
A remainder: elements v1,v2, . . . ,vn of a linear space are called linearly independent if and

only if the unique choice of real numbers t1, t2, . . . , tn such that t1v1 + t2v2 + . . . + tnvn = 0 is

t1 = t2 = . . . = tn = 0.

The following elements of R4: (1, 0, 0, 0), (1, 2, 3, 4), (1, 5, 6, 7) are linearly independent because if

(0, 0, 0, 0) = t1(1, 0, 0, 0) + t2(1, 2, 3, 4) + t3(1, 5, 6, 7) then t1 + t2 + t3 = 0, 2t2 + 5t3 = 0, 3t2 + 6t3 = 0

and 4t2 + 7t3 = 0. We see the system of four linear homogeneous equations with three unknowns.

Its matrix is (it will be reduced right away)
1 1 1

0 2 5

0 3 6

0 4 7

 −→


1 1 1

0 1 2

0 2 5

0 4 7

 −→


1 1 1

0 1 2

0 0 1

0 0 −1

 −→


1 1 0

0 1 0

0 0 1

0 0 0

 −→


1 0 0

0 1 0

0 0 1

0 0 0

. Obvio-

usly the corresponding system has exactly one solution, namely t1 = t2 = t3 = 0.

The vectors (1, 2, 3, 4, 5, 5), (5, 2, 15, 4, 25, 1), (1,−2, 3,−4, 5,−7) are linearly dependent because

3(1, 2, 3, 4, 5, 5)− (5, 2, 15, 4, 25, 1) + 2(1,−2, 3,−4, 5,−7) = (0, 0, 0, 0, 0)

1. Are the vectors (2, 3), (−5, 7), (13, 17) linearly independent?

2. Are the vectors (1, 2, 3), (2,−5, 7), (1, 13, 17) linearly independent?

3. For what n ∈ N the polynomials 1, x, x2,. . . ,xn are linearly independent in the space of all

polynomials?

4. Are polynomials x(x − 1), x(x − 2), (x − 1)(x − 2) linearly independent in the space of all

polynomials?

5. Are the vectors (1, 1, 1), (0, 2, 5), (0, 3, 6) and (0, 4, 7) linearly independent?

Examples of vector spaces.

1. R — the set of all real numbers is a vector is a vector space: we can add the real numbers, the

addition satisfies usual requirements for addition which are listed at the beginning of professor

Kȩdzierski’s Lecture 2. This is an one dimensional vector space, because any two distinct real

numbers are linearly dependent (denote the numbers by a, b, they are distinct so at least one

of them is not equal to 0, let b 6= 0 and c1 = 1, c2 = −a
b
, then c1a + c2b = a − a

b
· b = 0 and

obviously 1 = c1 6= 0.

2. R2 the set of all pairs of the real numbers. (x, y) + (u, v) = (x + u, y + v) it is a definition of

the sum; c(x, y) = (cx, cy) it is a definition of the product of a number c and a point. Again

all usual properties of both operations are satisfied.

3. R3 is the set of all triples of the real numbers. The sum of the two triples is defined by the

formula (x, y, z) + (u, v, w) = (x + u, y + v, z + w), the product of a number c and a triple



(x, y, z) is defined as follows f ·(x, y, z) = (cx, cy, cz). It is not hard to check that the addition is

commutative, associative, that the triple (0, 0, 0) has the property (x, y, z)+(0, 0, 0) = (x, y, z)

and that there is no other triple with this property and that (x, y, z)+(−x,−y,−z) = (0, 0, 0).

These are the properties of addition. The properties of the multiplication of numbers by the

vectors are also obvious.

4. The previous examples can be generalized. We consider now the set Rn of all tuples of length

n ∈ N as we did in the previous examples for n = 1, 2, 3. We define

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and

c · (x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn) .

We can check that all properties of addition and multiplication by numbers are fulfilled. We

have defined n–dimensional space.

5. Let I be an interval (non-degenerate). Let RI denotes a set of all functions defined on the

interval I with real values. In the case I = (0, 1) one of the elements of RI is the function

f defined by the formula f(x) = 1
x(1−x) , another function that belongs to RI is a function

g defined by the formulas g(x) = x for all rational numbers x ∈ I and g(x) = −1 for all

irrational x ∈ I. The set RI contains infinitely many elements and it is not possible to list all

of them. We define f +g for f, g ∈ RI in the following way: (f +g)(x) = f(x)+g(x). Obviously

f + g = g + f and f + (g + h) = (f + g) + h. The function Θ defined as Θ(x) = 0 for all x ∈ I

plays the same role in the set RI as the number 0 in R that is t + Θ = f for all f ∈ RI . The

product cf of a number c and a function f ∈ RI is defined by the formula (cf)(x) = cf(x) for

all x ∈ I. Again verification of the properties of the sum and of the product is easy.

Let c ∈ KI be an arbitrary point. Let t ∈ R and Vt = {f ∈ RI : f(c) = t. If f, g ∈ Vt then

(f + g)(c) = 2t This proves that if t 6= 0 then Vt is NOT a linear space. It is easy to see thatV0

is a linear space.

In this example we can consider any set A in place of the interval I (no property of intervals

was used in the description of RI . You may see that R{1,2,3} = R3 because it is very natural to

think of triples of real numbers as of functions defined on the set {1, 2, 3}.

6. Let V be the set of all sequences (an) such that an+2 = an+1 + an for n = 1, 2, 3, . . . and W

the set of all sequences (an) such that an+2 = an+1 + an + 7 for n = 1, 2, 3, . . . . The set W

is NOT a linear space because if (an), (bn) ∈ W then (an + bn) /∈ W for then an+2 + bn+2 =

(an+1+bn+1)+(an+bn)+2. The set V is a linear space because if (an), (bn) ∈ V and c ∈ R then

(can) ∈ V and (an + bn) ∈ V : can+2 = can+1 + can and an+2 + bn+2 = (an+1 + bn+1) + (an + bn)

Let us solve the problem 3: For what n ∈ N the polynomials 1, x, x2,. . . ,xn are linearly indepen-

dent in the space of all polynomials?



We shall prove that this happens for all n = 1, 2, 3, . . . Let us discuss in detail the case n = 2. We

are considering three functions 1, x, x2 defined on the whole real line. The question is whether or not

it follows that from the equation c1 + ·1 + c2 + ·x + c2 · x2 = 0 for all x ∈ R that c1 = c2 = c3 = 0.

The equation c1 + ·1 + c2 + ·x + c2 · x2 = 0 holds for all x ∈ R because the functions 1, x, x2 are

considered as defined on R. Therefore we can substitute any real number for x. Let us start with

x = 0. Then c1+c2 ·0+c2 ·02 = 0 so c1 = 0. We may also consider the equations c1+c2 ·1+c2 ·12 = 0

and c1 + c2 · (−1) + c2 · (−1)2 = 0. This implies that c2 + c3 = 0 and −c2 + c3 = 0. If we add the

last two equations we get 2c3 = 0 so c3 = 0. Therefore c2 = 0, too. This proves that the functions

(polynomials) 1, x, x2 are linearly independent.

Now more general and more advanced approach. Suppose that there is some natural number n such

that for each x ∈ R the equation

c0 · 1 + c1 · x + c2 · x2 + c3 · x3 + . . . + cn · xn = 0

is satisfied. With n and c0, c1, c2, c3, . . . , cn the left–hand side is a polynomial in x. We can assume

that cn 6= 0 because we can forget of the terms with cj = 0. If so then the degree of the polynomial

is n and it there exist at most n numbers x for which the left–hand side assumes value 0 (nth degree

polynomial has at most n roots. c0 = c1 = c2 = c3 = . . . = cn = 0. This means that the polynomials

1, x, x3, x3, . . . , xn are linearly independent for any value of n.

Let us discuss problem 4 now: Are polynomials x(x − 1), x(x − 2), (x − 1)(x − 2) linearly

independent in the space of all polynomials?

Suppose that there for some numbers c1, c2, c3 the following equality:

(4) c1x(x− 1) + c2x(x− 2) + c3(x− 1)(x− 2) = 0

holds for each x ∈ R. Substitute 0 for x. The result is 2c3 = 0, so c3 = 0. Now let x = 1. We see that

−c2 = 0 so c2 = 0. The last substitution is x = 2 with the result c1 − 0. So the only triple c1, c2, c3

that satisfies the condition (4) is c1 = c2 = c3 = 0. The polynomials are linearly independent.

The polynomials of this sort appeared in the solution of a problem in the file More systems of

linear equations. In the problem appeared x1, x2, x3 rather than 0, 1, 2. One can think about the

situation in the following way. The set of the polynomials of degree 2 or less is a linear space of

dimension 3 (such a polynomial can be written as c+ bx+ax2). Standard basis in this space consists

of the polynomials 1, x, x2. More suitable for the problem discussed then was a basis (x − x2)(x −
x3), (x−x1)(x−x3), (x−x1)(x−x2). So we ended in the solution with this basis. A slightly different

way of thinking is. We have a usual system of coordinates in this three dimensional space. The axes

are determined by the vectors (polynomials) 1, x, x2. We choose another system of coordinates. The

new axes are determined by the polynomials (x − x2)(x − x3), (x − x1)(x − x3), (x − x1)(x − x2).

The new coordinates work better for the solution.

Another part of the story is Fibonacci numbers. we were looking at the set of all sequences (an)



for which the equation

(fib) an+2 = an+1 + an

holds for n = 1, 2, 3, . . . The set of these sequences turns out to be two dimensional space. The

sequence whose terms atisfy the condition (fib) is determined by its first two terms. It turned out

that for finding a formula for the nth term of the Fibonacci sequence the better basis consisted of(
1, 1

2
(1−

√
5)
)

and
(
1, 1

2
(1 +

√
5)
)
. The sequences starting with these pairs of terms satisfying (fib)

were geometrical so there was no problem with writing a formula for their nth terms.


