
Let us consider the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . . Let us denote F1 = 1, F2 = 1,

F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21,. . . We evaluate the next term of the sequence

adding its two predecessors i.e. we can write that Fn+2 = Fn+1 + Fn. The sequence is named after

Fibonacci (Leonardo of Pisa), an Italian mathematician born in twelve century. Fibonacci considered

population of rabbits. The statement of the problem was given in the following way.

There is a pair of young rabbits a male and a female at the beginning. After a month they decide

to do what many mammals like to do (even some catholic priests who declare that they do not do

it). After the pregnancy the female rabbit gives birth to a new pair of rabbits (it might happen

theoretically). New pair is too young for doing anything but the old ones repeat their action. So

after a month we have two pairs of rabbits new born and the old one. After two months these two

pairs still live but there is a third pair. New born do not do anything but the adults . . . So after the

third month the old rabbit females give birth to the next pairs of rabbits. So there are now 5 pairs

of rabbits. The situation repeats. New born are new born but the adults behave in a standard way.

As a result after one more month new little rabbits try to see the world. The hypothesis is that each

female gives birth to a new pair of rabbits one female and one male.

This is how Fibonacci described this sequence. The question that appeared in his book Liber

Abaci was: how many pairs of rabbits be after one year. So it was quite easy even at that timeat

least for educated people. But mathematicians want a formula for Fn so that they could evaluate

e.g. F10 000 without evaluating all previous terms of the sequence.

One may at first look at the set V of all possible sequences a1, a2, a3, . . . for which

(1) an+2 = an+1 + an.

We do not assume anything about the initial terms.

We can start e.g. from 5 and −2, the sequence now is 5,−2, 3, 1, 4, 5, 9, 14, . . . If we multiply this

sequence by a number the new one will also satisfy the same equation, e.g. we may use −7 to obtain

−35, 14,−21,−7,−28,−35,−63,−98, . . . If we have 2 sequences a1, a2, a3, . . . and b1, b2, b3, . . . that

satisfy the equation (1) then their sum a1 + b1, a2 + b2, a3 + b3, . . . also does.

The sequences are entirely determined by their first two terms and the equation that does not

change. All this means that the set of all these sequences is a vector (linear) space. It is not very

strange that one may identify V with a plane which consists of pairs of real numbers. There arises

a question: are there among these sequences some of types known e.g. from schools? Arithmetical?

Geometrical? Let us check it.

Let an = an−1 + d (an arithmetical sequence is considered). By the equation (1) we have

an+1 + d = an + d+ an−1 + d for n = 1, 2, 3, . . .

i.e. a1+(n+1)d = a1+nd+ a1+(n− 1)d. Simplify the equation to get 0 = a1+(n− 2)d. The LHS

does not depend on n so the RHS does not to. This means that d = 0 and this implies that a1 = 0.

We have proved that the only arithmetic sequence that satisfies the equation consists of zeros only.

Not a very interesting sequence.



Let us think now of a geometric sequence: an = a1q
n−1. The equation is a1q

n+1 = a1q
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n−1

and it should hold for n = 1, 2, 3, . . . . Let us assume that a1 6= 0 6= q and simplify the equation. We

get q2 = q+1 or q2− q− 1 = 0 so either q = 1
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ratios are allowed and now we know that all sequences of the form
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satisfy the equation an+2 = an+1 + an. Is that all? The answer is YES and the proof is quite easy.

Assume that the numbers a1, a2 are given . Are there numbers c1, c2 such that a1 = c1 + c2 and

a2 = c1 · 12(1−
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unknowns c1, c2. The matrix of the system is
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any sequence satisfying the equation an+2 = an+1 + an in the form (2). If a1 = a2 = 1 then
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This implies that in this case we obtain an = 1√
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. We proved that
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. This is called Binet’s formula. It is a standard situation:

the theorem bears the name of the person who proved it but this person was not the first to prove

it, because it was known before his birth. It was discovered in the XVIII century more than 500

years after the question had been asked. The problem was to apply a correct method and took a lot

of time to invent it. With a correct approach it is not hard. The main difficulty is to try to solve it

in an appropriate way. Looking at a vector space of all sequences was not obvious at all. It became

standard later on, much later. Once one looks at the problem this way the question of choosing a

system of coordinates in the plane becomes natural. It is equivalent to looking for a basis of the

linear space. In the discussed case it consisted of geometrical sequences.

One may notice that the vectors [1, 1
2
(1−
√
5)] and [1, 1

2
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not used in the solution of the problem.

Another comment is. How could one guess the formula (2) without having some idea not neces-

sarily an obvious one?


