
1. Let H = {(x, y) : xy + x + y = 0} and L = {(x, y) : x + 2y + 1 = 0}. Find the
minimal value of ‖p− q‖ for p ∈ H and q ∈ L.

2. Let C = {(x, y, z) : xy + yz + zx = 0} and P = {(x, y, z) : x + y + z = 3}. Find the
maximal distance from points of P ∩ C to the z–axis.

3. Let A = {(x, y, z) : z = x2+ y2}, B = {(x, y, z) : z = 2x+2y− 9}. Find the minimal
distance from points of A to points of B.

4. Let f(w, x, y, z) = w3 + x3 + y3 + z3. Find supA f and infA f if

A = {(w, x, y, z) : w2 + x2 − wx = 1 and y2 + z2 − yz = 1}

5. Find sup{x4 + y4 : x2 + y2 − xy = 3} and inf{x4 + y4 : x2 + y2 − xy = 3}.

6. Let B = {(x, y, z) : x2 + y2 6 z2 6 3(x2 + y2), 0 6 z 6 2}. Compute the integral
∫∫∫

B

√

x2 + y2 + z2dxdydz.

7. Find the area of the set A which is contained in the first quadrant and bounded by the

curves: y = x, y = 2x, xy = 3, xy = 4.

8. Compute the volume of the set A = {(x, y, z) ∈ R
3 : x2 + y2 6 1, x > |y| > |z|}.

9. Compute the volume of the set A = {(x, y, z) : x > 0, y > 0, xy < z, x4 + z4 < x2z}.
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1. Let H = {(x, y) : xy + x + y = 0} and L = {(x, y) : x + 2y + 1 = 0}. Find the
minimal value of ‖p− q‖ for p ∈ H and q ∈ L.

Solution. The first observation is H ∩ L = ∅. If (x, y) ∈ H ∩ L then x = −2y − 1 and

0 = xy + x+ y = y(−2y − 1)− (2y + 1) + y = −2y2 − 2y − 1 = −y2 − (y + 1)2 < 0.

Let p = (w, x) and q = (y, z). We are supposed to find the minimal value the function

d(w, x, y, z) = (w − y)2 + (x − z)2 (formally speaking
√

(w − y)2 + (x− z)2 but we can

forget of the square root until the very end) subject to the constraints

(1) wx+ w + x = 0 and y + 2z + 1 = 0.

We have ∇(wx+w+x) = (x+1, w+1, 0, 0), ∇(y+2z+1) = (0, 0, 1, 2) These vectors are

linearly independent unless w = −1 = x but in this case (−1)(−1) + (−1) + (−1) 6= 0.

Therefore we can apply the Lagrange theorem. If d attains its extreme value at a point

(w, x, y, z) then there exist numbers λ1, λ2 such that

∇((w − y)2 + (x− z)2) = λ1∇(wx+ w + x) + λ2∇(y + 2z + 1)

which means that the following four equations are satisfied

2(w − y) = λ1(x+ 1), 2(x− z) = λ1(w + 1), 2(y − w) = λ2, 2(z − x) = 2λ2.

If λ1 = 0 or λ2 = 0 then (w, x) = (y, z), a contradiction. Therefore λ1 6= 0 6= λ2. The

first two equations imply that (left times right equals right times left, then λ1 6= 0)

(2) (w − y)(w + 1) = (x− z)(x+ 1).

The third and the fourth one imply that

(3) 2(y − w) = z − x.

Thus x = z if and only if w = y, so x 6= z and w 6= y. From (2) and (3) we obtain

2(x+1) = w+1 i.e. w = 2x+1 so 0 = x(2x+1)+2x+1+x = 2x2+4x+1 = 2(x+1)2−1.

This implies that either x = −1 − 1√
2
or x = −1 + 1√

2
. The corresponding values of w

are −1 −
√
2 and −1 +

√
2. We still need y and z. By (2) we get that 2y − z = 2w − x.

(1) implies y+2z = −1. This implies that 5y = 2(2w−x)+ (−1) = 4w−2x−1 = 3w so

y = 3

5
w. Therefore z = 2y−2w+x = 6

5
w−2w+ w−1

2
= − 3

10
w− 1

2
. This implies that there

are two possible quadruplets (w, x, y, z):
(

−1−
√
2, −1− 1√

2
, −3

5
(1+

√
2), 1

10
(−2+3

√
2)
)

and
(

−1+
√
2, −1+ 1√

2
, 3

5
(−1+

√
2), − 1

10
(2+3

√
2)
)

. It remains to evaluate d at the points:

d(−1−
√
2, −1− 1√

2
, −3

5
(1+

√
2), 1

10
(−2+3

√
2)) = 4

25
(1+

√
2)2+ 16

25
(1+

√
2)2 = 4

5
(3+2

√
2),

d(−1 +
√
2, −1 + 1√

2
, 3

5
(−1 +

√
2), − 1

10
(2 + 3

√
2)) = 4

25
(1−

√
2)2 + 16

25
(1−

√
2)2 =

=4

5
(3 − 2

√
2). We know now that if the smallest value of the function d exists then it

equals to 4

5
(3− 2

√
2). Both sets H and L are closed and both are unbounded. Therefore

we cannot call upon Weierstrass min-max theorem right away.

Let us assume that w2 + x2 > 2 · 108 and y2 + z2 > 2 · 108. If (w, x) ∈ H then x = −w
w+1

and w = −x
x+1
. Either w2 > 108 or x2 > 108 for otherwise w2 + x2 < 2 · 108 so either

|w| > 104 or |x| > 104. Assume that |w| > 104. Then |x| =
∣

∣−1 + 2

w+1

∣

∣ = 1 + 2

|w|−1
< 2.

If (w − y)2 + (x − z)2 < 1 then |w| − |y| 6 |w − y| < 1 so |y| > |w| − 1 > 104 − 1 and

therefore by (1) one gets |z| = |−1−y
2

| > |y|−1

2
> 1

2
(104 − 2). Then

1 > |x− z| > |z| − |x| > 1

2
(104 − 2)− 2 > 1000,

a contradiction. The same argument works for |x| > 104. So we may consider the set
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consisting of points for which w2 + x2 6 2 · 108 and y2 + z2 6 2 · 108 and of course
wx + w + x = 0 and y + 2z + 1 = 0. This set is bounded and closed, d is a continuous

function so it has a minimal value and from what was written above it follows that

the smallest value is attained at a point (w, x, y, z) for which w2 + x2 < 2 · 108 and
y2 + z2 < 2 · 108 so at one of the two points found earlier. �

Remark 9.1 The idea of the proof that the minimal value exists id rather simple.The equation

wx+w+x = 0 is equivalent to (w+1)(x+1) = 1. Therefore if |w| is huge then |x+1| ≈ 0

so x ≈ −1. Then if |w − y| is small the y is huge. But |z| = |y+1|
2
so |z| ≈ |y|

2
so |z| is

huge and therefore it cannot be approximately equal to x ≈ −1. �

6. Let B = {(x, y, z) : x2 + y2 6 z2 6 3(x2 + y2), 0 6 z 6 2}. Compute the integral
∫∫∫

B

√

x2 + y2 + z2dxdydz.

Solution. x2 is always accompanied by y2. Thus it makes sense to substitute x = r cos θ

and y = r sin θ with 0 < r 6 z and −π < θ < π. We have

∣

∣

∣

∣

∣

cos θ −r sin θ

sin θ r cos θ

∣

∣

∣

∣

∣

= r. The

inequality x2+ y2 < z2 is equivalent to r < z, the inequality z2 < 3(x2+ y2) is equivalent

to z√
3
< r. This implies that (by the chain rule ∂

∂r

(

(r2 + z2)3/2
)

= 3r
√
r2 + z2

)

∫∫∫

B

√

x2 + y2 + z2dxdydz =

∫

2

0

∫ z

z/
√
3

∫ π

−π

√
r2 + z2rdθdrdz =

= 2π

∫

2

0

(

1

3
(r2 + z2)3/2

∣

∣

∣

z

z/
√
3

)

dz =
2π

3

∫

2

0

(

23/2z3 −
(

4

3

)3/2
z3
)

dz =

= 2π
3

(

23/2 −
(

4

3

)3/2
)

(

24

4
− 04

4

)

= 8π
3

(

23/2 −
(

4

3

)3/2
)

= 16π
3

(√
2− 4

3
√
3

)

. �

Remark 9.2 The order of integration was not random. It is easier to integrate
∫

r
√
r2 + z2dr

than
∫

r
√
r2 + z2dz. Also the result is simpler and this may simplify next integration. �
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