
Find (if there exists) a vector γ ∈ R3, such that the system (1, 0, 1), (2, 1, 0), γ constitutes a basis

of the space R3 and the coordinates of the vector (7, 3, 5) are 3, 1, 2 in the basis.

Solution. Let γ = (x, y, z). We want to find numbers x, y, z such that (7, 3, 5) = 3(1, 0, 1)+(2, 1, 0)+

2(x, y, z). We can write this vector equation as three equations: 3 + 2 + 2x = 7, 1 + 2y = 3,

3 + 2z = 5. This implies that x = 1, y = 1, z = 1. One needs to check whether or not the vectors

(1, 0, 1), (2, 1, 0), (1, 1, 1) constitute a basis of R3

Homework Problem 3. Prove that if x1 < x2 < x3 then for any real numbers y1, y2, y3 there

exist real numbers a, b, c such that yj = ax2j + bxj + c. How many triples a, b, c exist? Do there exist

numbers x1, x2, x3,y1, y2, y3 with x1 < x2 < x3 such that a = 0?

Solution. We have to analyze the system of equations

(1)


ax21 + bx1 + c = y1

ax22 + bx2 + c = y2

ax23 + bx3 + c = y3

We see three equations with three unknowns a, b, c. The matrix of the system is
x21 x1 1 y1

x22 x2 1 y2

x23 x3 1 y3


We want to have number 1 at the left upper corner. The order of the unknowns is unimportant.

Therefore we may write the three columns on the left in any way (we have never done it up to now.

but we are allowed to swap the columns corresponding to the unknowns).

(2)


1 x1 x21 y1

1 x2 x22 y2

1 x3 x23 y3


We are ready to perform row reduction. Subtract the first row from the others

1 x1 x21 y1

0 x2 − x1 x22 − x21 y2 − y1
0 x3 − x1 x23 − x21 y3 − y1


Since x2 − x1 6= 0 6= x3 − x1 we may divide the rows by these numbers:

1 x1 x21 y1

0 1 x2 + x1
y2−y1
x2−x1

0 1 x3 + x1
y3−y1
x3−x1





Subtract the second row from the third one
1 x1 x21 y1

0 1 x2 + x1
y2−y1
x2−x1

0 0 x3 − x2 y3−y1
x3−x1

− y2−y1
x2−x1


Now we can divide the third row by x3 − x2 6= 0

1 x1 x21 y1

0 1 x2 + x1
y2−y1
x2−x1

0 0 1 y3−y1
(x3−x1)(x3−x2)

− y2−y1
(x2−x1)(x3−x2)


The matrix is written in the echelon form (not reduced yet). The last row corresponds to the equation

a = 0 · c+0 · b+1 · a = y3−y1
(x3−x1)(x3−x2)

− y2−y1
(x2−x1)(x3−x2)

. There is no other choice for a. This means that

the system determines a uniquely. Once a is found we can find b from the second equation which

looks like this b + something known = the known number. We still need c but it can be found

quickly from the first equation. This proves that there is the unique triple c, b, a that solves the

system. We might easily find the unknowns although some work was necessary (few transformations

with quite big fractions).

There is another possibility. The polynomial d(x−x2)(x−x3) assumes the value 0 for x = x2 and

for x = x3 and for no other value of x unless d = 0. Let d = 1
(x1−x2)(x1−x3)

so the polynomial takes

the form (x−x2)(x−x3)
(x1−x2)(x1−x3)

and now its values for x = x1, x = x2 , x − x3 are 1, 0 and 0, respectively.

Multiply it by y1 to obtain y1
(x−x2)(x−x3)

(x1−x2)(x1−x3)
. The obtained function assumes values y1, 0, 0 at x1, x2,

x3, respectively. We may consider the polynomial y1
(x−x2)(x−x3)

(x1−x2)(x1−x3)
+ y2

(x−x1)(x−x3)
(x2−x1)(x2−x3)

+ y3
(x−x1)(x−x2)

(x3−x1)(x3−x2)
.

It is easy to see that this polynomial assumes the value yj for x = xj as required. As proved

above there it is the only one polynomial of degree < 3 that does it. If the points (xj, yj) for

j = 0; 1; 2 lie on one straight line then a = 0 (if y1 = y2 = y3 then the straight line exists and

it is horizontal hence a = b = 0). The problem is completely solved. One more remark. From this

long story and uniqueness of the polynomial it follows that a = y3−y1
(x3−x1)(x3−x2)

− y2−y1
(x2−x1)(x3−x2)

=
y1

(x1−x2)(x1−x3)
+ y2

(x2−x1)(x2−x3)
+ y3

(x3−x1)(x3−x2)
. One might check it by solving the system (1) up to the

very end instead of showing the solution..

The result may be generalized. We may talk about an arbitrary number (finite) of points on the

plane. This is stated in the theorem below.

Theorem. Given any n+ 1 points (x0, y0), (x1, y1), . . . , (xn, yn) with x0 < x1 < x2 < . . . < xn,

n ∈ N in the plane there are real numbers a0, a1, . . . , an such that each all j ∈ {0, 1, 2, . . . , n} the

following equality yj = a0 + a1xj + a2x
2
j + . . .+ anx

n
j holds. The numbers a0, a1, . . . , an are uniquely

defined by the n+ 1 equations written above.

For n = 1 this means that given any two points (x0, y0), (x1, y1) with x0 < x1 there is a linear

function the graph of which contains these points, recall that the graph of the linear function is

a straight line. In our case the straight line is not vertical (no graph contains two different points



with the same x–coordinate). The homework problem contained this theorem for n = 3. For n = 2

it means that for any three points on the plane no two of them lying on one vertical line either

there is a straight line which contains all three points or there is a parabola (with a vertical axis

of symmetry) which contains the three given points. One case excludes another one. One can prove

this statement applying row operations to a n+ 1× n+ 1 matrix
1 x0 x20 . . . xn0

1 x1 x21 . . . xn1
...

...
... . . . ...

1 xn x2n . . . xnn


Subtract the first frow from the other rows

1 x0 x20 . . . xn0

0 x1 − x0 x21 − x20 . . . xn1 − xn0
...

...
... . . . ...

0 xn − x0 x2n − x20 . . . xnn − xn0


the numbers x1 − x0, x2 − x0, . . . , xn − x0 are different from 0 so can divide the rows by them. We

obtain 
1 x0 x20 . . . xn0

0 1 x1 + x0 . . . xn−1
1 + xn−2

1 x0 + . . .+ xn−1
0

...
...

... . . . ...

0 1 xn + x0 . . . xn−1
n + xn−2

n xn + . . .+ xn−1
0


The left-hand side of the equation corresponding to the second row can be written as follows

a1 + a2(x1 + x0) + a3(x
2
1 + x1x0 + x20) + . . .+ an(x

n−1
1 + xn−2

1 x0 + . . .+ xn−1
0 ) =

= (a1+a2x0+a3x
2
0+ . . .+anx

n−1
0 )+(a2+a3x0+ . . .+anx

n−2
0 )x1+ . . .+(an−1+anx0)x

n−1
1 +anx

n−1
1 .

In the same way the left-hand sides of the next equations can be written.

Let ã1 = a1 + a2x0 + a3x
2
0 + . . . + anx

n−1
0 , ã2 = a2 + a3x0 + a4x

2
0 + . . . + anx

n−2
0 ,. . . , ãn = an.

Then the above left-hand side looks like that ã1+ ã2x1+ . . .+ ãnxn−1
1 . The left-hand side of the next

equation is ã1 + ã2x2 + . . .+ ãnx
n−1
2 etc. There are some right-hand sides but they are unimportant

for us at the moment. One can see that we have reduced the problem to the same type problem but

with n points instead of n + 1. Therefore we are able to find the numbers ã1, ã2, . . . , ãn. Once they

are found we find subsequently an, an−1, . . . , a1. Then a0 from the very first equation.

So if we assume that we proved the theorem for n points it will also be true for n + 1. This we

can do provided the theorem we are proving holds for n points. So we are done.

PROBLEMS FOR HOME 2.



21. Solve the systems of linear equations.
2x− y − z = 4

3x+ 4y − 2z = 11

3x− 2y + 4z = 11


3x+ 2y + z = 5

2x+ 3y + z = 1

2x+ y + 3z = 11
2x− y − z = 4

3x+ 4y − 2z = 11

x+ 16y − 2z = 17


3x+ 2y + z = 5

2x+ 3y + z = 1

4x+ y + z = 13

Solution. We shall operate on the rows of the appropriate matrices one after another.
2 −1 −1 4

3 4 −2 11

3 −2 4 11

 −→


1 −6 0 −3
3 4 −2 11

3 −2 4 11

 −→


1 −6 0 −3
0 22 −2 20

0 16 4 20

 −→


1 −6 0 −3
0 22 −2 20

0 16 4 20

 −→


1 −6 0 −3
0 11 −1 10

0 4 1 5

 −→


1 −6 0 −3
0 1 4 5

0 4 1 5

 −→


1 −6 0 −3
0 1 4 5

0 0 −15 −15

 −→


1 −6 0 −3
0 1 4 5

0 0 1 1

 −→


1 −6 0 −3
0 1 0 1

0 0 1 1

 −→


1 0 0 3

0 1 0 1

0 0 1 1

 so x = 3, y = z = 1. The first system has been solved.


3 2 1 5

2 3 1 1

2 1 3 11

 −→


1 −1 0 4

2 3 1 1

2 1 3 11

 −→


1 −1 0 4

0 5 1 −7
0 3 3 3

 −→


1 −1 0 4

0 0 −4 −12
0 1 1 1

 −→


1 −1 0 4

0 1 1 1

0 0 1 3

 −→


1 0 0 2

0 1 0 −2
0 0 1 3

 so x = 2, y = −2, z = 3. The

second system has been solved.


2 −1 −1 4

3 4 −2 11

1 16 −2 17

 −→


1 16 −2 17

0 −33 3 −30
0 −44 4 −40

 −→


1 16 −2 17

0 11 −1 10

0 0 0 0

 −→


1 −6 0 −3
0 −11 1 −10
0 0 0 0

 so x − 6y = −3, −11y + z = −10 or x = 6y − 3, z = 11y − 10. Given any

number y we can find x and z. They are uniquely defined through the above formulas. The system

has infinitely many solutions. In fact there is a straight line consisting entirely of the solutions to



the system and these are all solutions to this system. The line passes through the point (−3, 0,−10)
and is parallel to the vector [6, 1, 11] i.e. (x, y, z) = (−3, 0,−10)+ y(6, 1, 11). We might also say that

the line passe through the points (−3, 0,−10) and (−3, 0,−10) + (6, 1, 11) = (3, 1, 1). This ends the

discussion of the third system.
3 2 1 5

2 3 1 1

4 1 1 13

 −→


1 −1 0 4

2 3 1 1

4 1 1 13

 −→


1 −1 0 4

0 5 1 −7
0 5 1 −3

 −→


1 −1 0 4

0 5 1 −7
0 0 0 4

.

At this moment we can stop our action because it is easily seen that the system is inconsistent: the

last equation may be read 0 = 0 · x+ 0 · y + 0 · z = 4. A contradiction.

One may also come to this conclusion in a different way. Add the second and the third equation

to get 6x+ 4y + 2z = 14. Then divide it by 2: 3x+ 2y + z = 7 6= 5 = 3x+ 2y + z and we are done.



22. Solve the systems of the linear equations where λ is a given number, the result may depend

on λ.

{
−x+ y = λx

−x− 3y = λy


2x+ 6y + 4z = λx

−3x− 20y − 14z = λy

6x+ 35y + 24z = λz

Let us now investigate the first system

{
−x+ y = λx

−x− 3y = λy
.

Take all terms to the left hand side of the equations.

{
−(1 + λ)x+ y = 0

−x− (3 + λ)y = 0
.

x = y = 0 is an obvious solution for each λ. We need to discover other solutions if there are any. Let

us play our usual game with the rows of the matrix.(
−(1 + λ) 1 0

−1 −(3 + λ) 0

)
−→

(
0 1 + (1 + λ)(3 + λ) 0

1 (3 + λ) 0

)
. If 1+(1+λ)(3+λ) 6= 0 then y = 0

and then the second equation implies that x = 0 so (0, 0) is the unique solution of the system. If

0 = 1 + (1 + λ)(3 + λ) = 4 + 4λ + λ2 = (2 + λ)2 then λ = −2. For λ 6= −2 the system has unique

solution x = 0 = y. For λ = −2 there are infinitely many solutions. Corresponding to each number

y is x = −y so the solutions treated as points of the plane form a straight line through the origin.

Each vector [x,−x] with x 6= 0 is called an eigenvector of the matrix

(
−1 1

−1 −3

)
.

PROBLEMS FOR HOME 3

31. Do the points (8, 13), (13, 21) i (21, 34) lie on one straight line?

32. Do the points A = (0, 0, 0), B = (−7, 30,−45), C = (−6, 24,−33) and D = (−2, 8, 10) lie on

one plane (two dimensional)?

33. Do the points (0, 0, 0), (−27,−36,−21), (−2,−6,−2) and (30, 60, 45) lie on one plane?

34. Solve the systems of the linear equations where λ is a given number, the result may depend

on λ.

{
y = λx

x+ 2y = λy


− 7x− 6y − 2z = λx

30x+ 24y + 8z = λy

−45x− 33y − 10z = λz

{
y = λx

x+ y = λy


−27x− 2y + 45z = λx

−36x− 6y + 60z = λy

−21x− 2y + 35z = λz


