \\ 7 & 11\end{array}\right),\left|\begin{array}{rr}5 & 7 \\ 7 & 11\end{array}\right|=6$,
$\operatorname{det}(C)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{-2}\right)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{3} D^{2}\right)=0$.
2. Let φ be the symmetry with respect to the line $4 x-3 y=0$

Find $\varphi\binom{6}{8}, \varphi\binom{-3}{-4}, \varphi\binom{4}{-3}$.
Let $A=\left\{\binom{3}{4},\binom{-8}{6}\right\}, B=\left\{\binom{-12}{12},\binom{12}{12}\right\}$ and $s t=\left\{\binom{1}{0},\binom{0}{1}\right\}$.
Find $M(\varphi)_{A}^{A}, M_{A}^{s t}, M_{s t}^{A}, M_{B}^{s t}, M_{s t}^{B}$ and $M(\varphi)_{s t}^{s t}$.
$\varphi\binom{x}{y}=\frac{1}{25}\left(\begin{array}{rr}-7 & 24 \\ 24 & 7\end{array}\right)\binom{x}{y}$,
$\varphi\binom{6}{8}=\frac{1}{25}\left(\begin{array}{rr}-7 & 24 \\ 24 & 7\end{array}\right)\binom{6}{8}=\binom{6}{8}$,
$\varphi\binom{-3}{-4}=\frac{1}{25}\left(\begin{array}{rr}-7 & 24 \\ 24 & 7\end{array}\right)\binom{-3}{-4}=\binom{-3}{-4}$,
$\varphi\binom{4}{-3}=\frac{1}{25}\left(\begin{array}{rr}-7 & 24 \\ 24 & 7\end{array}\right)\binom{4}{-3}=\binom{-4}{3}$,
$M(\varphi)_{A}^{A}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), M_{A}^{s t}=\left(\begin{array}{rr}3 & -8 \\ 4 & 6\end{array}\right), M_{s t}^{A}=\frac{1}{50}\left(\begin{array}{rr}6 & 8 \\ -4 & 3\end{array}\right)$,
$M_{B}^{s t}=\left(\begin{array}{rr}-12 & 12 \\ 12 & 12\end{array}\right), M_{s t}^{B}=\frac{-1}{288}\left(\begin{array}{rr}12 & -12 \\ -12 & -12\end{array}\right), M(\varphi)_{s t}^{s t}=\frac{1}{25}\left(\begin{array}{rr}-7 & 24 \\ 24 & 7\end{array}\right)$.

Solution of each problem should be written on a separate page. If you write with a pen on a sheet of paper please keep a distance at least one inch (2.5 cm) from each border.

Sign each paper with your first name, your last name and your students number.
The name of file is: your last name dash your first name dash problem number. For example Vladimir-Putin-3. The files should be turned into .pdf

At the end of your test please add a statement (if it is true as it should be): I solved the problems by myself without any assistance.

1. Let $A=\left(\begin{array}{rr}2 & 1 \\ 3 & 2 \\ 1 & -1\end{array}\right), B=\left(\begin{array}{rrr}2 & 3 & 1 \\ 1 & 2 & -1\end{array}\right), C=\left(\begin{array}{lll}6 & 4 & 1 \\ 4 & 5 & 2 \\ 1 & 2 & 1\end{array}\right)$ and $D=\left(\begin{array}{lll}6 & 4 & 1 \\ 8 & 8 & 3 \\ 1 & 2 & 1\end{array}\right)$.

Compute the determinants of all five matrices $A \cdot B, B \cdot A, C^{2}, C^{-1}$ and $C^{2} \cdot D^{3}$.
$A B=\left(\begin{array}{rrr}5 & 8 & 1 \\ 8 & 13 & 1 \\ 1 & 1 & 2\end{array}\right),\left|\begin{array}{rrr}5 & 8 & 1 \\ 8 & 13 & 1 \\ 1 & 1 & 2\end{array}\right|=0, \quad B A=\left(\begin{array}{rr}14 & 7 \\ 7 & 6\end{array}\right),\left|\begin{array}{rr}14 & 7 \\ 7 & 6\end{array}\right|=35$,
$\operatorname{det}(C)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{-2}\right)=1, \operatorname{det}(D)=0, \operatorname{det}\left(C^{3} D^{2}\right)=0$.
2. Let φ be the symmetry with respect to the line $4 x+3 y=0$

Find $\varphi\binom{-6}{8}, \varphi\binom{3}{-4}, \varphi\binom{4}{3}$.
Let $A=\left\{\binom{3}{-4},\binom{8}{6}\right\}, B=\left\{\binom{-12}{12},\binom{12}{12}\right\}$ and $s t=\left\{\binom{1}{0},\binom{0}{1}\right\}$.
Find $M(\varphi)_{A}^{A}, M_{A}^{s t}, M_{s t}^{A}, M_{B}^{s t}, M_{s t}^{B}$ and $M(\varphi)_{s t}^{s t}$.
$\varphi\binom{x}{y}=\frac{1}{25}\left(\begin{array}{rr}-7 & -24 \\ -24 & 7\end{array}\right)\binom{x}{y}$,
$\varphi\binom{-6}{8}=\frac{1}{25}\left(\begin{array}{rr}-7 & -24 \\ -24 & 7\end{array}\right)\binom{-6}{8}=\binom{-6}{8}$,
$\varphi\binom{3}{-4}=\frac{1}{25}\left(\begin{array}{rr}-7 & -24 \\ -24 & 7\end{array}\right)\binom{3}{-4}=\binom{3}{-4}$,
$\varphi\binom{4}{3}=\frac{1}{25}\left(\begin{array}{rr}-7 & -24 \\ -24 & 7\end{array}\right)\binom{4}{3}=\binom{-4}{-3}$,
$M(\varphi)_{A}^{A}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), M_{A}^{s t}=\left(\begin{array}{rr}3 & 8 \\ -4 & 6\end{array}\right), M_{s t}^{A}=\frac{1}{50}\left(\begin{array}{rr}6 & -8 \\ 4 & 3\end{array}\right)$,
$M_{B}^{s t}=\left(\begin{array}{rr}-12 & 12 \\ 12 & 12\end{array}\right), M_{s t}^{B}=\frac{-1}{288}\left(\begin{array}{rr}12 & -12 \\ -12 & -12\end{array}\right), M(\varphi)_{s t}^{s t}=\frac{1}{25}\left(\begin{array}{rr}-7 & -24 \\ -24 & 7\end{array}\right)$.

