
Linear Algebra

Eigenvalues and eigenvectors

All students were asked to write down a definition of an eigenvalue and of an eigenvector of a

matrix. The definition can be writtenas follows:

if M is an n× n matrix, λ ∈ R and v ∈ Rn are such that

(eig) Mv = λv and v 6= (0, 0, . . . , 0)

then λ is called an eigenvalue of M and v is called an eigenvector associated to λ. Many

people forgot of writing v 6= (0, 0, . . . , 0). It is a serious error. This happened in many papers in

which the authors tried to avoid the formula (eig) writing it using many words. There is no reason

for avoiding math formulas when studying math.

Some people used names eigenfunction and refered to differential equation. Formally speaking you

were not asked of so called differential operators so this was not an answer to my question (although

I accepted it).

The definition of an eigenvalue and an eigenvector of a linear map ϕ : V → V is the same: a number

λ is an eigenvalue if ϕ if and only if there exists a non-zero vector v ∈ V such that ϕ(v) = λv. The

vector v is called an eigenvector associated to λ.

If the dimension V is a finite , A is a basis of V then the eigenvalues of the map ϕ and of the

matrix M(ϕ)AA are the same (this follows from the theorems proved by prof. Kȩdzierski at his

classes). The basis in V regarded as a domain of ϕ and the basis of V regarded as a range of ϕ

must coincide because otherwise if ϕ is one to one map, A = {v1,v2, . . . ,vn} is a basis of V and

B = {ϕ(v1), ϕ(v2), . . . ϕ(vn)} then M(ϕ)BA is an identity matrix.

The eigenvalues of a matrix M are roots of the characteristic polynomial in λ of M : |M − λI| or

equivalently of the equation |M − λI| = 0. Let us consider three matrices

M1 =


3 0 0

0 3 0

0 0 3

, M2 =


3 1 0

0 3 0

0 0 3

, M2 =


3 1 0

0 3 1

0 0 3

.

It is easy to see that in the three cases the characteristic equation is (3− λ)3 = 0. This proves that

each of the matrices M1,M2,M3 has one (triple) eigenvalue 3.

Let us find eigenvectors associated to M1. The equation is


3 0 0

0 3 0

0 0 3




x1

x2

x3

 = 3


x1

x2

x3

.

Clearly all vectors


x1

x2

x3

 satisfy it. This means that each non–zero vector of R3 is an eigenvector

associated with 3.

Now consider the matrix M2. The equation is 3


x1

x2

x3

 =


3 1 0

0 3 0

0 0 3




x1

x2

x3

 =


3x1 + x2

3x2

3x3

.



This implies that 3x1 = 3x1 + x2 so x2 = 0. Obviously 3


x1

0

x3

 =


3 1 0

0 3 0

0 0 3




x1

0

x3

. This

means that all vectors of the form


x1

0

x3

 with x1 6= 0 or x2 6= 0 are eigenvectors associated to 3.

In this case the eigenspace associated to 3 is given by the equation x2 = 0 so its dimension is 2.

In the third case the equation is 3


x1

x2

x3

 =


3 1 0

0 3 1

0 0 3




x1

x2

x3

 =


3x1 + x2

3x2 + x3

3x3

. This implies

that x2 = 0 and x3 = 0. It is easy to see that 3


x1

0

0

 =


3 1 0

0 3 1

0 0 3




x1

0

0

 so in this case the

eigenspace associated to 3 is given by the equations x2 = 0 and x3 = 0 slo its dimension is 1.

This is the simplest example showing that the eigenspace associated to the eigenvalue may be of any

dimension greater than 0 and not bigger than the multiplicity of the eigenvalue.

100. Let 0 < α < 2π. M =

(
cosα − sinα

sinα cosα

)
. Prove that the cosine of the angle between a

vector

(
x

y

)
is cosα. For what α ∈ (0, 2) the matrix M has a real eigenvalue?

Solution. The characteristic equation is 0 =

∣∣∣∣∣ cosα− λ − sinα

sinα cosα− λ

∣∣∣∣∣ = (cosα − λ)2 + sin2 α.

This implies that sinα = 0 and cosα − λ = 0 – the sum of squares of real numbers is 0

if and only if all squared numbers are zeroes. Therefore there exists an integer n such that

α = nπ. Then cosα = (−1)n so the only candidates for the eigenvalues are ±1. If n is

even then necessarilly λ = 1 and the matrics becomes

(
1 0

0 1

)
so the number 1 becomes

a double eigenvalue and the corresponding eigenspace is the whole plane (R2). If n is odd

then the matrix is

(
−1 0

0 −1

)
so the number −1 becomes a double eigenvalue and the

corresponding eigenspace is the whole plane (R2).

The length of the vector

(
x

y

)
equals

√
x2 + y2. The length of the vector(

cosα − sinα

sinα cosα

)(
x

y

)
=

(
x cosα− y sinα
x sinα + y cosα

)
equals

√
(x cosα− y sinα)2 + (x sinα + y cosα)2 =

√
x2 + y2. The scalar product of these

vectors is equal to the product of the lengths of the vectors and of the cosine of the angle they

make. This scalar product is x(x cosα− y sinα) + y(x sinα+ y cosα) = (x2 + y2) cosα so the



cosine of the angle is (x2+y2) cosα√
x2+y2·

√
x2+y2

= cosα. This shows that unless cosα = ±1 or x = 0 = y

the two vectors are not parallel so the vector

(
x

y

)
is not an eigenvector corresponding to

a real eigenvalue of M . �

101. Let a sequence a1, a2, a3, . . . be defined by the formulae an+2 = −2an+1 + 2an, a1 = 1 and

a2 = 4. Check that the linear map defined by the matrix M =

(
0 1

2 −2

)
assigns the vector(

an+1

an+2

)
to the vector

(
an

an+1

)
. Find the eigenvalues and the eigenvectors of M and the

explicit formulae for the matrix Mn and an.

Solution. We have

(
0 1

2 −2

)
·

(
an

an+1

)
=

(
an+1

2an − 2an+1

)
=

(
an+1

an+2

)
by the defini-

tion of this sequence. The characteristic equation is 0 =

∣∣∣∣∣ 0− λ 1

2 −2− λ

∣∣∣∣∣ = λ(λ+ 2)− 2 =

= (λ+1)2− 3 so λ1 = −1+
√
3 and λ2 = −1−

√
3. If

(
x1

x2

)
is an eigenvector associated to

λ1 then λ1

(
x1

x2

)
=

(
0 1

2 −2

)(
x1

x2

)
=

(
x2

2x1 − 2x2

)
so (−1+

√
3)x1 = x2 (the second

equation is equivalent to ther first one), e.g. x1 = 1 and x2 =
√
3− 1, so v1 =

(
1

√
3− 1

)
is

an eigenvector associated to −1+
√
3. In the same way we show that v2 =

(
1

−
√
3− 1

)
is an

eigenvector associated to −1−
√
3. Let A = {v1,v2}, ϕ

(
x1

x2

)
=

(
0 1

2 −2

)(
x1

x2

)
. Then

M(ϕ)AA =

( √
3− 1 0

0 −
√
3− 1

)
, M st

A =

(
1 1

√
3− 1 −

√
3− 1

)
so MA

st = (M st
A )
−1 =

=− 1
2
√
3

(
−1−

√
3 −1

1−
√
3 1

)
= 1

2
√
3

( √
3 + 1 1
√
3− 1 −1

)
. Therefore

Mn = (M(ϕ)stst)
n = (M st

A (M(ϕ)AA)M
A
st)

n =M st
A (M(ϕ)AA)

nMA
st =

=

(
1 1

√
3− 1 −

√
3− 1

)
·

(
(
√
3− 1)n 0

0 (−
√
3− 1)n

)
· 1
2
√
3

( √
3 + 1 1
√
3− 1 −1

)
=

=

(
(
√
3− 1)n (−

√
3− 1)n

(
√
3− 1)n+1 (−

√
3− 1)n+1

)
· 1
2
√
3

( √
3 + 1 1
√
3− 1 −1

)
=

= 1
2
√
3

(
2(
√
3− 1)n−1 − 2(−

√
3− 1)n−1 (

√
3− 1)n − (−

√
3− 1)n

2(
√
3− 1)n − 2(−

√
3− 1)n (

√
3− 1)n+1 − (−

√
3− 1)n+1

)
.(

an

an+1

)
=Mn−1

(
1

4

)
= 1√

3

(
(2
√
3− 1)(

√
3− 1)n−2 + (2

√
3 + 1)(−

√
3− 1)n−2

(2
√
3− 1)(

√
3− 1)n−1 + (2

√
3 + 1)(−

√
3− 1)n−1

)
. �



102. Let V be a set consisting of all functions in x of the form w(x)ex with w(x) = a+ bx+ cx2,

a, b, c ∈ R. Prove that V is a linear space over R. Prove that the dimension of V is 3.

Find a basis of V as simple as you can. For f ∈ V define ϕ(f)(x) = f ′(x) − 2f(x) and

ψ(f)(x) = f ′(x)− f(x). Prove that ϕ(f), ψ(f) ∈ V and that ϕ, ψ are linear maps . Find their

eigenvalues and eigenvectors (in this case they are frequently called eigenfunctions because

the elements of V are functions).

Solution. If the functions w(x)ex and w1(x)e
x are in V then there are a, a1, b, b1, c, c1 ∈ R

such that w(x) = a + bx + cx2 and w1(x) = a1 + b1x + c1x
2 the for α, β ∈ R we have

αw(x)ex+βw1(x)e
x = ((aα + a1β) + (bα + b1β)x+ (cα + c1β)x

2) ex. This means that a linear

combination of functions from V is an element of V . This proves that V is a linear space.

dim(V ) = 3 because the functions 1 · ex, xex and x2ex are linearly independent (a polynomial

of degree at most 2 is equal to 0 if and only if all its coefficients are zeros) and each element

of V is a linear combination of them. This means that A = {ex, xex, x2xx} is a basis of V .

There are infinitely many of other bases of V . We were supposed to find one of them.

If f(x) = w(x)ex = (a+ bx+ cx2)ex then

(ϕ(f))(x) = (w(x)ex)′ − 2w(x)ex = (w′(x)− w(x))ex = ((b− a) + (2c− b)x− cx2)ex.

This proves M(ϕ)AA =


−1 1 0

0 −1 2

0 0 −1

. There is one triple eigenvalue −1. An eigenspace

associated to it is spanned by ex so it consists of all functions of the form aex with a ∈ R.

(ψ(f))(x) = w′(x)f(x) = (b + 2cx)ex. Therefore M(ψ)AA =


0 1 0

0 0 2

0 0 0

. In this case there

is one (triple) eigenvalue 0. As above the eigenspace consists of all functions of the form

aex, a ∈ R. �



103. Let v1 =


1

1

1

, v2 =


3

0

1

. Let V = lin(v1,v2) and let L be a straight line through the

origin perpendicular to V . Let ϕ be the symmetry relative to V and ψ the symmetry relative

to L. Let PV be the orthogonal projection of the space R3 onto its subspace V and PL the

orthogonal projection of R3 onto L.

Find the eigenvalues and eigenvectors of all four maps defined above.

Find the explicit formulae for the maps ϕ, PV , ψ and PL using the standard basis of R3.

Solution. We shall use the formulae v1 · v1 = 12 +12 +12 = 3, v1 · v2 = 1 · 3+ 1 · 0+ 1 · 1 = 4

and v2 · v2 = 32 + 02 + 12 = 10. Orthogonal projection PV of R3 onto V is defined as follows:

let p ∈ R3 be an arbitrary point, let L(p) be a straight line through p parallel to L i.e.

perpendicular (orthogonal) to V , the line L(p) meets the plane V at one point PV (p) (so

{PV (p)} = L(p) ∩ V ) which is called an orthogonal projection of p onto V . Notice that if

p1 6= p2 then the line through p1 and p2 is perpendicular to V if and only if PV (p1) = PV (p2).

We shall find a formula for PV (p). Since PV (p) ∈ V there are numbers a1, a2 ∈ R such that

PV (p) = a1v1 + a2v2. The vector p − PV (p) is perpendicular to V which means that it is

perpendicular to v1 and to v2. This is equivalent to (p− PV (p)) · v1 = 0 = (p− PV (p)) · v2

(both equations must hold). The equations may be rewritten: p · v1 = (a1v1 + a2v2) · v1 =

=a1v1 ·v1+a2v2 ·v1 = 3a1+4a2 and p·v2 = (a1v1+a2v2)·v2 = a1v1 ·v2+a2v2 ·v2 = 4a1+10a2.

This implies that 5p · v1 − 2p · v2 = 15a1 − 8a1 = 7a1 so a1 = 5
7
p · v1 − 2

7
p · v2 and

3p · v2 − 4p · v1 = 30a2 − 16a2 = 14a2 so a2 = 3
14
p · v2 − 2

7
p · v1. Therefore the projection of

the point p onto the plane V is the point
(
5
7
p · v1 − 2

7
p · v2

)
v1 +

(
3
14
p · v2 − 2

7
p · v1

)
v2. By

the definition of a linear map the projection PV is linear.

Now let us find a formula for the projection PL onto L. Let V (p) be the plane through

p parallel to V i.e. perpendicular (orthogonal to L). It intersects the line L at the point

PL(p) so {PL(p)} = L ∩ V (p). We need a vector v3 =


a

b

c

 perpendicular to V so the

equations a + b + c = v1 · v3 = 0 = v2 · v3 = 3a + c should be satisfied. This implies that

2a − b = 0. Let a = 1. Then b = 2 and c = −a − b = −3a = −3 so v3 =


1

2

−3

. Of

course this vector may be multiplied by an arbitrary real number different from 0. There

exists a number α such that PL(p) = αv3. Therefore p− αv3 is a vector perpendicular to v3

so 0 = v3 · (p− αv3) = v3 · p− αv3 · v3. Thus α = v3·p
v3·v3

and PL(p) =
v3·p
v3·v3

v3. Again one can

easily see that the map PL is linear in p.

We have found the formulae for both projections.

We note that PV (p) = p for all p ∈ V so the number 1 is an eigenvalue of PV and V consists



the eigenvectors associated to 1 and of zero–vector. This implies that the multiplicity of the

eigenvalue 1 is at least 2 (the dimension if the eigenspace does not exceed the multiplicity of

the eigenvalue). Also PV (p) = 0 for all p ∈ L. Therefore 0 is an eigenvalue of PV and the

eigenspace associated to 0 is L. Therefore the multiplicity of 1 is 2 and the multiplicity of 0 is

1 (the sum of multiplicities of all eigenvalues of the linear map from R3 into R3 is at most 3).

PL(v) = v for all v ∈ L and PL(v) =


0

0

0

 = 0 · v for all v ∈ V . So in ) is a double

eigenvalue of PL and 1 is a single eigenvalue of PL.

We shall find the matrices of both projections relative to the standard basis of R3. Let us start

with the basis A = {v1,v2,v3}. From the story of the eigenvaluers and of the eigenvectors it

follows that M(PV )
A
A =


1 0 0

0 1 0

0 0 0

 and M(PL)
A
A =


0 0 0

0 0 0

0 0 1

. The following equalities

hold M st
A =


1 3 1

1 0 2

1 1 −3

 and MA
st = (M st

A )
−1 = 1

14


−2 10 6

5 −4 −1
1 2 −3

. We get

M(PV )
st
st =M st

AM(PV )
A
AM

A
st =

1
14


1 3 1

1 0 2

1 1 −3




1 0 0

0 1 0

0 0 0



−2 10 6

5 −4 −1
1 2 −3

 =

= 1
14


1 3 0

1 0 0

1 1 0



−2 10 6

5 −4 −1
1 2 −3

 = 1
14


13 −2 3

−2 10 6

3 6 5

 oraz

M(PV )
st
st =M st

AM(PV )
A
AM

A
st =

1
14


1 3 1

1 0 2

1 1 −3




0 0 0

0 0 0

0 0 1



−2 10 6

5 −4 −1
1 2 −3

 =

= 1
14


0 0 1

0 0 2

0 0 −3



−2 10 6

5 −4 −1
1 2 −3

 = 1
14


1 2 −3
2 4 −6
−3 −6 9

.

The conclusion is PV


x

y

z

 = 1
14


13 −2 3

−2 10 6

3 6 5




x

y

z

 = 1
14


13x− 2y + 3z

−2x+ 10y + 6z

3x+ 6y + 5z

 and

PL


x

y

z

 = 1
14


1 2 −3
2 4 −6
−3 −6 9




x

y

z

 = 1
14


x+ 2y − 3z

2x+ 4y − 6z

−3x− 6y + 9z

.

Now it is time for the symmetries. Since v1,v2 ∈ V the two formulae ϕ(v1) = v1 and

ϕ(v2) = v2. The vector v3 is perpendicular to the plane V so ϕ(v3) = −v3. This implies that



M(ϕ)AA =


1 0 0

0 1 0

0 0 −1

 so M(ϕ)stst =M st
AM(ϕ)AAM

A
st =

= 1
14


1 3 1

1 0 2

1 1 −3




1 0 0

0 1 0

0 0 −1



−2 10 6

5 −4 −1
1 2 −3

 =

= 1
14


1 3 −1
1 0 −2
1 1 3



−2 10 6

5 −4 −1
1 2 −3

 = 1
14


12 −4 6

−4 6 12

6 12 −4

.

ψ(v3) = v3 because the symmetry relative to the line L leaves the points of L where they

have been (does not move them at all). ψ(v1) = −v1 and ψ(v2) = −v2 by the definition of

the symmetry relative to the line. Therefore M(ϕ)AA =


−1 0 0

0 −1 0

0 0 1

. This implies that

M(ψ)stst =M st
AM(ψ)AAM

A
st =

= 1
14


1 3 1

1 0 2

1 1 −3



−1 0 0

0 −1 0

0 0 1



−2 10 6

5 −4 −1
1 2 −3

 =

= 1
14


−1 −3 1

−1 0 2

−1 −1 −3



−2 10 6

5 −4 −1
1 2 −3

 = 1
14


−12 4 −6

4 −6 −12
−6 −12 4

.

The eigenvalues of ϕ are 1 and −1. The number 1 is a double eigenvalue because the dimension

of the associated eigenspace is 2 and −1 is a single eigenvalues as before there is no room for

higher multiplicities because the dimension of the whole space is 3 and the sum of multiplicities

of all eigenvalues of the map is less or equal to the dimension of the space.

The eigenvalues of ψ are also 1 and −1 but in this case 1b is a single eigenvalue while −1 is

a double eigenvalue, the justification of the statement as above. �

Remark. ϕ = PV − PL and ψ = PL − PV . This statement is essentially obvious. We could

have started with this equation and justify it geometrically. This would shorten the solution.

One more observation: if you take a look at the matrices of ϕ and ψ then you may notice that

the columns are mutually perpendicular and have the same length = 1 (do not forget of 1
14

in front of the matrix!). It is so because any symmetry preserves lengths of all vectors. Then

same is true for the rows of the matrices.



104. Let L = lin(v) with v =


1

2

3

. Find a formula for the rotations about L by π
2

radians and

by π radians. Find the eigenvalues and the eigenvectors of both rotations.

Solution. Let V be a linear subpace orthogonal to L. V contains of all points


x

y

z


such that x + 2y + 3z = 0. Let v1,v2 be vectors in V perpendicular one to another. Let

v′1 =


1

1

−1

. The using standard row reductions we can find a vector v2 peprpendicular to

v and to v′1. This leads to the formula v2 =


5

−4
1

. Let v1 =
√
14v′1. Therefore the vectors

v1,v2 have the same length
√
42. The rotation about L maps v to v (rotation axis consists

of the points which are not moved by the rotation, so called fixed points). Let us assume that

v1 after the rotation falls onto v2 (there are two possibilities: either v1 → v2 or v2 → v1, we

considder the first one, the other one can be considered in the manner). There v1 → v2 and

v2 → −v1. Let R be this rotaion and let A = {v,v1,v2}. Clearly M(R)AA =


1 0 0

0 0 −1
0 1 0

.

Instead of solving the characteristic equation it is enough to notice that the only vectors

turned onto vectors parallel to themselvers are those parallel to the line L and they are not

moced at all. Therefore 1 is a single eigenvalue and the eigenspace associated to it is L. We

need also a formulas for this rotation which means that we need to find the matrix M(R)stst.

M st
A =


1

√
14 5

2
√
14 −4

3 −
√
14 1

. Therefore

MA
st = (M st

A )
−1 = −1

42
√
14


−3
√
14 −6

√
14 −9

√
14

−14 −14 14

−5
√
14 4

√
14 −

√
14

 = 1
42


3 6 9

√
14
√
14 −

√
14

5 −4 1

.

This implies that the rotation matrix equals M(R)stst =M st
A ·M(R)AA ·MA

st =

= 1
42


1

√
14 5

2
√
14 −4

3 −
√
14 1




1 0 0

0 0 −1
0 1 0




3 6 9
√
14
√
14 −

√
14

5 −4 1

 =

= 1
42


1 5 −

√
14

2 −4 −
√
14

3 1
√
14




3 6 9
√
14
√
14 −

√
14

5 −4 1

 =



= 1
42


3 6+9

√
14 9−6

√
14

6−9
√
14 12 18+3

√
14

9+6
√
14 18−3

√
14 27

= 1
14


1 2+3

√
14 3−2

√
14

2−3
√
14 4 6+

√
14

3+2
√
14 6−

√
14 9

.

We are done with rotation by π
2

radians. The last thing to do is to take care of rotaion by

π radians about the same axis. It is enough to notice that this rotation is simply R ◦ R
therefore it suffices to square the obtained matrix , i.e. multiply it by itself. I leave this task

for the students. �

105. Let A =


5 + t t 0

0 5 t

−t −t 5− t

, B =


5 + t t 0

−t 5− t 0

0 0 5

, C =


5 0 0

0 5 0

0 0 5

.

Find the eigenvalues of A,B,C?

Find a basis consisting of the eigenvectors or prove that such a basis does not exist.

Does there exist an invertible matrix M such that A =MBM−1?

Does there exist an invertible matrix M such that A =MCM−1?

Solution. Let start from the matrix C. Clearly C ·v = 5v for all v ∈ R3. The only eigenvalue

is 5 and the eigenspace associated to it is R3. Of course 5 is a triple eigenvalue.

Now we shall take care of B. To find the charecteristic polynomkial it suffices to expand the

determinant of B−λI with respect to the third row. We get (5−λ)((5+t−λ)(5−t−λ)+t2) =
(5−λ)((5−λ)2−t2+t2) = (5−λ)3. The only eigenvalue in this case is 5, it is a triple eigenvalue

of B. We have to find all vectors v such that Bv = 5v. This leads to the system of equations
(t+ 5)x + ty = 5x;

−tx + (5− t)y = 5y;

5z = 5z.

After simplifications we get tx+ ty = 0. This implies that for t 6= 0 the eigenspace is given by

the equation x+ y = 0 so it is a 2–dimensional linear subspace of R3. For t = 0 the matrix B

equals to C.

The last is matrix A. The characteristic equation is 0 =

∣∣∣∣∣∣∣∣
5 + t− λ t 0

0 5− λ t

−t −t 5− t− λ

∣∣∣∣∣∣∣∣ =
=(5 + t− λ)((5− λ)(5− t− λ) + t2)− t · t2 = (5− λ+ t)((5− λ)2 − t(5− λ) + t2)− t3 =
= (5−λ)3. There also in this case the number 5 is a triple eigenvalue of the matrix. For t = 0

the matrix A equals to C. Assume now that t 6= 0. The equations for the eigenvectors are
(t+ 5)x + ty = 5x;

5y + tz = 5y;

−tx − ty + (5− t)z = 5z.

From the second equation and t 6= 0 it follows that z = 0. Thden the first and the third

equations takde form x + y = 0. This means that in this case the eigenspace associated to 5

is one–dimensional – it is given by the equations x+ y = 0 and z = 0.

This implies that for t 6= 0 the matrix M does not exist (the dimensions of the eigenspaces



differ). For t = 0 the matrices A,B,C are equal. It is easy to see that if M is invertible then

A =MBM−1 =MCM−1

106. Let v1 =


−1
1

1

−1

, v2 =


−2
2

−2
1

, v3 =


1

1

−1
0

.

Find a non-zero vector v4 orthogonal to the subspace V = lin(v1,v2,v3).

Find a vector w symmetric to v4 relative to V and the orthogonal projection of v4 onto V .

Solution. Let v4 =


a

b

c

d

. The equations v1 · v4 = 0, v2 · v4 = 0 and v3 · v4 = 0 may be

written as 
−a + b + c − d = 0;

−2a + 2b − 2c + d = 0;

a + b − c = 0.

Add the first equation to the last one to get 2b = d. Subtract the third equation multiplied

by 2 from the second one to get 4a = d. Thus b = 2a and c = a + b = 3a. Let a = 1.

Then v4 =


1

2

3

4

. Since v4 is orthogonal (perpendicular) to V its projection onto V is

v4 =


0

0

0

0

. The vector −v4 =


−1
−2
−3
−4

 is symmetric to v4 with respect to V . This is

because the origin is the midpoint of the straight line segment with ends v4 and −v4 and this

segment is perpendicular to V . �

107. (Problem 49 of 60 Problems) Let W =

x =


x1

x2

x3

 : x1 − x2 + 2x3 = 0

. Find a

formula expressing the orthogonal projection of R3 onto W and a formula expressing the

orthogonal symmetry with respect to W .

Solution. W is a linear subspace of R3 of dimension 3− 1 = 2. It means that it is a plane

through the origin. The plane is perpendicular to the vector w =


1

−1
2

. Given x ∈ R3 we

shall find a number t such that the vector x − tw is orthogonal to w (then tw will be the

orthogonal projection of x onto the line lin(w). The equality 0 = (x− tw) ·w = x ·w− tw ·w



must be fulfilled. Therefore t = x·w
w·w so the orthogonal projection of x onto L is y = x·w

w·ww.

Therefore z = x − y = x − x·w
w·ww is the orthogonal projection of x onto W (z ∈ W and

x − z = x·w
w·ww is orthogonal to W ). We have z = x + (z − x) so the point symmetric to x

with respdect to W is q = x+ 2(z− x) = 2z− x. We may write

q = x− 2
x ·w
w ·w

w =


x1

x2

x3

− 2
x1 − x2 + 2x3
1 + 1 + 4


1

−1
2

 =
1

3


2x1 + x2 − 2x3

x1 + 2x2 + 2x3

−2x1 + 2x2 − x3

 .

This may be written as follows

q =
1

3


2 1 −2
1 2 2

−2 2 −1




x1

x2

x3


This ends the solution. �


