
Linear Algebra

Eigenvalues and eigenvectors additional informations

If you notice a mistake let me know so I will be able to remove it.

Last changes made January 20-th, 9:30

There are few more facts about eigenvalues and eigenvectors you hear of. Let me recall the

definition once again.If

(eig) Mv = λv and v 6= (0, 0, . . . , 0)

then λ is called an eigenvalue of M and v is called an eigenvector associated to λ.

Easy corollaries are. If λ is an eigenvalue of M then 5λ is an eigenvalue of 5M with the same set

of the eigenvectors associated to the eigenvalue: Mv = λv ⇒ (5M)v = 5(Mv) = 5(λv) = (5λ)v.

The number 5 may be replaced with with an arbitrary real number.

If λ is an eigenvalue of M then λ2 is an eigenvalue of the matrix M2 =M ·M and the eigenvectors

of M associated to λ are the eigenvectors of M2 associated to λ2: M ·M · v = M(λv) = λMv =

λ ·λ ·v = λ2v. Let M =


0 −1 0

1 0 0

0 0 1

. The characteristic equation is 0 =

∣∣∣∣∣∣∣∣
−λ −1 0

1 −λ 0

0 0 1− λ

∣∣∣∣∣∣∣∣ =
= (1 − λ)(λ2 + 1) so the only eigenvalue is 1 and it is a single eigenvalue. The eigenspace associa-

ted to it is lin




0

0

1


. M2 =


−1 0 0

0 −1 0

0 0 1

. The eigenvalues of M2 are 1 and a double

eigenvalue −1. M4 =


1 0 0

0 1 0

0 0 1

 = I. Therefore M4 has a unique eigenvalue namely 1 and this

eigenvalue is a triple eigenvalue. The eigenspace associated to it is the whole R3. In fact the map

x −→Mx is the rotation abou the z-axis by π
2

radians or equivalently by 90◦. Therefore the points

fromn z–axis do not move under the map which means that the vectors of the form




0

0

t




are eigenvectors associated to 1. It is also clear that the map x −→ M2x is the rotation about the

z–axis by π radians or equivalently by 180◦ or it is the symmetry with respect to the z–axis. This

implies right away that the z–axis is the eigenspace associated to 1 while the plane defined bhy the

equation z = 0 is the eigenspace associated to −1. Also it follows immediately that M4 = I is the

identity map so the eigenspace associated to 1 is the whole R3. As everybody sees the eigenspace

for the same eigenvalue of the map may be smaller then that of its square (in the example above

the eigenspace associated to 1 was one–dimenskional for M2 while it was three-dimensional for M4.

If C is an invertible matrix then

|M − λI| = |CC−1| · |M − λI| = |C| · |M − λIJ | · |C−1| = |C(M − λI)C−1| = |CMC−1 − λI|.



This proves that the characterstic polynomials of M and of CMC−1 are equal. If n × n matrix

M has n real eigenvalues (counted with thei multiplicities) then there exists a matrix C such that

the matrix CMC−1 is upper–triangular (below the main diagonal there are zeros only) – this is

an important theorem with quite long proof. The entries on the main diagonal of CMC−1 are the

eigenvalues of both M and CMC−1. Let they be λ1, λ2, . . . , ]λn. Then the characteristic polynomial

may be written as (λ1 − λ)(λ2 − λ)(λ3 − λ) . . . (λn − λ). This implies that

λ1λ2λ3 . . . λn = |CMC−1| = |M |

so the determinant of the magtrix equals to the product of its all eigenvalues provided there are

n eigenvalues. Another corollary is that the sum λ1 + λ2 + λ3 + . . . + λn is the coefficient in front

of (−λ)n−1 in the characteristic polynomial. It is not hard to see that if M = (aij)1≤i,l,≤n the this

coefficient equals to the (−1)n−1(a11 + a22 + a33 + . . .+ ann) so

λ1 + λ2 + λ3 + . . .+ λn = a11 + a22 + a33 + . . .+ ann.

The quantity tr(M) = a11+a22+a33+ . . .+ann is called the trace of the matrix and as shown above is

independent of the basis chosen: tr(M) = tr(CMC−1). This is important theorem for many reasons.

One, not the most important, is that when a student computes the eigenvalues and the sum of the

obtained number differs from the trace of the matrix the person knows that an error was made.

Let us look into the January 14 test problems.

1. Let A(t) =


2− t t 0

−t t+ 2 0

−t t 2

.

Find the eigenvalues of the matrix A(t) and the eigenspaces associated to them.

For what t ∈ R there exists a basis of R3 consisting of the eigenvectors of A(t).

Find a basis B of R3 such that M(A(1))BB =


2 1 0

0 2 0

0 0 2

 or prove that such a basis does not

exist.

Solution. The characteristic equation is 0 =

∣∣∣∣∣∣∣∣
2− t− λ t 0

−t t+ 2− λ 0

−t t 2− λ

∣∣∣∣∣∣∣∣ =
= (2− λ)

∣∣∣∣∣ 2− t− λ t

−t t+ 2− λ

∣∣∣∣∣ = (2− λ)
(
(2− t− λ)(t+ 2− λ) + t2

)
=

= (2− λ)
(
(2− λ− t)(2− λ+ t) + t2

)
= (2− λ)

(
(2− λ)2 − t2 + t2

)
= (2− λ)3.

This implies that 2 is a triple eigenvalue of the matrix. By the theorems known from prof.

Kȩdzierski’s class we know that the dimension of the eigenspace associated to the eigenvalue

may be either 1 or 2 or 3. Let us write the equation for the eigenvectors.




2− t t 0

−t t+ 2 0

−t t 2




x

y

z

 = 2


x

y

z

 or


−t t 0

−t t 0

−t t 0




x

y

z

 =


0

0

0

.

There are two different cases. If t = 0 the the equation is satisfied by all vectors in R3 so

the eigenspace is the whole space R3. Obviously in this case there a basis consisting of the

eigenvectors e.g. the standard basis of R3 or any other basis of R3. A different situation is for

t 6= 0. Now there is one equation for the eigenvectors −tx+ ty = 0 equivalent to x− y = 0. It

is an equation of a (two–dimensional) plane in R3. Let w1 =


1

1

0

 and w2 =


0

0

1

. This

shows that each eigenvector is of the form c1w1 + c2w2 with c1, c2 ∈ R.

Let us look at the last question. A(1) =


1 1 0

−1 3 0

−1 1 2

. Lets us take a vector from outside of

the eigenspace e.g. w3 =


1

0

0

. We see that

A(1)w3 =


1 1 0

−1 3 0

−1 1 2




1

0

0

 =


1

−1
−1

 = 2


1

0

0

+


−1
−1
−1

 = 2w3 + w4 with

w4 =


−1
−1
−1

 . Clearly w4 is an eigenvector of A(1): A(1)w4 = 2w4. Set B = (w4, w3, w1). We

have A(1)w4 = 2w4, A(1)w3 = 2w3 + w4, and A(1)w1 = 2w1 as required in the third part of

the problem.

2. Let V = lin(v1,v2,v3) with v1 =


1

2

4

−7

, v2 =


2

2

−1
−3

, v3 =


−3
1

1

1

.

Find numbers a, b, c, d such that V =




x1

x2

x3

x4

 : ax1 + bx2 + cx3 + dx4 = 0

.

Find a point q symmetric to the point p =


1

2

3

4

 relative to the subspace V and the



orthogonal projection r of p onto V .


1

1

1

1




1

1

1

1


Solution. We want to find numbers a, b, c, d such that a+2b+4c−7d = 0, 2a+2b−c−3d = 0

and −3a+b+c+d = 0. Apply the row reduction process to the matrix


1 2 4 −7
2 2 −1 −3
−3 1 1 1

→

→


1 2 4 −7
0 −2 −9 11

0 7 13 −20

→


1 2 4 −7
0 −2 −9 11

0 0 −37 37

→


1 2 4 −7
0 −2 −9 11

0 0 −1 1

→

→


1 2 0 −3
0 −2 0 2

0 0 1 −1

 →


1 0 0 −1
0 1 0 −1
0 0 1 −1

 so a = b = c = d, e.g. a = 1 and the equation

is x1 + x2 + x3 + x4 = 0. The vector v =


1

1

1

1

 is perpendicular to the three–dimensional

subspace V of R3, because v · v1 = 0, v · v2 = 0 and v · v3 = 0. Let us project p onto

V ⊥ = lin(v). We obtain p·v
v·vv. Therefore r = p − p·v

v·vv =


1

2

3

4

 − 10
4


1

1

1

1

 = 1
2


−3
−1
1

3


is the projection of p onto V . The point q symmetric to the point p with respect to V is

q = p+ 2(r− p) = 2r− p =


−4
−3
−2
−1

. The end. �

1. Let A(t) =


t+ 3 t+ 1 0

−t− 1 1− t t+ 1

0 0 2

.

Find the eigenvalues of the matrix A(t) and the eigenspaces associated to them.

For what t ∈ R there exists a basis of R3 consisting of the eigenvectors.

Find a basis B of R3 such that M(A(0))BB =


2 1 0

0 2 1

0 0 2

 or prove that such a basis does not

exist.



Solution. The characteristic equation is 0 =

∣∣∣∣∣∣∣∣
t+ 3− λ t+ 1 0

−t− 1 1− t− λ t+ 1

0 0 2− λ

∣∣∣∣∣∣∣∣ =
= (2− λ)

∣∣∣∣∣ t+ 3− λ t+ 1

−t− 1 1− t− λ

∣∣∣∣∣ = (2− λ)
(
(t+ 3− λ)(1− t− λ) + (t+ 1)2

)
=

= (2−λ)
(
λ2−λ(t+3+1− t)+(t+3)(1− t)+(t+1)2

)
= (2−λ)

(
λ2−4λ+4

)
= (2−λ)3. The

number 2 is a triple eigevalue of A(t). The dimension of the dorresponding eigenspace is either

1 or 2 or 3. The equation for the eigenvectors is


t+ 1 t+ 1 0

−t− 1 −1− t t+ 1

0 0 0




x

y

z

 =


0

0

0

 .

If t+ 1 = 0 it is satisfied for all


x

y

z

 ∈ R3. If t 6= −1 then x+ y = 0 and −x− y + z = 0 so

y = −x and z = 0. In this case the eigenspace is one–dimensional. It is spanned by the vector

w1 =


1

−1
0

 ∈ R3. The basis of R3 consisting of the eigenvectors exists only for t = −1.

A(0) =


3 1 0

−1 1 1

0 0 2

. Suppose that a basis B exists. Let J =


2 1 0

0 2 1

0 0 2

. We see that

Je1 = 2e1, Je2 = 2e2 + e1 and Je3 = 2e3 + e2. Let us try to find a vector w2 such that

A(0)w2 = 2w2 +w1. A vector w2=


x

y

z

 such that


1 1 0

−1 −1 1

0 0 0




x

y

z

=


1

−1
0

=w1

will be useful. This implies that x+ y = 1 and −x− y + z = −1 so z = 0 and x = 1− y. Let

w2 =


1

0

0

. Now we need a vector w3 such that A(0)w3 = 2w3 +w2 i.e. we want to solve for


x

y

z

 the equation


1 1 0

−1 −1 1

0 0 0




x

y

z

 =


1

0

0

 = w2. This implies that x + y = 1

and −x − y + z = 0 so z = 1. Let w3 =


1

0

1

. The (ordered) basis B exists for example

B = (w1, w2, w3). �



2. Let V = lin(v1,v2,v3), v1 =


1

−1
1

3

, v2 =


1

0

1

2

, v3 =


1

1

1

1

. Find numbers a, b, c, d

such that V =




x1

x2

x3

x4

 : ax1 + bx2 + cx3 + dx4 = 0

.

Find a point q symmetric to the point p =


1

2

3

4

 relative to the subspace V and the ortho-

gonal projection r of p onto V .

Solution. It is easy to see that v1 + v3 = 2v2. The vectors are linearly dependent. The

vectors v1,v2 are linearly independent, just apply the definition to prove it. This implies that

V = lin(v1,v2). Therefore V is two–dimensional. Therefore it cannot be described as required,

one non–trivial linear equation in R4 describes a three–dimensional subspace of R4. There are

ininitely many quadruplets a, b, c, d such that ax1 + bx2 + cx3 + dx4 = 0 and a+ b+ c+ d = 1

for all points of V but in each such case the equation is satisfied by many points from outside

of V . Let us find all (a, b, c, d) 6= (0, 0, 0, 0) for which ax1 + bx2 + cx3 + dx4 = 0 for all x ∈ V .

We shall apply row reduction to the matrix

(
1 −1 1 3

1 0 1 2

)
→

(
1 −1 1 3

0 1 0 −1

)
→

→

(
1 0 1 2

0 1 0 −1

)
. This implies that b = d and a = −c− 2d. As we said there many possi-

bilities. Let d = −1 and c = 1. Then b = −1 and a = 1. The equation is x1 − x2 + x3 − x4 = 0.

There are many more non–equivalent to the above. For example let d = 1 and c = 0. Then

b = 1 and a = −2. We obtain the equation −2x1+x2+x4 = 0. If x1 = x2 = 0 and x3 = 1 = x4

then the first equation is satisfied while the second is not so they are not equivalent. Now we

shall find the projection of p onto V . This means that we shall find numbers c1, c2 such that

the vector p− (c1v1+c2vg2) will be orthogonal to V or it will be orthogonal to both vectors v1

and v2. We want the equations 0 = v1 ·(p−(c1v1+c2v2)) and 0 = v2 ·(p−(c1v1+c2v2)) to be

satisfied. We have v1 ·v1 = 12, v1 ·v2 = 8 and v2 ·v2 = 6. Also p ·v1 = 14 and p ·v2 = 12. The

equations take form 12c1+8c2 = 14 and 8c1+6c2 = 12 or 12c1+8c2 = 14 and 12c1+9c2 = 18.

Subtract them to get c2 = 4 and then c1 = −3
2
. We may write r = −3

2
v1 + 4v2 = 1

2


5

3

5

7

.



Then q = p+ 2(r− p) = 2r− p =


4

1

2

3

. �

1. Let A(t) =


t+ 4 t+ 1 0

−t− 1 2− t 0

t+ 1 t+ 1 3

.

Find the eigenvalues of the matrix A(t) and the eigenspaces associated to them.

For what t ∈ R there exists a basis of R3 consisting of the eigenvectors.

Find a basis B of R3 such that M(A(0))BB =


3 1 0

0 3 0

0 0 3

 or prove that such a basis does not

exist.

Solution. Solve the characteristic equation 0 =

∣∣∣∣∣∣∣∣
t+ 4− λ t+ 1 0

−t− 1 2− t− λ 0

t+ 1 t+ 1 3− λ

∣∣∣∣∣∣∣∣ =
= (3−λ)

∣∣∣∣∣ t+ 4− λ t+ 1

−t− 1 2− t− λ

∣∣∣∣∣ = (3−λ)
(
λ2−λ(t+4+2− t)+ (t+4)(2− t)+ (t+1)2

)
=

= (3− λ)(λ2 − 6λ+ 9) = (3− λ)3. The number 3 is a triple eigevalue of A(t). The dimension

of the corresponding eigenspace is either 1 or 2 or 3. The equation for the eigenvectors is
t+ 1 t+ 1 0

−t− 1 −1− t 0

t+ 1 t+ 1 0




x

y

z

 =


0

0

0

 . For t+1 = 0 the eigenspace consists of all points of

R3 , so in this case there is a basis consisting of the eigenvectors (any basis of R3). If t 6= −1 then

the eigenspace is described by x+ y = 0 so it is a two-dimensional subspace of R3 so the basis

consisting of the eigenvectors does not exist (three linearly independent eigenvectors should be

chosen but it is impossible).A(0) =


4 1 0

−1 2 0

1 1 3

 Let w2 =


1

0

0

. It is NOT an eigenvector.

We have


4 1 0

−1 2 0

1 1 3




1

0

0

 =


4

−1
1

 = 3


1

0

0

 +


1

−1
1

. Let w1 =


1

−1
1

,

w3 =


0

0

1

. One has A(0)w1 = 3w1, A(0)w2 = 3w2 + w1 and A(0)w3 = 3w3 so the basis B

exists, e.g. B = (w1, w2, w3). The solution is now complete. �



2. Let V = lin(v1,v2,v3), v1 =


1

0

1

1

, v2 =


1

1

1

3

, v3 =


1

−1
1

−1

.

Find numbers a, b, c, d such that V =




x1

x2

x3

x4

 : ax1 + bx2 + cx3 + dx4 = 0

.

Find a point q symmetric to the point p =


1

2

3

4

 relative to the subspace V and the

orthogonal projection r of p onto V .

Solution. It is easy to see that v2 + v3 = 2v1. The vectors are linearly dependent. The

vectors v1,v2 are linearly independent, just apply the definition to prove it. This implies that

V = lin(v1,v2). Therefore V is two–dimensional. Therefore it cannot be described as required,

one non–trivial linear equation in R4 describes a three–dimensional subspace of R4. There are

ininitely many quadruplets a, b, c, d such that ax1 + bx2 + cx3 + dx4 = 0 and a+ b+ c+ d = 1

for all points of V but in each such case the equation is satisfied by many points from outside

of V . Let us find all (a, b, c, d) 6= (0, 0, 0, 0) for which ax1 + bx2 + cx3 + dx4 = 0 for all x ∈ V .

We shall apply row reduction to the matrix

(
1 0 1 1

1 1 1 3

)
→

(
1 0 1 1

0 1 0 2

)
. This implies

that b = −2d and a = −c − d. As we said there many possibilities. Let d = −1 = c. Then

b = 2 = a. The equation is 2x1 + 2x2 − x3 − x4 = 0. There are many more non–equivalent to

the above. For example let d = 1 and c = 0. We have now b = −2 and a = −1. The equation

is −x1 − 2x2 + x4 = 0. It is not equivalent to the previous one. Check it by yourself, please.

1. Let A(t) =


t+ 4 t+ 1 0

−t− 1 2− t t+ 1

0 0 3

.

Find the eigenvalues of the matrix A(t) and the eigenspaces associated to them.

For what t ∈ R there exists a basis of R3 consisting of the eigenvectors of A(t).

Find a basis B of R3 such that M(A(0))BB =


3 1 0

0 3 1

0 0 3

 or prove that such a basis does not

exist.

Solution. We start with the characteristic equation 0 =

∣∣∣∣∣∣∣∣
t+ 4− λ t+ 1 0

−t− 1 2− t− λ t+ 1

0 0 3− λ

∣∣∣∣∣∣∣∣ =



=(3− λ)

∣∣∣∣∣ t+ 4− λ t+ 1

−t− 1 2− t− λ

∣∣∣∣∣ = (3− λ)
(
(t+ 4− λ)(2− t− λ) + (t+ 1)2

)
=

= (3−λ)
(
λ2−λ(t+4+2−t)+(t+4)(2−t)+(t+1)2

)
(3−λ)(λ2−6t+9) = (3−λ)2. The number

3 is a triple eigenvalue of the matrix. The dimension of the associated eigenspace is either 1

or 2 or 3. The equation for the eigenvectors is


t+ 4 t+ 1 0

−t− 1 2− t t+ 1

0 0 3




x

y

z

 = 3


x

y

z

.

Transform it to


t+ 1 t+ 1 0

−t− 1 −1− t t+ 1

0 0 0




x

y

z

 =


0

0

0

. It t = −1 then all elements of

R3 are eigenvectors so the basis consisting of them exists. If t 6= −1 then the equations are

(t+1)x+(t+1)y = 0 and −(t+1)x− (t+1)y(t+1)z = 0. The are equivalent to x+y = 0 and

−x− y + z = 0. The eigenspace is described by the equations x+ y = 0 and z = 0. Therefore

its dimension is 1. So the basis made of the eigenvectors does not exist. We have A(0) =
4 1 0

−1 2 1

0 0 3

. Let J =


3 1 0

0 3 1

0 0 3

. Both matrices have the same triple eigenvalue 3.

The eigenspace associated to 3 in both cases has dimension 1. We may notice that Je1 = 3e1,

Je2 = 3e2 + e1 and Je3 = 3e3 + e2. The question is whether or not there are such vectors

for A(0). There is not much choice for the eigenvector. Let w1 =


1

−1
0

. Does there exist a

vector w2 such that A(0)w2 = 3w2+w1? To answer the question we solve the (matrix) equation

(A(0)− 3I)x = w1. This can be written as follows


1 1 0

−1 −1 1

0 0 0




x

y

z

 =


1

−1
0

. It is

equivalent to x + y = 1 and x + y = 1 and −x − y + z = −1. Therefore z = 0. We may set

x = 1 so y = 0. Let w2 =


1

0

0

. We see that A(0)w2 = 3w2 + w1. Next question is: does

there exist a vector w3 such that A(0)w3 = 3w3+w2? We know that the question is equivalent

to the system of equations


1 1 0

−1 −1 1

0 0 0




x

y

z

 =


1

0

0

. Without matrices it can be

written as follows x + y = 1 and −x − y + z = 0. This implies that z = −1. Set x = 1 so



y = 0 and define w3 =


1

0

−1

. The required equation are satisfied . If B = (w1, w2, w3) then

M(A(0))BB =


3 1 0

0 3 1

0 0 3

. �

2. Let V = lin(v1,v2,v3), v1 =


1

1

1

1

, v2 =


2

−1
1

−2

, v3 =


1

−1
−1
1

. Find numbers a, b, c, d

such that V =




x1

x2

x3

x4

 : ax1 + bx2 + cx3 + dx4 = 0

.

Find a point q symmetric to the point p =


1

2

3

4

 relative to the subspace V and the ortho-

gonal projection r of p onto V .

Solution. We want the following equations to be satisfied: a+b+c+d = 0, 2a+b+c−2d = 0

and a − b − c + d = 0. We shall simplify the matrix of the system.


1 1 1 1

2 −1 1 −2
1 −1 −1 1

 →

→


1 1 1 1

0 −3 −1 −4
0 −2 −2 0

 →


1 0 0 1

0 −2 0 −4
0 1 1 0

 →


1 0 0 1

0 1 0 2

0 1 1 0

. Therefore a = −d,

b = −2d and c = −b = 2d. Let d = −1. Then the equation is x1 + 2x2 − 2x3 − x4 = 0.

We know now that V is a three–dimensional space orthogonal to the vector v =


1

2

−2
−1

.

The orthogonal projection r of p onto V is a linear combination of the vectors v1,v2,v3:

r = c1v1 + c2v2 + c3v3. Therefore (p − r) · vj = 0 for j = 1, 2, 3. We have p · v1 = 10,

p · v2 = −5, p · v3 = 0, v1 · v1 = 4, v1 · v2 = 0, v1 · v3 = 0, v2 · v2 = 10, v2 · v3 = 0 and

v3 · v3 = 4. Therefore 10 = p · v1 = 4c1, −5 = p · v2 = 10c2 and 0 = p · v3 = 4c3 so c1 = 5
2
,



c2 = −1
2

and c3 = 0. Thus r = 5
2
v1− 1

2
v2 =

1
2


3

6

4

7

. Thus q = p+2(r−p) = 2r−p =


2

4

1

4

.

Over. �

Dear students, when you are working with a linear space you should know its dimension.

The rank od the matrix is the maximal number of the linearly independent rows which is equal

to the maximal number of the linearly independent columns which is equal to the maximal

size of the determinant of a matrix obtained by crossing out several rows and several columns.

It is much easier to do the job having the above in your mind.


