
Inverse matrix and row reduction

After some introduction we show how to find the inverse of a matrix using row reduction method.

This more or less what computer programs do although there exist more sophijstivated methods of

dealing with matrices but all this is used for big matrices. The method is explained on an example

so one can understand why it works which is more important than memorizing it.

Let us consider a system of the linear equations


x2 + 2x3 + 3x4 = 20

x1 + x2 − x3 + x4 = 4

2x1 − x2 + x3 + x4 = 7

3x1 + x2 − x3 − x4 = −2

. One can write

formulas for x1, x2, x3, x4 (Cramer’s rule):

(x1, x2, x3, x4) =

=



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

20 1 2 3

4 1 −1 1

7 −1 1 1

−2 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 20 2 3

1 4 −1 1

2 7 1 1

3 −2 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 20 3

1 1 4 1

2 −1 7 1

3 1 −2 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 20

1 1 −1 4

2 −1 1 7

3 1 −1 −2
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.

This formula can be used succesfully for sytems of linear equations if the numbers of unknowns and

equations are relatively small. In the case of huge numbers of unknowns and equations the amount of

time that must be used for computing the determinants becames so big that even with big computers

one has to wait „for ever”. Much better is Gauss elimination, one gets the results at a shorter time.

The system can be written in a matrix form:
0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

 ·


x1

x2

x3

x4

 =


20

4

7

−2


Solving the system is equivalent to finding the inverse matrix. We shall explain how the operations

on the rows of a matrix can be interpreted as multiplication by an appropriate matrices. Lets us

start the work with few explanations. If we multiply the matrix ( a 0 0 0 ) by the matrix M =
0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

 we get one row matrix ( 0 a 2a 3a ) that is the matrix which consist of the

first row of M multiplied by a. If we multiply the matrix ( 0 a 0 0 ) by M we get ( a a −a a )

that is the matrix which consist of the second row of M multiplied by a. When we multiply the
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matrix ( a 0 1 0 ) by M then we obtain one row matrix and this row is the sum of the third row

of M and the first row of it multiplied by a. This implies that the product
0 1 0 a

1 0 0 0

0 0 1 0

0 0 0 1

 ·


0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

 =


1 + 3a 1 + a −1− a 1− a

0 1 2 3

2 −1 1 1

3 1 −1 −1


consists of the row which is the sum of row 2 and row 4 multiplied by a of the second factor,

the first row of the second factor, and the third and the fourth rows of the second factor. The

product


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ·


0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

 =


0 1 2 3

3 1 −1 −1
2 −1 1 1

1 1 −1 1

 consists of row 1 of the

second factor, row 4 of the second factor, row 3 of the second factor and row 2 of the second factor.

This shows how to interpret operations on rows of the matrix as multiplication from the left by an

appropriate matrix. Let us show now how this allows to find the inverse of the matrix

M =


0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1

.

We shall act on the rows of the matrix
0 1 2 3 1 0 0 0

1 1 −1 1 0 1 0 0

2 −1 1 1 0 0 1 0

3 1 −1 −1 0 0 0 1


which consists of the given matrix M followed by the unit 4× 4 matrix.

1 1 −1 1 0 1 0 0

0 1 2 3 1 0 0 0

2 −1 1 1 0 0 1 0

3 1 −1 −1 0 0 0 1


— we swapped rows one and

two which means that the

big matrix was multiplied

from the left by the matrix

A1 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,


1 1 −1 1 0 1 0 0

0 1 2 3 1 0 0 0

0 −3 3 −1 0 −2 1 0

0 −2 2 −4 0 −3 0 1


— row 1 times −2 was added

to row 3 and multiplied by −3
was added to row 4, multipli-

cation by the matrix:

A2=


1 0 0 0

0 1 0 0

−2 0 1 0

−3 0 0 1

;


1 1 −1 1 0 1 0 0

0 1 2 3 1 0 0 0

0 0 9 8 3 −2 1 0

0 0 6 2 2 −3 0 1


— add row two times 3 to

row 3 and row two times 2 to

row 4, multiplication by the

matrix:

A3=


1 0 0 0

0 1 0 0

0 3 1 0

0 2 0 1

;
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1 1 −1 1 0 1 0 0

0 1 2 3 1 0 0 0

0 0 9 8 3 −2 1 0

0 0 0 −10
3

0 −5
3
−2

3
1


—add row three multiplied

by −2
3

to row four, multipli-

cation by the matrix

A4=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 −2
3

1

;

Until now the absolute value of the determinant derminant of the matrix made up of the first

four columns remained unchanged, the sign of the determinant was changed once when the two rows

were swapped. It will change now.
1 1 −1 1 0 1 0 0

0 1 2 3 1 0 0 0

0 0 1 8
9

1
3
−2

9
1
9

0

0 0 0 1 0 1
2

1
5
− 3

10


— multiply row 3 by 1

9
, row 4

by − 3
10

, multiplication by the

matrix:

A5=


1 0 0 0

0 1 0 0

0 0 1
9

0

0 0 0 − 3
10

;


1 1 −1 0 0 1

2
−1

5
3
10

0 1 2 0 1 −3
2
−3

5
9
10

0 0 1 0 1
3
−2

3
− 1

15
4
15

0 0 0 1 0 1
2

1
5
− 3

10


— add row 4 multiplied by −1
to row 1, multiplied by −3 to

row 2, multiplied by −8
9

to row

3, multiplication by the matrix:

A6=


1 0 0 0

0 1 0 0

0 0 1
9

0

0 0 0 − 3
10

;


1 1 0 0 1

3
−1

6
− 4

15
17
30

0 1 0 0 1
3
−1

6
− 7

15
11
30

0 0 1 0 1
3
−2

3
− 1

15
4
15

0 0 0 1 0 1
2

1
5
− 3

10


— add row 3 to row 1, row 3

multiplied by −2 to row 2, mul-

tiplication by the matrix:

A7=


1 0 1 0

0 1 −2 0

0 0 1 0

0 0 0 1

;


1 0 0 0 0 0 1

5
1
5

0 1 0 0 1
3
−1

6
− 7

15
11
30

0 0 1 0 1
3
−2

3
− 1

15
4
15

0 0 0 1 0 1
2

1
5
− 3

10

 — subtract row 2 from row 1,

multiplication by the matrix
A8=


1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

This proves that:
0 1 2 3

1 1 −1 1

2 −1 1 1

3 1 −1 −1


−1

=


0 0 1

5
1
5

1
3
−1

6
− 7

15
11
30

1
3
−2

3
− 1

15
4
15

0 1
2

1
5
− 3

10

 = 1
30


0 0 6 6

10 −5 −14 11

10 −20 −2 8

0 15 6 −9

 .

We may write that M−1 = A8 · A7 · A6 · A5 · A4 · A3 · A2 · A1

As one can see to find the inverse matrix it is enough to perform operations according to the

algorithm. One has to be patient because this work is not fascinating at all.

Let us say that for 2× 2 or 3× 3 matrices all theories are in fact unnecessary. If one knows the

definition of the inverse matrix then he or she can find it without any clever theories. If one wants
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to multiply the matrix

(
a b

c d

)
by a matrix

(
w x

y z

)
to obtain as a product

(
1 0

0 1

)
then

ax + bz = 0 and cw + dy = 0 and this suggests immediately that x = tb and z = −ta for some

number t and w = sd and y = −sc for some number s. Then we get(
1 0

0 1

)
=

(
a b

c d

)(
w x

y z

)
=

(
a b

c d

)(
sd tb

−sc −ta

)
=

(
s(ad− bc) 0

0 t(bc− ad)

)
. Obvio-

usly if ad− bc = 0 then the problem has no solution at all. If ad− bc 6= 0 then we can write s = 1
ad−bc

and t = 1
bc−ad and we are done. One needs the theories for matrices of a bigger size.

Problem 26 of 60 problems of ALWNEcw.pdf

Let a linear map ϕ : R3 −→ R2 be given by the formula ϕ((x1, x2, x3)) = (x1−x2+4x3,−3x1+8x3).

Let A = {(3, 4, 1), (2, 3, 1), (5, 1, 1)}, B = {(3, 1), (2, 1)}. Find M(ϕ)BA and M(ϕ)stst (matrices of ϕ

relative to the bases A,B and to the standard bases, respectively).

Solution. All vectors wil be written vertically. We have
3

4

1

 =


3 2 5

4 3 1

1 1 1




1

0

0

,


2

3

1

 =


3 2 5

4 3 1

1 1 1




0

1

0

,


5

1

1

 =


3 2 5

4 3 1

1 1 1




0

0

1

.

This means that the matrix M st
A =


3 2 5

4 3 1

1 1 1

 allows us to compute the coordinates of a vector

relative to the standard basis provided its coordinates relative to the basis A are known. As we know

the matrix MA
st that allows to compute the coordinates of a vector relative to A when its coordinates

relative to the standard basis are known is simply the inverse of M st
A i.e. MA

st = (M st
A )
−1. Let us find

tha matrix (M st
A )
−1 with method advertised above:

3 2 5 1 0 0

4 3 1 0 1 0

1 1 1 0 0 1

→


1 1 1 0 0 1

3 2 5 1 0 0

4 3 1 0 1 0

→


1 1 1 0 0 1

0 −1 2 1 0 −3
0 −1 −3 0 1 −4

→


1 0 3 1 0 −2
0 1 −2 −1 0 3

0 0 −5 −1 1 −1

→


1 0 3 1 0 −2
0 1 −2 −1 0 3

0 0 1 1
5
−1

5
1
5

→


1 0 0 2
5

3
5
−13

5

0 1 0 −3
5
−2

5
17
5

0 0 1 1
5
−1

5
1
5

. This

proves that MA
st = (M st

A )
−1

=


2
5

3
5
−13

5

−3
5
−2

5
17
5

1
5
−1

5
1
5

 = 1
5


2 3 −13
−3 −2 17

1 −1 1

.

We also know that M st
B =

(
3 2

1 1

)
so MB

st =

(
1 −2
−1 3

)
.

Now ϕ


3

4

1

 =

(
3− 4 + 4

−3 · 3 + 8

)
=

(
3

−1

)
, ϕ


2

3

1

 =

(
2− 3 + 4

−3 · 2 + 8

)
=

(
3

2

)
oraz ϕ


5

1

1

 =

4



=

(
5− 1 + 4

−3 · 5 + 8

)
=

(
8

−7

)
. We want to switch to to coordinates relative to the basis B:(

1 −2
−1 3

)(
3

−1

)
=

(
5

−6

)
,

(
1 −2
−1 3

)(
3

2

)
=

(
−1
3

)
,(

1 −2
−1 3

)(
8

−7

)
=

(
22

−29

)
.

This proves that MB
A (ϕ) =

(
5 −1 22

−6 3 −29

)
. Therefore M st

st (ϕ) =M st
BM

B
A (ϕ)MA

st =

= 1
5

(
3 2

1 1

)(
5 −1 22

−6 3 −29

)
2 3 −13
−3 −2 17

1 −1 1

 = 1
5

(
3 3 8

−1 2 −7

)
2 3 −13
−3 −2 17

1 −1 1

 =

=1
5

(
5 −5 20

−15 0 40

)
=

(
1 −1 4

−3 0 8

)
. We are done. �

Remark. The above problem can be solved in a slightly different way. On does not have to

use the matrices all the time. If we want to find the matrix of ϕ with respect to the basis A (of

the domain of ϕ) and the basis B (of the range of ϕ) then we might have asked how to write the

vectors ϕ


3

4

1

, ϕ


2

3

1

 and ϕ


5

1

1

 can be written as linear combinations of the elements

of the set B i.e. of the vectors

(
3

1

)
and

(
2

1

)
. This leads to a system of the linear equations

3c1 + 2c2 = 3 and c1 + c2 = −1 which can be solved without any matrices quickly: c1 = 5, c2 = −6.

The we do the same with the vector ϕ


2

3

1

 =

(
3

2

)
= c1

(
3

1

)
+ c2

(
2

1

)
. This implies that

c1 = −1 and c2 = 3. The last equation is ϕ


5

1

1

 =

(
8

−7

)
= c1

(
3

1

)
+ c2

(
2

1

)
. Again there

is no problem in getting c1 = 22 and c2 = −29. We proved that ϕ


3

4

1

 = 5

(
3

1

)
− 6

(
2

1

)
.

This means that the first column of the matrix MB
A (ϕ) is

(
5

−6

)
. ϕ


2

3

1

 = −

(
3

1

)
+3

(
2

1

)
.

Therefore the second column of the matrix MB
A (ϕ) is

(
−1
3

)
. The last step in these considarations
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is ϕ


5

1

1

 =

(
8

−7

)
= 22

(
3

1

)
−29

(
2

1

)
and this proves that the third column of the matrix

is

(
22

−29

)
. So the matrix MB

A (ϕ) is found. In a similar way we can find the matrix M st
st (ϕ). We

shall not do it here because we did it above in a different way. In fact ther difference is mainly in

the use of different words.

Problem 27 of 60 problems of ALWNEcw.pdf

Let A = {(2, 1), (1, 1)}, B = {(1, 3), (0, 1)}, C = {(0, 1), (1, 4)}. and let ϕ : R2 −→ R2 be a linear

map such that MB
A(ϕ) =

(
1 2

3 4

)
. Find MC

A(ϕ).

Solution. We need to switch from the basis B to the basis C. We have M st
B =

(
1 0

3 1

)
therefore

MB
st =

(
1 0

−3 1

)
, M st

C =

(
0 1

1 4

)
therefore MC

st =

(
−4 1

1 0

)
. We may write

MC
B =MC

stM
st
B =

(
−4 1

1 0

)(
1 0

3 1

)
=

(
−1 1

1 0

)
and

MC
A(ϕ) =MC

BM
B
A(ϕ) =

(
−1 1

1 0

)(
1 2

3 4

)
=

(
2 2

1 2

)
.

We are done. �

One can do it in a slightly different way. To find the matrix MC
A(ϕ) one has to know the images of

the elements of A which we know but they are written as linear combinations of the basis B and we

need to write them as linear combinations od the lements of the basis C. This means that we should

find numbers c1, c2, d1, d2 such that(
1

6

)
=

(
1

3

)
+ 3

(
0

1

)
= ϕ

(
2

1

)
= c1

(
0

1

)
+ c2

(
1

4

)
and(

2

10

)
= 2

(
1

3

)
+ 4

(
0

1

)
= ϕ

(
1

1

)
= d1

(
0

1

)
+ d2

(
1

4

)
.

Frtom these equations we get right away the equalities c2 = 1, c1 = 6 − 4 · c2 = 2, d2 = 2 and

d1 = 10− 4 · d2 = 2. Therefore MC
A(ϕ) =

(
c1 d1

c2 d2

)
=

(
2 2

1 2

)
. �

The second method in fact coincides with the first one. The difference is that matrices are used

not so often as in the previous wording.

Problem 30 of 60 problems of ALWNEcw.pdf

Let A = {(1, 2, 3), (2, 1, 0), (4, 5, 0)}, B = {(2, 1, 2), (3, 1, 2), (2, 1, 3)}. Find a matrix C ∈ M3×3(R),
fulfilling the following condition. For a given vector α ∈ R3: if the coordinates of α relative to the
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basis A are x1, x2, x3 and the coordinates of α relative to the basis B are y1, y2, y3 then

C ·


x1

x2

x3

 =


y1

y2

y3

 .

Let us notice at first that M st
A =


1 2 4

2 1 5

3 0 0

 and M st
B =


2 3 2

1 1 1

2 2 3

. We need to find the matrix

MB
A =MB

st ·M st
A = (M st

B )−1 ·M st
A so we have to find (M st

B )−1 =


2 3 2

1 1 1

2 2 3


−1

. Let us do it


2 3 2 1 0 0

1 1 1 0 1 0

2 2 3 0 0 1

 −→


0 1 0 1 −2 0

1 1 1 0 1 0

0 0 1 0 −2 1

 −→


1 1 1 0 1 0

0 1 0 1 −2 0

0 0 1 0 −2 1

 −→

−→


1 1 0 0 3 −1
0 1 0 1 −2 0

0 0 1 0 −2 1

 −→


1 0 0 −1 5 −1
0 1 0 1 −2 0

0 0 1 0 −2 1

. This shows that (M st
B )−1 =MB

st =

=


2 3 2

1 1 1

2 2 3


−1

=


−1 5 −1
1 −2 0

0 −2 1

. Therefore

MB
A =


−1 5 −1
1 −2 0

0 −2 1




1 2 4

2 1 5

3 0 0

 =


6 3 21

−3 0 −6
−1 −2 −10

. We are done. �

The obtained reasult means that
1

2

3

 = 6


2

1

2

− 3


3

1

2

−


2

1

3

 and


2

1

0

 = 3


2

1

2

+ 0


3

1

2

− 2


2

1

3

 and


4

5

0

 = 21


2

1

2

− 6


3

1

2

− 10


2

1

3

.

We could have solved three systems of the linear equations instead of finding the matrices and their

inverses. We shall write the first system
1

2

3

 = c1


2

1

2

 + c2


3

1

2

 + c3


2

1

3

 or


2c1 + 3c2 + 2c3 = 1

c1 + c2 + c3 = 2

2c1 + 2c2 + 3c3 = 3

. You may write
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and then solve two other systems to see that one can essentially avoid using matrices in the solution

except for the last sentence where they must appear because the answer requiers the a matrix.

Problem 39 of 60 problems of ALWNEcw.pdf

For the endomorphism ϕ : R2 −→ R2, ϕ(x1, x2) = (3x1 + 4x2, 5x1 − 2x2) and for three bases

A1 = {(4, 1), (3, 1)}, A2 = {(2, 3), (5, 8)}, A3 = {(4, 2), (1, 1)} find matrices Ai = M(ϕ)Ai
Ai

for

i = 1, 2, 3 and matrices Cij fulfilling Aj = C−1ij AiCij for i, j = 1, 2, 3.

Solution. Let us take care at first of A1. We have ϕ

(
4

1

)
=

(
16

18

)
and ϕ

(
3

1

)
=

(
13

13

)
. Now

we want to express the vectors

(
16

18

)
and

(
13

13

)
as linear combinations of the elements of A1

i.e. of the vectors

(
4

1

)
and

(
3

1

)
. So we want to find the numbers c1, c2 such that the following

equations are satisfied

(
16

18

)
= c1

(
4

1

)
+ c2

(
3

1

)
. This implies that c1 = 16 − 3 · 18 = −38

and c2 = 18− c1 = 56. Also

(
13

13

)
= c1

(
4

1

)
+ c2

(
3

1

)
implies that c1 = 13− 3 · 13 = −26 and

c2 = 13− c1 = 39. This implies that M(ϕ)A1
A1

=

(
−38 −26
56 39

)
.

Slightly different method.M st
A2

=

(
2 5

3 8

)
⇒MA2

st =

(
8 −5
−3 2

)
soM(ϕ)A2

A2
=MA2

st M(ϕ)ststM
st
A2

=

=

(
8 −5
−3 2

)(
3 4

5 −2

)(
2 5

3 8

)
=

(
8 −5
−3 2

)(
18 47

4 9

)
=

(
124 331

−46 −123

)
.

M st
A2

=

(
4 1

2 1

)
⇒MA3

st =

(
1
2
−1

2

−1 2

)
so M(ϕ)A3

A3
=MA3

st M(ϕ)ststM
st
A3

=

=

(
1
2
−1

2

−1 2

)(
3 4

5 −2

)(
4 1

2 1

)
=

(
1
2
−1

2

−1 2

)(
20 7

16 3

)
=

(
2 2

12 −1

)
.

Problem 31 of 60 problems of ALWNEcw.pdf

A linear map ϕ : R3 −→ R2 is given by the formula ϕ(x1;x2;x3) = (3x1 + 7x2 + 4x3;x1 + 2x2 + x3).

Find bases A of R3 and B of R2, such that M(ϕ)BA =

(
2 2 1

1 0 0

)
.

Solution. We have M(ϕ)stst =

(
3 7 4

1 2 1

)
. We want to find the matrices M st

A and MB
st such that

the equation (
2 2 1

1 0 0

)
=MB

stM(ϕ)ststM
st
A =MB

st

(
3 7 4

1 2 1

)
M st

A

will be satisfied. MB
st should be a 2 × 2 matrix, M st

A should be a 3 × 3 matrix. So essentially

speaking we have now six equations with 4 + 9 = 13 unknowns. This suggests the problem has
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infinitely many solutions. Some solutions of the system of the linear equations will not give us

solutions of the problem because the matrices MB
st and M st

A must be invertible. We shall show how

to find some bases A,B having in mind that there are many more solutions to the problem. We

shall not change the basis in the range at all so we set MB
st =

(
1 0

0 1

)
. so we want to find a

matrix M st
A such that

(
2 2 1

1 0 0

)
= M st

stM
st
A =

(
3 7 4

1 2 1

)
M st

A . Let us look at the equation
2 2 1

1 0 0

0 0 1

 =


3 7 4

1 2 1

0 0 1

M st
A (a third row was added to both non-square matrices to make

them square and invertible). This implies that


3 7 4

1 2 1

0 0 1


−1

2 2 1

1 0 0

0 0 1

 = M st
A . We start with

finding the inverse of


3 7 4

1 2 1

0 0 1

. It may be done faster than below.


3 7 4 1 0 0

1 2 1 0 1 0

0 0 1 0 0 1

→


1 2 1 0 1 0

3 7 4 1 0 0

0 0 1 0 0 1

→


1 2 1 0 1 0

0 1 1 1 −3 0

0 0 1 0 0 1

→

→


1 2 0 0 1 −1
0 1 0 1 −3 −1
0 0 1 0 0 1

→


1 0 0 −2 7 1

0 1 0 1 −3 −1
0 0 1 0 0 1

.

We proved that


3 7 4

1 2 1

0 0 1


−1

=


−2 7 1

1 −3 −1
0 0 1

. Therefore

M st
A =


−2 7 1

1 −3 −1
0 0 1




2 2 1

1 0 0

0 0 1

 =


3 −4 −1
−1 2 0

0 0 1

. This means that one of infinitely

many solutions is A =




3

−1
0

 ,


−4
2

0

 ,


−1
0

1


, B =

{(
1

0

)
,

(
0

1

)}
. �

Remark. It is easy to check that for any numbers a, b, c ∈ R ϕ maps the vectors
a

2− a
−3 + a

 ,


b

−2− b
4 + b

 ,


c

−1− c
2 + c
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onto the vectors

(
2

1

)
,

(
2

0

)
,

(
1

0

)
– just multiply the matrices. Somewhat harder but still

easy is to check there are no other triples of vectors mapped to these in the plane. One also can

compute the determinant

∣∣∣∣∣∣∣∣
a b c

2− a −2− b −1− c
a− 3 b+ 4 c+ 2

∣∣∣∣∣∣∣∣ = 2c− b. This shows the if b 6= 2c then the set

of the vectors


a

2− a
a− 3

 ,


b

−2− b
4 + b

 ,


c

−1− c
2 + c

 is a basis of R3. For a = 3, b = −4, c = −1

one obtains the set at the end of the above solution, for a = 2, b = −4, c = −1 the set that appeared

at professor Kedzierski’s lecture some time ago. These are not all solutions of the problem because

we did not change the basis in the range of ϕ at all.

Two easy problems.

1. Compute M−1 if M =


1 1 1

1 2 4

1 3 9

.

2. Let M =


0 −9 6

−1 0 2

0 −10 6

. Find numbers λ ∈ R such that there exists a non-zero vector v such

that M · v = λv.
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