
Consider the Fibonacci sequence again : 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . A next term is a sum

of its two predecessors: Fn+2 = Fn+1 + Fn. We may look at it in the following way. Out of a pair

of given numbers x, y we create a new pair y and x + y starting from 1, 1. We may say that there

is a map from R2 into itself given by the formula f(x, y) = (y, x+y). The map is linear. We may write x

y

→
 y

x+ y

 =

 0 1

1 1

 x

y

. Then

 1

1

→
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2
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 2

3
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 3

5
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8


and so on. We can see that

 5
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1
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.

This shows that finding a formula for Fn is equivalent to finding a formula for

 0 1

1 1

n

. The subse-

quent powers of the matrix are:

 0 1

1 1

 ,

 0 1

1 1

2

=

 1 1

1 2

,
 0 1

1 1

3

=

 1 2

2 3

,
 0 1

1 1

4

=

 2 3

3 5

,
 0 1

1 1

5

=

 3 5

5 8

. We see the Fibonacci numbers again which is

not surprising at all because we only restated the problem. Now we shall try to change the basis

in R2 in an appropriate way. Let us try to find vectors mapped the vectors parallel to them that is

such a non-zero vector

 x

y

 that

 y

x+ y

 =

 0 1

1 1

 x

y

 = q

 x

y

 for some number q

(recall that two vectors are parallel if the product of one of them and some number equals to the

second one). Two equations must be fulfilled y = qx and x+ y = qy. This implies that x+ qx = q2x.

If x 6= 0 then 1 + q = q2 so q = 1
2
(1 ±

√
5). Let v− =

 1

1
2
(1−

√
5)

 and v+ =

 1

1
2
(1 +

√
5)

,

also q− = 1
2
(1 −

√
5) and q+ = 1

2
(1 +

√
5). We have

 0 1

1 1

 1

q±

 = q±

 1

q±

. The vectors 1

q−

 ,

 1

q+

 are linearly independent so they constitute a basis of R2. The matrix of the map



is MB
B =

 q− 0

0 q+

. Obviously (MB
B )n =

 qn− 0

0 qn+

. x

y

 = x

 1

0

+ y

 0

1

 = u1

 1

q−

+ u2

 1

q+

. This means that x

y

 =

 1 1

q− q+

 u1

u2

 =

 1 1

1−
√
5

2
1+
√
5

2

 u1

u2

 or

 u1

u2

 =
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√
5

2
√
5

−1√
5√

5−1
2
√
5

1√
5

 x

y


– we solved the system of linear equations for u1 and u2. Using the notation adopted in the prof.

Kȩdzierski’s class we may write MB
st =

 1+
√
5

2
√
5

−1√
5√

5−1
2
√
5

1√
5

 and M st
B =

 1 1

1−
√
5

2
1+
√
5

2

. So we can

write

 Fn−1 Fn

Fn Fn+1

 =
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1 1

n

=
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√
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√
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√
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√
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=

 qn− qn+
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+
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√
5

2
√
5

−1√
5√
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2
√
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1√
5

 = 1√
5

 qn−1+ − qn−1− qn+ − qn−
qn+ − qn− qn+1

+ − qn+1
−

.

It follows from the above equalities that

Fn =
1√
5

(
qn+ − qn−

)
=

1√
5

((
1 +
√
5

2

)n

−

(
1−
√
5

2

)n)
.

The change of the basis made the problem trivial (very easy). The whole story was told before

without mentioning any basis, no matrices were multiplied. Now it was put into a more general

setting. One may imagine that similar actions may be undertaken in other situations.

New problems

35. What are the coordinates of the vector v relative to a basis B if
a. v =

(
2
3

)
and B =

{(
1
1

)
,
(

1
−1

)}
b. v =

(
3
3

)
and B =

{(
1
2

)
,
(
1
1

)}
c. v =

(
12
3

)
and B =

{(
0
2

)
,
(−1

1

)}
d. v =

(
0
9

)
and B =

{(
10
1

)
,
(−12

1

)}
36. Find a basis B of R2 such that the map f defined as f(x, y) = (2x + 5y, 3x + 8y) relative

to standard coordinates is represented by a matrix with zeroes outside of the main diagonal

when the coordinates relative to B are used (the basis B is used for both the domain and

the range) .

37. Is the map f : R2 → R2 linear if f(x, y) =

a. ((x+ 3)2 − (x+ 1)2 − 8, y); b. ((x+ 3)2 − (x+ 1)2, y);

c. (2 3
√
x3 + 3x2 + 3x+ 1− 2(y + 1), 5x− 3y); d. (|x+ 1| − |y + 1|, 2x).

38. Find a formula for the linear map ϕ : R2 −→ R3 if ϕ(2, 3) = (1, 0, 1) and ϕ(1, 2) = (2, 3, 3).



39. Find a formula for the symmetry of R3 relative to the plane spanned by the vectors (3, 2, 1) and

(1,−3, 3). A vector (a, b, c) is perpendicular to a vector (u, v, w) if and only if au+bv+cw = 0.

40. Let ϕ : R2 −→ R3 be the linear map such that ϕ(3, 1) = (1, 2, 3) and ϕ(5, 2) = (2, 1, 3)

and ψ : R3 −→ R3 be a symmetry relative to the plane spanned by the vectors (3, 2, 1 and

(1,−3, 3). Find the matrix of the map ψ ◦ ϕ relative to the standard bases.

41. Let ϕ : R2 −→ R2 be the linear map such that ϕ(2, 1) = (2, 1) and ϕ(1, 1) = (−1,−1). Find the

matrix of ϕ relative to the basis {(2, 1), (1, 1)} and the matrix of ϕ relative to the standard

basis. Recall that the standard basis consists of (1, 0) and (0, 1).

How the matrix of ϕ ◦ ϕ looks like in both cases?

Solution of the problem 36. We have M st
st (f) =

 2 5

3 8

. We want to find a basis B = {v1,v2}

such that MB
B (f) =

 c 0

0 d

 for some numbers c, d ∈ R. If the numbers c, d and the vectors v1,v2

exist then f(v1) = cv1 and f(v2) = dv2. The vectors v1,v2 should be linearly independent so none

of them equals (0, 0). Let v1 =

 x

y

. Then we have cv1 = c

 x

y

 = f

 x

y

 =

 2x+ 5y

3x+ 8y

.

This means that the equations (2 − c)x + 5y = 0 and 3x+ (8− c)y = 0 should hold. Subtract the

first one multiplied by 8− c from the second one multiplied by 5. Then (15− (2− c)(8− c))x = 0.

Since x 6= 0 we have 15 − (2 − c)(8 − c) = 0 so 0 = c2 − 10c + 1 = (c − 5)2 − 24 therefore

c = 5 ± 2
√
6. Let c = 5 + 2

√
6 and x = 5. Then 0 = (2 − 5 − 2

√
6)5 + 5y = (−3 − 2

√
6)5 + 5y so

y = 3 + 2
√
6. Let d = 5 − 2

√
6 and x = 5. Then 0 = (2 − 5 + 2

√
6)5 + 5y = (−3 + 2

√
6)5 + 5y so

y = 3 − 2
√
6. Then

 2 5

3 8

 ·
 5

3 + 2
√
6

 =

 25 + 10
√
6

39 + 16
√
6

 = (5 + 2
√
6)

 5

3 + 2
√
6

 and 2 5

3 8

 ·
 5

3− 2
√
6

 =

 25− 10
√
6

39− 16
√
6

 = (5− 2
√
6)

 5

3− 2
√
6

. Now define B = {v1,v2}

with v1 =

 5

3 + 2
√
6

 and v2 =

 5

3− 2
√
6

. The above equalities prove that MB
B (f) = 5 + 2

√
6 0

0 5− 2
√
6

 as required. �

Remark. In fact the two long equations at the end which contain matrices are not necessary because

they follow immediately from what was said before.



Solution of the problem 39. Let us start with finding a non–zero vector (a, b, c) perpendicular

to the vectors (3, 2, 1) and (1,−3, 3). The two equations should be satisfied: 3a + 2b + c = and

a− 3b+ 3c = 0. The matrix of this system of the linear homogeneous equations is 3 2 1

1 −3 3

→
 0 11 −8

1 −3 3

→
 0 11 −8

11 0 9

. Therefore 11b− 8c = 0 and 11a+ 9c = 0

so we can set c = 11, b = 8 and a = −9. There are infinitely many other possibilities but they do not

differ too much from our choice: one can multiply the chosen vector by any number different from 0.

The symmetry leaves all vectors in the plane spanned by the two vectors unchanged so v1 =


3

2

1



is mapped to itself and also the vector v2 =


1

−3

3

 is mapped to itself. The vector v3 =


−9

8

11



is mapped to −v3 =


9

−8

−11

. This implies that c1v1+c2v2+c3v3 is mapped to c1v1+c2v2−c3v3.

This means that the matrix of the symmetry relative to the basis (v1,v2,v3) is


1 0 0

0 1 0

0 0 −1

. We

want to find the matrix of the symmetry relative to the standard basis (e1, e2, e3), e1 =


1

0

0

 etc.

If


x1

x2

x3

 = c1v1 + c2v2 + c3v3 i.e


x1

x2

x3

 =


3 1 −9

2 −3 8

1 3 11




c1

c2

c3

 then


c1

c2

c3

 =


3 1 −9

2 −3 8

1 3 11


−1

x1

x2

x3

. It remains to find M−1 =


3 1 −9

2 −3 8

1 3 11


−1

. The columns

of M =


3 1 −9

2 −3 8

1 3 11

 are mutually perpendicular so




3 2 1

1 −3 3

−9 8 11

 ·


3 1 −9

2 −3 8

1 3 11

 =


14 0 0

0 19 0

0 0 266

. Therefore we may write

M−1 =


3
14

2
14

1
14

1
19

−3
19

3
19

−9
266

8
266

11
266

 so


c1

c2

c3

 =


3
14

2
14

1
14

1
19

−3
19

3
19

−9
266

8
266

11
266




x1

x2

x3

. We are ready to end the

solution. We change coordinates from x′s to c′s then apply the symmetry and then we go back to

x′s (read it from right to left):
3 2 1

1 −3 3

−9 8 11

 ·


1 0 0

0 1 0

0 0 −1

 ·


3
14

2
14

1
14

1
19

−3
19

3
19

−9
266

8
266

11
266

 ·


x1

x2

x3

 =

=


3 2 −1

1 −3 −3

−9 8 −11

 ·


3
14

2
14

1
14

1
19

−3
19

3
19

−9
266

8
266

11
266

 ·


x1

x2

x3

 =


52
133

72
133

99
133

72
133

69
133

−88
133

99
133

−88
133

12
133

 ·


x1

x2

x3


Remark. In this solution it was assumed that the symmetry is a linear map. This is true because in

the case discussed above the plane of symmetry contains the origin. This was not proved in the class

but the proof is not hard because the sum of two vectors is a diagonal of the parallelogram spanned

by them so the definition is not only algebraic but also has a geometrical meaning and symmetry

behaves the geometrical properties. A solution of the problem given in the 9:45 class did not use

this theorem and therefore an orthogonal projection onto the plane was considered.

In both groups a very stupid computational errors appeared on the board. I hope that they all are

removed from this text.

Solution of the problem 40. Let us find the matrix of the of ϕ. The matrix should have two columns

and three rows because ϕ maps R2 into R3. Let it be


a d

b e

c f

. We want to find such numbers

a, b, c, d, e, f that


a d

b e

c f


 3 5

1 2

 =


1 2

2 1

3 3

. We have

 3 5

1 2

−1 =

 2 −5

−1 3

 this

follows from the definition of the inverse matrix. Do not be afraid of guessing! Now multiply the

equation by

 2 −5

−1 3

. We get




a d

b e

c f

 =


a d

b e

c f


 3 5

1 2

 2 −5

−1 3

 =


1 2

2 1

3 3


 2 −5

−1 3

 =


0 1

3 −7

3 −6

.

We may write ϕ

 x

y

 =


0 1

3 −7

3 −6


 x

y

 =


y

3x− 7y

3x− 6y

 and we are done. The last thing is

to find the matrix of ψ ◦ ϕ. The matrix can be obtained as a product of the two matrices (for the

matrix of the symmetry ψ look into the solution of the previous problem)
52
133

72
133

99
133

72
133

69
133

−88
133

99
133

−88
133

12
133

 ·


0 1

3 −7

3 −6

 = 1
133


52 72 99

72 69 −88

99 −88 12

 ·


0 1

3 −7

3 −6

 =


513
133
−1046

133

− 57
133

117
133

−228
133

643
133




