1. Let $H=\{(x, y): \quad x y+x+y=0\}$ and $L=\{(x, y): \quad x+2 y+1=0\}$. Find the minimal value of $\|\mathbf{p}-\mathbf{q}\|$ for $p \in H$ and $\mathbf{q} \in L$.
2. Let $C=\{(x, y, z): \quad x y+y z+z x=0\}$ and $\mathbb{P}=\{(x, y, z): \quad x+y+z=3\}$. Find the maximal distance from points of $\mathbb{P} \cap C$ to the z-axis.
3. Let $A=\left\{(x, y, z): \quad z=x^{2}+y^{2}\right\}, B=\{(x, y, z): \quad z=2 x+2 y-9\}$. Find the minimal distance from points of A to points of B.
4. Let $f(w, x, y, z)=w^{3}+x^{3}+y^{3}+z^{3}$. Find $\sup _{A} f$ and $\inf _{A} f$ if $A=\left\{(w, x, y, z): \quad w^{2}+x^{2}-w x=1 \quad\right.$ and $\left.\quad y^{2}+z^{2}-y z=1\right\}$
5. Find $\sup \left\{x^{4}+y^{4}: x^{2}+y^{2}-x y=3\right\}$ and $\inf \left\{x^{4}+y^{4}: x^{2}+y^{2}-x y=3\right\}$.
6. Let $B=\left\{(x, y, z): \quad x^{2}+y^{2} \leqslant z^{2} \leqslant 3\left(x^{2}+y^{2}\right), 0 \leqslant z \leqslant 2\right\}$. Compute the integral

$$
\iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

7. Find the area of the set A which is contained in the first quadrant and bounded by the
curves:

$$
y=x
$$

$$
y=2 x
$$

$$
x y=3,
$$

$$
x y=4 .
$$

8. Compute the volume of the set $A=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad x^{2}+y^{2} \leqslant 1, \quad x \geqslant|y| \geqslant|z|\right\}$.
9. Compute the volume of the set $A=\left\{(x, y, z): \quad x>0, y>0, x y<z, x^{4}+z^{4}<x^{2} z\right\}$.
10. Let $H=\{(x, y): \quad x y+x+y=0\}$ and $L=\{(x, y): \quad x+2 y+1=0\}$. Find the minimal value of $\|\mathbf{p}-\mathbf{q}\|$ for $p \in H$ and $\mathbf{q} \in L$.
Solution. The first observation is $H \cap L=\emptyset$. If $(x, y) \in H \cap L$ then $x=-2 y-1$ and $0=x y+x+y=y(-2 y-1)-(2 y+1)+y=-2 y^{2}-2 y-1=-y^{2}-(y+1)^{2}<0$.
Let $\mathbf{p}=(w, x)$ and $\mathbf{q}=(y, z)$. We are supposed to find the minimal value the function $d(w, x, y, z)=(w-y)^{2}+(x-z)^{2}$ (formally speaking $\sqrt{(w-y)^{2}+(x-z)^{2}}$ but we can forget of the square root until the very end) subject to the constraints

$$
\begin{equation*}
w x+w+x=0 \quad \text { and } \quad y+2 z+1=0 . \tag{1}
\end{equation*}
$$

We have $\nabla(w x+w+x)=(x+1, w+1,0,0), \nabla(y+2 z+1)=(0,0,1,2)$ These vectors are linearly independent unless $w=-1=x$ but in this case $(-1)(-1)+(-1)+(-1) \neq 0$. Therefore we can apply the Lagrange theorem. If d attains its extreme value at a point (w, x, y, z) then there exist numbers λ_{1}, λ_{2} such that

$$
\nabla\left((w-y)^{2}+(x-z)^{2}\right)=\lambda_{1} \nabla(w x+w+x)+\lambda_{2} \nabla(y+2 z+1)
$$

which means that the following four equations are satisfied
$2(w-y)=\lambda_{1}(x+1), \quad 2(x-z)=\lambda_{1}(w+1), \quad 2(y-w)=\lambda_{2}, \quad 2(z-x)=2 \lambda_{2}$. If $\lambda_{1}=0$ or $\lambda_{2}=0$ then $(w, x)=(y, z)$, a contradiction. Therefore $\lambda_{1} \neq 0 \neq \lambda_{2}$. The first two equations imply that (left times right equals right times left, then $\lambda_{1} \neq 0$)

$$
\begin{equation*}
(w-y)(w+1)=(x-z)(x+1) \tag{2}
\end{equation*}
$$

The third and the fourth one imply that

$$
\begin{equation*}
2(y-w)=z-x . \tag{3}
\end{equation*}
$$

Thus $x=z$ if and only if $w=y$, so $x \neq z$ and $w \neq y$. From (2) and (3) we obtain $2(x+1)=w+1$ i.e. $w=2 x+1$ so $0=x(2 x+1)+2 x+1+x=2 x^{2}+4 x+1=2(x+1)^{2}-1$. This implies that either $x=-1-\frac{1}{\sqrt{2}}$ or $x=-1+\frac{1}{\sqrt{2}}$. The corresponding values of w are $-1-\sqrt{2}$ and $-1+\sqrt{2}$. We still need y and z. By (2) we get that $2 y-z=2 w-x$. (1) implies $y+2 z=-1$. This implies that $5 y=2(2 w-x)+(-1)=4 w-2 x-1=3 w$ so $y=\frac{3}{5} w$. Therefore $z=2 y-2 w+x=\frac{6}{5} w-2 w+\frac{w-1}{2}=-\frac{3}{10} w-\frac{1}{2}$. This implies that there are two possible quadruplets $(w, x, y, z):\left(-1-\sqrt{2},-1-\frac{1}{\sqrt{2}},-\frac{3}{5}(1+\sqrt{2}), \frac{1}{10}(-2+3 \sqrt{2})\right)$ and $\left(-1+\sqrt{2},-1+\frac{1}{\sqrt{2}}, \frac{3}{5}(-1+\sqrt{2}),-\frac{1}{10}(2+3 \sqrt{2})\right)$. It remains to evaluate d at the points: $d\left(-1-\sqrt{2},-1-\frac{1}{\sqrt{2}},-\frac{3}{5}(1+\sqrt{2}), \frac{1}{10}(-2+3 \sqrt{2})\right)=\frac{4}{25}(1+\sqrt{2})^{2}+\frac{16}{25}(1+\sqrt{2})^{2}=\frac{4}{5}(3+2 \sqrt{2})$, $d\left(-1+\sqrt{2},-1+\frac{1}{\sqrt{2}}, \frac{3}{5}(-1+\sqrt{2}),-\frac{1}{10}(2+3 \sqrt{2})\right)=\frac{4}{25}(1-\sqrt{2})^{2}+\frac{16}{25}(1-\sqrt{2})^{2}=$ $=\frac{4}{5}(3-2 \sqrt{2})$. We know now that if the smallest value of the function d exists then it equals to $\frac{4}{5}(3-2 \sqrt{2})$. Both sets H and L are closed and both are unbounded. Therefore we cannot call upon Weierstrass min-max theorem right away.
Let us assume that $w^{2}+x^{2} \geqslant 2 \cdot 10^{8}$ and $y^{2}+z^{2} \geqslant 2 \cdot 10^{8}$. If $(w, x) \in H$ then $x=\frac{-w}{w+1}$ and $w=\frac{-x}{x+1}$. Either $w^{2} \geqslant 10^{8}$ or $x^{2} \geqslant 10^{8}$ for otherwise $w^{2}+x^{2}<2 \cdot 10^{8}$ so either $|w| \geqslant 10^{4}$ or $|x| \geqslant 10^{4}$. Assume that $|w| \geqslant 10^{4}$. Then $|x|=\left|-1+\frac{2}{w+1}\right|=1+\frac{2}{|w|-1}<2$. If $(w-y)^{2}+(x-z)^{2}<1$ then $|w|-|y| \leqslant|w-y|<1$ so $|y|>|w|-1 \geqslant 10^{4}-1$ and therefore by (1) one gets $|z|=\left|\frac{-1-y}{2}\right| \geqslant \frac{|y|-1}{2}>\frac{1}{2}\left(10^{4}-2\right)$. Then

$$
1>|x-z| \geqslant|z|-|x|>\frac{1}{2}\left(10^{4}-2\right)-2>1000
$$

a contradiction. The same argument works for $|x| \geqslant 10^{4}$. So we may consider the set
consisting of points for which $w^{2}+x^{2} \leqslant 2 \cdot 10^{8}$ and $y^{2}+z^{2} \leqslant 2 \cdot 10^{8}$ and of course $w x+w+x=0$ and $y+2 z+1=0$. This set is bounded and closed, d is a continuous function so it has a minimal value and from what was written above it follows that the smallest value is attained at a point (w, x, y, z) for which $w^{2}+x^{2}<2 \cdot 10^{8}$ and $y^{2}+z^{2}<2 \cdot 10^{8}$ so at one of the two points found earlier.

Remark 9.1 The idea of the proof that the minimal value exists id rather simple. The equation $w x+w+x=0$ is equivalent to $(w+1)(x+1)=1$. Therefore if $|w|$ is huge then $|x+1| \approx 0$ so $x \approx-1$. Then if $|w-y|$ is small the y is huge. But $|z|=\frac{|y+1|}{2}$ so $|z| \approx \frac{|y|}{2}$ so $|z|$ is huge and therefore it cannot be approximately equal to $x \approx-1$.
6. Let $B=\left\{(x, y, z): \quad x^{2}+y^{2} \leqslant z^{2} \leqslant 3\left(x^{2}+y^{2}\right), 0 \leqslant z \leqslant 2\right\}$. Compute the integral

$$
\iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

Solution. x^{2} is always accompanied by y^{2}. Thus it makes sense to substitute $x=r \cos \theta$ and $y=r \sin \theta$ with $0<r \leqslant z$ and $-\pi<\theta<\pi$. We have $\left|\begin{array}{rr}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|=r$. The inequality $x^{2}+y^{2}<z^{2}$ is equivalent to $r<z$, the inequality $z^{2}<3\left(x^{2}+y^{2}\right)$ is equivalent to $\frac{z}{\sqrt{3}}<r$. This implies that (by the chain rule $\left.\frac{\partial}{\partial r}\left(\left(r^{2}+z^{2}\right)^{3 / 2}\right)=3 r \sqrt{r^{2}+z^{2}}\right)$

$$
\begin{aligned}
& \iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z=\int_{0}^{2} \int_{z / \sqrt{3}}^{z} \int_{-\pi}^{\pi} \sqrt{r^{2}+z^{2}} r d \theta d r d z= \\
& =2 \pi \int_{0}^{2}\left(\left.\frac{1}{3}\left(r^{2}+z^{2}\right)^{3 / 2}\right|_{z / \sqrt{3}} ^{z}\right) d z=\frac{2 \pi}{3} \int_{0}^{2}\left(2^{3 / 2} z^{3}-\left(\frac{4}{3}\right)^{3 / 2} z^{3}\right) d z= \\
& =\frac{2 \pi}{3}\left(2^{3 / 2}-\left(\frac{4}{3}\right)^{3 / 2}\right)\left(\frac{2^{4}}{4}-\frac{0^{4}}{4}\right)=\frac{8 \pi}{3}\left(2^{3 / 2}-\left(\frac{4}{3}\right)^{3 / 2}\right)=\frac{16 \pi}{3}\left(\sqrt{2}-\frac{4}{3 \sqrt{3}}\right) .
\end{aligned}
$$

Remark 9.2 The order of integration was not random. It is easier to integrate $\int r \sqrt{r^{2}+z^{2}} d r$ than $\int r \sqrt{r^{2}+z^{2}} d z$. Also the result is simpler and this may simplify next integration.

