
Lagrange multipliers

Let us look at the ninth problem from the April colloquium.

9. Let A = {(x, y) : x2

4
+ y2

9
6 1} and let f : A −→ R be case (k1) below

(1) f(x, y) = 3x3 + 2y2 (2) f(x, y) = x5 − 2y2 (3) f(x, y) = x2 + y3

(4) f(x, y) = 27x2 + 2y3 (5) f(x, y) = 6x2 + y3 (6) f(x, y) = 45x2 + 2y5.
What are the critical points of f?

What are the maximum and minimum values of f on the boundary of A?

What are the maximum and minimum values of f on A?

Each question is worth 1 point.

The set A is compact. All considered functions are continuous on A. By Weierstrass maximum

principle each of them attains its least upper bound and greatest lower bound. The point at

which an extreme value is attained may lie inside of the domain and then it must be a critical

point of the function or it may be a boundary point not necessarily critical.

In all cases the only critical point is (0, 0) — straightforward calculation. The value of each

function at the origin is 0.

It is neither the biggest value of the function nor the smallest one: in the first and in the second

case we look at f(x, 0). This is 3x3 or x5 so it is positive at many points and negative at many

other points. At all other cases we look at the function f(0, y) and as in the previous case it is

odd degree monomial so its values are positive at many points and negative at many others.

This means that in all cases maximal and minimal values are attained at some boundary points

so the answers to the second and to the third questions coincide. We shall look at the boundary

points only i.e.

(i) g(x, y) :=
x2

4
+

y2

9
− 1 = 0.

We compute ∇g(x, y) =
(

x
2
, 2y

9

)

6= (0, 0) for (x, y) ∈ A

(1) f(x, y) = 3x3 + 2y2. By Lagrange theorem there exists λ such that

(ii) (9x2, 4y) = ∇f(x, y) = λg(x, y) = λ
(

x
2
, 2y

9

)

.

Therefore

(iii) λx = 18x2 and λy = 18y

By the second equation of (iii) either y = 0 or λ = 18. If y = 0 then by (i) we have x2 = 4

so x = ±2. If y 6= 0 then λ = 18 so x = x2 hence x = 0 or x = 1. Therefore there are

six possibilities (2, 0), (−2, 0), (0, 3), (0,−3),
(

1,
√
27
4

)

and
(

1,−
√
27
4

)

for a point at which f

attains its maximal or minimal value. The corresponding values are 24, −24, 18, 18, 1
4
+ 27

16
and

again 1
4
+ 27

16
. The biggest is 24. The smallest is −24. We are done. �

(6) f(x, y) = 45x2 + y5. By Lagrange theorem there exists λ such that

(ii) (90x, 5y4) = ∇f(x, y) = λg(x, y) = λ
(

x
2
, 2y

9

)

.

Therefore

(iii) λx = 180x and 2λy = 45y4
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By the first equation of (iii) either x = 0 or λ = 180. If x = 0 then by (i) we have y2 = 9 so

y = ±3. If x 6= 0 then λ = 180 so 360y = 45y4 hence y = 0 or y3 = 8 i.e. y = 2. Therefore

there are six candidates (0, 3), (0,−3), (2, 0), (−2, 0),
(√

20
9
, 2
)

and
(

−
√

20
9
, 2
)

for a point at

which f attains its maximal or minimal value. The corresponding values are 243, −243, 180,

180, 132 and 132. This proves that max f = 243 and min f = −243. �.

All other cases are similar so they will not be discussed again.

Now let us look into the example from professor Warhurst’s notes.

Example 8.1 Let f(x, y, z) = xy + z constrained to the unit sphere by

(1) g(x, y, z) = x2 + y2 + z2 − 1 = 0.

We shall fund the maximal and the minimal value of the function f on the sphere (1). Let us

start with an observation ∇g(x, y, z) = (2x, 2y, 2z) 6= (0, 0, 0) for (x, y, z) satisfying (1). This

allows to apply Lagrange multipliers. The set M defined by (1) is closed and bounded so it is

compact. The function f is continuous everywhere so it attains its least upper bound on M

and also attains its greatest lower bound. At a point at which a bound is attained the following

equality

(2) (y, x, 1) = ∇(x, y, z) = λ∇g(x, y, z) = 2λ(x, y, z).

We have now four equations (1), 1 = 2λz, y = 2λx and x = 2λy. The last equation implies

that y2 + x2 = 4λ2(x2 + y2) so λ = ±1
2
, we know that λ 6= 0 6= z since 1 = 2λz. If 2λ = 1 the

z = 1 so x2+y2 = 0 i.e. x = 0 = y and f(0, 0, 1) = 1. If 2λ = −1 the z = −1 so x2+y2 = 0 i.e.

x = 0 = y and f(0, 0,−1) = −1. This implies that supM f = 1 and infM f = −1. The bounds

are found.

Another method. It is well known that −1
2
(x2 + y2) 6 xy 6 1

2
(x2 + y2) for all real x, y.

The left hand-side side inequality follows from the inequality 0 6 1
2
(x+y)2, the right-hand side

from the inequality 0 6 1
2
(x − y)2. This prove also that the left-hand side inequality becomes

equality only for x = −y while the right-hand side inequality turns into equality for x = y.

Knowing this we write xy + z 6 1
2
(x2 + y2) + z = 1

2
(1 − z2) + z = −1

2
(z − 1)2 + 1 6 1, The

equality holds only for z = 1. In the same way we show that xy+z > −1 and that this equation

holds only for z = −1. We should keep in mind that −1 6 z 6 1. The bounds are found.

One more method. Since x2 + y2 + z2 = 1 there exist numbers α and beta such that

x = cosα cos β, y = cosα sin β and z = sinα. Then

xy + z = cos2 α cos β sin β + sinα = 1
2
cos2 α sin(2β) + sinα 6 1

2
cos2 α + sinα =

= 1
2
(1− sin2 α) + sinα = 1− 1

2
(1− sinα)2 6 1 and

xy + z = cos2 α cos β sin β + sinα = 1
2
cos2 α sin(2β) + sinα > −1

2
cos2 α + sinα =

= −1
2
(1− sin2 α) + sinα = −1 + 1

2
(1 + sinα)2 6 1.

This is possible since it is easy to parametrize the unit sphere. The Lagrange method allows

us to solve the problem without using a specific parametrization which usually is not as easy

to find as for the sphere. �

Example 8.2 We go to professor Warhurst example from page 39 of his notes. Let f(x, y, z) =

x+ z be constrained by the two equations:

(3) 0 = g1(x, y, z) = x2 + y2 + z2 − 2 and 0 = g2(x, y, z) = x+ 2y + 3z − 1.
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We have ∇g1(x, y, z) = (2x, 2y, 2z) and ∇g2(x, y, z) = (1, 2, 3). These vectors are linearly

dependent iff

∣

∣

∣

∣

∣

x y

1 2

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

x z

1 3

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

y z

2 3

∣

∣

∣

∣

∣

= 0. They are linearly dependent

iff 2x = y and 3x = z and 3y = 2z. Due to constraints we have 1 = x + 2x + 3x = 6x and

2 = x2 + 4x2 + 9x2 = 14x2, a contradiction. We proved that the two gradients are linearly

independent for all (x, y, z) for which g1(x, y, z) = 0 = g2(x, y, z). Lagrange method can be

applied.

The set M defined by the equations (3) is closed and bounded i.e. compact so the supMf

and infMf are values of f|M . Therefore there exist numbers λ1 and λ2 such that

(4) 1 = ∂f

∂x
= λ1

∂g1
∂x

+ λ2
∂g2
∂x

= 2xλ1 + λ2 and

(5) 0 = ∂f

∂y
= λ1

∂g1
∂y

+ λ2
∂g2
∂y

= 2yλ1 + 2λ2 and

(6) 1 = ∂f

∂z
= λ1

∂g1
∂z

+ λ2
∂g2
∂z

= 2zλ1 + 3λ2.

We may get rid of λ1 and λ2. Multiply the first equation by 2 and subtract the second equation

from the result: 2 = 2λ1(2x − y). Then play the same game with equations (4) and (6):

2 = 2λ1(3x− z). Therefore λ1 6= 0 so 2x− y = 3x− z i.e.

(7) x+ y − z = 0.

Subtract this equation from x+2y+3z = 1. We get y+4z = 1 i.e. y = 1−4z. Then we obtain

x = z− y = −1+5z. Therefore 2 = x2+ y2+ z2 = (−1+5z)2 +(1−4z)2 + z2 = 2−18z+42z2

so either z = 0 or z = 18
42

= 3
7
. In the first case we obtain (x, y, z) = (−1, 1, 0) and x+ z = −1.

In the second case we get (x, y, z) = (8
7
,−5

7
, 3
7
) and x + z = 10

7
. We proved that supM f = 10

7

and infM f = −1.

This was just to show everybody that sometimes there are many ways of solving the problem.

Sometimes the amount of computational work depends on the way (not in this case). If we look

at the problem purely mathematically then λ1 and λ2 are just auxiliary unknowns. Therefore

the author of this note does not pay too much attention to them. In economy they have some

meaning. �

Example 8.3 Let us consider a 3×3 determinant

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12 x13

x21 x22 x23

x31 x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

. We are going to prove that

(8)

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12 x13

x21 x22 x23

x31 x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

6

√

x2
11 + x2

12 + x2
13 ·
√

x2
21 + x2

22 + x2
23 ·
√

x2
31 + x2

32 + x2
33.

We start with an observation that if the numbers x11, x12, x13 are multiplied by a number t > 0

then both sides of (8) are multiplied by t. The same happens to both sides of the inequality

(8) if the second or the third row is multiplied by t > 0. We may multiply the first row by
1√

x2

11
+x2

12
+x2

13

, the second row by 1√
x2

21
+x2

22
+x2

33

and the third row by 1√
x2

31
+x2

32
+x2

33

. This means

that it suffices to prove (8) under the hypothesis

(9) 0 = x2
11 + x2

12 + x2
13 − 1 = x2

21 + x2
22 + x2

23 − 1 = x2
31 + x2

32 + x2
33 − 1.
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This means that we are looking for the maximal value of the function

(10) f(x11, x12, x13, x21, x22, x23, x31, x32, x33) =

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12 x13

x21 x22 x23

x31 x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

under the three constraints (9). We may apply the Lagrange method. To do it we have to

find the partial derivatives ∂f

∂xij
for all nine pairs i, j with i, j ∈ {1, 2, 3}. Let us expand the

determinant with respect to the second row:

(11)

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12 x13

x21 x22 x23

x31 x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

= −x21

∣

∣

∣

∣

∣

x12 x13

x32 x33

∣

∣

∣

∣

∣

+ x22

∣

∣

∣

∣

∣

x11 x13

x31 x33

∣

∣

∣

∣

∣

− x23

∣

∣

∣

∣

∣

x11 x12

x31 x32

∣

∣

∣

∣

∣

.

This immediately implies that

∂f

∂x21
= −

∣

∣

∣

∣

∣

x12 x13

x32 x33

∣

∣

∣

∣

∣

,
∂f

∂x22
=

∣

∣

∣

∣

∣

x11 x13

x31 x33

∣

∣

∣

∣

∣

,
∂f

∂x23
= −

∣

∣

∣

∣

∣

x11 x12

x31 x32

∣

∣

∣

∣

∣

We can do the same thing with two other rows to obtain the result

∇f(x11, x12, x13, x21, x22, x23, x31, x32, x33) =





























∣

∣

∣

∣

∣

x22 x23

x32 x33

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x21 x23

x31 x33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x21 x22

x31 x32

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x12 x13

x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 x13

x31 x33

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x11 x12

x31 x32

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x12 x13

x22 x23

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x11 x13

x21 x23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12

x21 x22

∣

∣

∣

∣

∣





























We wrote ∇f as a matrix because it is easier to understand what is going on. We obtained

the matrix consisting of cofactors of the entries of the determinant. If we write in the same

way the gradients of functions (9) we obtain









2x11 2x12 2x13

0 0 0

0 0 0

















0 0 0

2x21 2x22 2x23

0 0 0

















0 0 0

0 0 0

2x31 2x32 2x33









. These matrices or vectors in R9 are linearly independent because the vectors (2x11, 2x12, 2x13),

(2x21, 2x22, 2x23) and (2x31, 2x32, 2x33) have length 2 so if

c1









2x11 2x12 2x13

0 0 0

0 0 0









+c2









0 0 0

2x21 2x22 2x23

0 0 0









+c3









0 0 0

0 0 0

2x31 2x32 2x33









=









0 0 0

0 0 0

0 0 0









the c1 = c2 = c3 = 0. Lagrange theorem tells us that for each matrix X :=









x11 x12 x13

x21 x22 x23

x31 x32 x33








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for which the determinant is maximal (or minimal) there are numbers λ1, λ2 and λ3 such that





























∣

∣

∣

∣

∣

x22 x23

x32 x33

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x21 x23

x31 x33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x21 x22

x31 x32

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x12 x13

x32 x33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 x13

x31 x33

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x11 x12

x31 x32

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x12 x13

x22 x23

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

x11 x13

x21 x23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 x12

x21 x22

∣

∣

∣

∣

∣





























=

= λ1









2x11 2x12 2x13

0 0 0

0 0 0









+ λ2









0 0 0

2x21 2x22 2x23

0 0 0









+ λ3









0 0 0

0 0 0

2x31 2x32 2x33









If we multiply this equation from the right by









x11

x12

x13









then we will obtain









det(X)

0

0









=









2λ1

2(x11x21 + x12x22 + x13x23)

2(x11x31 + x12x32 + x13x33)









.

The result is that 2λ1 = det(X), x11x21 + x12x22 + x13x23 = 0 and x11x31 + x12x32 + x13x33 = 0.

In the same way (multiplying the equation by two other rows changed into a vertical vector) we

prove that 2λ2 = det(X), 2λ3 = det(X) and x21x31 + x22x32 + x23x33 = 0. From the obtained

equations it follows that X ·XT = I. This shows that 1 = det(I) = det(X)·det(XT ) = det(X)2.

We proved that if f attains its least upper bound then sup(f) = 1. But obviously our constraints

define the bounded set (|xij | 6 1 and closed i.e.compact. Of course there are infinitely many

matrices satisfying conditions (9), as many as real numbers. �

Remark 8.4 The dimension 3 is irrelevant. One can prove this the inequality (8) for arbitrary

dimension. In fact the above proof works. Many mathematicians call this theorem Hadamard

inequality after great French mathematician Jacques Hadamard. It has a geometrical meaning:

the volume of the parallelepiped is not greater that the product of lengths of the the edges that

have a common vertex. This is just an information. �

Few problems

1. Let A = {(x, y) : x2 − y2 = 1}. Find sup f and inf f , for f(x, y) = xy on A.

Let B = {(x, y, z) : 7x + 5y + 7z = 1260 and 7x + y + 7z = 1512}. Compute sup g
and inf g if g(x, y, z) = 5x2 + 8xy + 5y2 + 2z2 on the set B.

Solution. Let us start with the set A. We have x2y2 = x2(x2 − 1) It is clear that to any

x with |x| > 1 one can assign y so that x2 − y2 = 1 so (x, y) ∈ A. It is enough to set

y = ±
√
x2 − 1. The quantity x2(x2 − 1) may as big as we can imagine this proves that

sup{(xy : (x, y) ∈ A} = ∞ and at the same time that inf{(xy : (x, y) ∈ A} = −∞
because (x, y) ∈ A iff (−x, y), (x,−y), (−x,−y) ∈ A.
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Now we shall investigate the second part of this problem. From the two equations that

define the set B we get 4y = 1260 − 1512 = −252 thus y = −63. This implies that

7x+7z = 1512+63 = 1575 so x+z = 225. Therefore g(x, y, z) = 5x2+8xy+5y2+2z2 =

=5x2−504x+5 ·3969+5z2 = 5x2−504x+19845+2(225−x)2 = 7x2−1404x+121, 095.

This proves that g is unbounded from above i.e. sup{g(x, y, z) : (x, y, z) ∈ B} = ∞. The
minimal value is attained for x = 1404

14
= 1002

7
. Then z = 225 − 1002

7
= 1245

7
, y = −63,

so the minimal value of g on the set B is g(1002
7
,−63, 1245

7
) = 506943

7
. We solved the

problem without any university knowledge.

Solution 2. Now we show a different solution. Differentiating we get ∇(7x + 5y + 7z −
1260) = (7, 5, 7) and ∇(7x+ y + 7z − 1512) = (7, 1, 7). The vectors (7, 5, 7), (7, 1, 7) are

linearly independent therefore the system of the equations defines a manifold (in this case

it is a straight line) so can apply Lagrange method. If g attains its maximal or minimal

value at a point (x, y, z) them there exist numbers λ1, λ2 such that

∇g(x, y, z) = (10x+ 8y, 8x+ 10y, 4z) = λ1(7, 5, 7) + λ2(7, 1, 7).

We have five equations and five unknowns: x, y, z, λ1, λ2. We can start as in the previous

solution. So we know that y = −63 and x + z = 225. This implies that 10x − 504 =

7λ1+7λ2, 8x−630 = 5λ1+λ2 and 4(225−x) = 7λ1+7λ2. Therefore 10x−504 = 4(225−x)

so 14x = 1404 i.e. x = 1404
4

= 702
7

= 1002
7
. If the function g attains an extreme value

it happens for x = 1002
7
, y = −63 and z = 225 − x = 225 − 1002

7
= 1245

7
. One might

think that we are almost done but we are not. First of all we have found one point.

More important question is: is it a candidate for max or for min and do extreme values

exist. The domain is not a compact set so nothing guarantees existence of maximal or

minimal value. . It is not hard to notice that supB g = ∞. The function g is a quadratic

polynomial in the variables x, y, z. The matrix









5 4 0

4 5 0

0 0 2









is positively defined because

5 > 0,

∣

∣

∣

∣

∣

5 4

4 5

∣

∣

∣

∣

∣

= 16 > 0 and

∣

∣

∣

∣

∣

∣

∣

∣

5 4 0

4 5 0

0 0 2

∣

∣

∣

∣

∣

∣

∣

∣

= 32 > 0.

By the Sylvester criterion this implies that the function g attains its minimal value at

(0, 0, 0) and only at this point. We can write g(tx, ty, tz) = t2g(x, y, z) for all t ∈ R. Let

m = inf{g(x, y, z) : x2 + y2 + z2 = 1. This is a value at some point of the unit sphere

so m > 0 (the only point at which g(x, y, z) = 0 is (0, 0, 0)). Therefore

g(x, y, z) = (x2 + y2 + z2)g
(

x√
x2+y2+z2

, y√
x2+y2+z2

, z√
x2+y2+z2

)

> m(x2 + y2 + z2).

This implies that if x2 + y2 + z2 > 1 000 000
m
then

g(x, y, z) > 1 000 000 > 62500 = (5 + 8 + 5 + 2) · 1252 > g(1002
7
,−63, 1245

7
),

because |1002
7
|, | − 63|, |1245

7
| 6 125.

Let D = {(x, y, z) : 7x + 5y + 7z = 1260, 7x+ y + 7z = 1512, x2 + y2 + z2 6 1000000
m

}.
D is a subset of B. It is closed and bounded therefore the function g which is continuous

attains its minimal value on D at some point (x, y, z) with x2+y2+ z2 < 1 000 000
m
because
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it is at most g(1002
7
,−63, 1245

7
). This proves that g(1002

7
,−63, 1245

7
) = minD g = minB g.

The solution is now complete.

Short summary: the only point of B at which the function could attain its minimal

value is found from Lagrange equations. The minimal value exists because outside certain

ball centered at the origin the values of the function are huge and in the ball we can apply

the Weierstrass maximal/minimal theorem.

2. Let A = {(x, y, z) : x2 + y2 − z = 0 and x+ y + z = 12 }. Find the points in the set
A at which the function x2 + y2 + z2 attains its maximal and minimal values.

Solution. If (x, y, z) ∈ A then 0 = x2 + y2 − (12 − x − y) = (x + 1
2
)2 + (y + 1

2
)2 − 12.5

so |x + 1
2
| 6

√
12.5 and |y + 1

2
| 6

√
12.5 so the set A is bounded. It is also closed. Be

the Weierstrass theorem there exist points p,q ∈ A such that f(p) 6 f(x) 6 f(q) for

each point x ∈ A. We compute ∇(x2 + y2 − z) = (2x, 2y,−1) and ∇(x + y + z) =

(1, 1, 1). These gradients are linearly dependent iff

∣

∣

∣

∣

∣

2x 2y

1 1

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

2x −1

1 1

∣

∣

∣

∣

∣

= 0

and

∣

∣

∣

∣

∣

2y −1

1 1

∣

∣

∣

∣

∣

= 0 and therefore x = y = 1
2
so z = x2 + y2 = (1

2
)2 + (1

2
)2 = 1

2
but then

x+y+z = 3
2
6= 12. We proved that all points of A the gradients are linearly independent.

Therefore at p nad at q Lagrange equations must be satisfied. Thus there exist λ1, λ2

such that


































x2 + y2 − z = 0

x+ y + z = 12

2x = λ1 · 2x+ λ2

2y = λ1 · 2y + λ2

2z = −λ1 + λ2

(1)

From the third and the fourth equations it follows that x− y = λ1(x− y). From the last

two equations it follows 2(y− z) = λ1(2y+1). If λ1 = 0 then x = y = z so x = y = z = 4

contrary to x2 + y2 − z = 0. Thus λ1 6= 0. Therefore (x− y)(2y + 1) = 2(y − z)(x − y).

Either x = y or 2y+1 = 2y−2z. If x = y then 2x2 = z and 2x+z = 12 so 2x2 = 12−2x

so x2 + x = 6 and either x = 2 or x = −3. In the first case x = y = 2 and z = 8.

In the second case x = y = −3 and z = 18. If 2y + 1 = 2y − 2z then z = −1
2
so

x2 + y2 = −1
2
, a contradiction. Therefore maximal and minimal values are attained at

the points (2, 2, 8) and (−3,−3, 18). The result is min(x2 + y2 + z2) = 4 + 4 + 64 = 72

and max(x2 + y2 + z2) = 9 + 9 + 324 = 342. �

Solution 2. If we treat z as a parameter the system

{

x2 + y2 = z

x+ y = 12− z
(2)

has a real solution iff an equation 0 = x2+(12−x−z)2−z = 2x2−2x(12−z)+(12−z)2−z

has a real root. This happens when

0 6 (12− z)2 − 2(12− z)2 + 2z = −(z − 12)2 + 2(z − 12) + 24 = −(z − 12− 1)2 + 25 =

=(5− z + 13)(5 + z − 13) = (18− z)(z − 8) so iff 8 6 z 6 18.
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We have x2 + y2 + z2 = z + z2. Therefore 72 = 8 + 82 6 x2 + y2 + z2 6 18 + 182 = 342

and we are done without derivatives at all. �

3. Let A = {(x, y, z) : x2 + y2 + z2 = 2, xy + yz + zx + 1 = 0}. Find sup f and inf f if
f(x, y, z) = 2x+ 2y − 3z on the set A.

Solution. The following formulas hold ∇(x2 + y2 + z2 − 2) = (2x, 2y, 2z) and ∇(xy +

yz + zx + 1) = (y + z, x + z, x + y). They are linearly dependent iff the following three

equations are satisfied
∣

∣

∣

∣

∣

2x 2y

y + z x+ z

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

2x 2z

y + z x+ y

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

2y 2z

x+ z x+ y

∣

∣

∣

∣

∣

= 0.

This means that 0 = x(x+ z)− y(y+ z) = (x− y)(x+ y + z), 0 = x(x+ y)− z(y + z) =

=(x− z)(x+ y+ z), 0 = y(x+ y)− z(x+ z) = (y− z)(x+ y+ z). We have (x+ y+ z)2 =

x2 + y2 + z2 + 2(xy + yz + zx) = 2 − 2 = 0. The gradients are linearly dependent at

all points of the set A. Therefore it looks like we are unable to apply Lagrange theorem.

But we may notice that the equations x2 + y2 + z2 − 2 = 0 and x+ y + z = 0 define the

same set A. This changes the situation because ∇(x + y + z) = (1, 1, 1). The vectors

(2x, 2y, 2z) and (1, 1, 1) are linearly dependent iff x = y = z but such points are not in A.

Now we can use the Lagrange equations.

x2 + y2 + z2 − 2 = 0

x+ y + z = 0

2 = 2λ1x+ λ2

2 = 2λ1y + λ2

−3 = 2λ1z + λ2

(3)

We solve this system. Subtract the fourth equation from the third one: 0 = 2λ1(x− y),

then the fifth equation from the fourth one: 5 = 2λ1(y − z). This implies that λ1 6= 0

and x = y. Therefore 2x+ z = 0 and 0 = 2x2 + z2 − 2 = 2x2 + 4x2 − 2 so x = y = ± 1√
3

and z = ∓ 2√
3
. If the extreme values are attained they are 2 1√

3
+ 2 1√

3
− 3−2√

3
= 10√

3
and

2−1√
3
+ 2−1√

3
− 3 2√

3
= −10√

3
. They are attained because the set A is bounded since the

distance of any point of the set A from the origin is less than or equal to
√
2 and it is

closed i.e. it is compact. The function is continuous so it attains supA f and infA f . We

proved that supA f = 10√
3
and infA f = − 10√

3
. �

Solution 2. As in the first solution we start with redefining the set A. A = {(x, y, z) : x2+

y2 + z2 = 1, x + y + z = 0}. We can get rid of z. The first (and now only one)
condition is 0 = x2 + y2 + (−x − y)2 − 2 = 2(x2 + xy + y2 − 1). The function is

3x+ 3y − 3(−x− y) = 5(x+ y). The problem now is to find max(x+ y) and min(x+ y)

constrained to x2+xy+y2 = 1. One can easily show that −1
2
(x2+y2) 6 xy 6 1

2
(x2+y2).

Therefore 1 = x2+xy+y2 6 3
2
(x2+y2) and 1 = x2+xy+y2 > 1

2
(x2+y2) so 2

3
6 x2+y2 6 2.

Both bounds are attained: the left for x = y = 1√
3
while the right for x = −y = 1. Now

(x+y)2 = x2+2xy+y2 = 1+xy 6 1+ 1
2
(x2+y2) equality holds for x = y so x = y = ± 1√

3
.

Then x+ y = 2√
3
or x+ y = − 2√

3
. Therefore supA f = 10√

3
and infA f = − 10√

3
. �
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4. Let H = {(x, y, z) : x2 + y2 − z2 + 4 = 0}. Find a point in the set H the closest to the
point (2, 4, 0).

Solution. The set H is closed but unbounded, because it contains all points of the form

(x, 0,
√
x2 + 4). Let f(x, y, z) = (x− 2)2 + (y − 4)2 + z2 i.e. f is a square of the distance

from a point (x, y, z) to the point (2, 4, 0). We want to find the minimum of the function

f constrained to H or to show that it does not exist. Since ∇(x2 + y2 − z2 + 4) =

2(x, y,−z) 6= (0, 0, 0) for (x, y, z) ∈ H and ∇f(x, y, z) = 2(x − 2, y − 4, z) there exists

a number λ such that 2(x − 2, y − 4, z) = 2λ(x, y,−z) for a point (x, y, z) at which the

minimum of f is attained. Since (2, 4, 0) 6= H λ 6= 0. z 6= 0 because (x, y, z) ∈ H .

Therefore z = −λz =⇒ λ = −1. From the equations x − 2 = λx and y − 4 = λy

it follows that x = 1 and y = 2. This proves that if f has a minimal value on H

then minH f = f(1, 2, 3) = 14 or minH f = f(1, 2,−3) = 14. We can consider the set

H̃ = {(x, y, z) : x2 + y2 − z2 + 4 = 0, x2 + y2 + z2 6 10 000}. It is a compact subset of
the set H . If (x, y, z) ∈ H \ H̃ then the distance from (x, y, z) to (2, 4, 0) is not less than

100 −
√
22 + 42 + 02 > 75 so infH f = infH̃ f . The function f is continuous so it attains

its lower bound at some point of the set H̃ . The only candidates are (1, 2±3). Therefore

there are two points in H which are the closest to (2, 4, 0). �

Remark 8.5 The set H is called two sheet (circular) hyperboloid. It arises as a result of

rotating a hyperbola defined by the equations y = 0 and z2− x2 = 4 around the z–axis. It

consists of two sheets (connected components) as the hyperbola consists of two branches. �

5. Let A = {(x, y, z) : 5x2 + 5y2 − z2 = 0 i x+ 2y + 3z = 20}. Compute sup f and inf f
if f(x, y, z) = x2 + y2 + z2 on the set A.

Hint.You may try to prove that the set A is bounded. The inequalities

|x+ 2y| 6
√
5
√

x2 + y2, 20 ≥ 3|z| − |x+ 2y| may be helpful.
Solution. Using the hint we obtain 20 > 3|z| − |x+ 2y| > 3z −

√
5
√

x2 + y2 =

= 3
√

5(x2 + y2) −
√
5
√

x2 + y2 = 2
√
5
√

x2 + y2. This implies that 20 > x2 + y2 and

therefore z2 = 5(x2 + y2) 6 100. We proved that the set A is bounded. It is also closed.

Therefore compact. Therefore the (continuous) function x2+ y2+ z2 attains its maximal

and minimal values on A. The following formulas hold ∇(5x2+5y2− z2) = 2(5x, 5y,−z)

and ∇(x+ 2y + 3z − 20) = (1, 2, 3). These gradients are linearly dependent iff
∣

∣

∣

∣

∣

5x 5y

1 2

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

5x −z

1 3

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

5y −z

2 3

∣

∣

∣

∣

∣

= 0,

thus 2x = y, z = −15x and 2z = −15y. By the definition of A we get x+4x− 45x = 20.

This shows that x = −1
2
, y = −1 and z = 15

2
. This is impossible because

5(−1
2
)2+5(−1)2−(15

2
)2 6= 0. Therefore at all points of the set A the gradients are linearly

independent. By Lagrange theorem there exist numbers λ1, λ2 such that

2(x, y, z) = ∇(x2 + y2 + z2) = λ1∇(5x2 + 5y2 − z2) + λ2∇(x+ 2y + 3z) =

= (10λ1x+ λ2, 10λ1y + 2λ2,−2λ1z + 3λ2.

This implies that 2(2x − y) = 10λ1(2x − y) and 2(3x − z) = 2λ1(15x + z). If λ1 = 0

then 2x− y = 0 and 3x− z = 0. Then 0 = 5x2 + 5y2 − z2 = 5x2 + 20x2 − 9x2 so x = 0

and y = z = 0. This contradicts the second equation defining A. Therefore λ1 6= 0. This
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implies 4λ1(2x−y)(15x+z) = 20λ1(2x−y)(3x−z) i.e. (2x−y)(15x+z) = 5(2x−y)(3x−z).

Then either 2x = y or 15x+ z = 5(3x− z). In the first case 0 = 5x2 + 20x2 − z2 hence

z = 5x or z = −5x. Then 20 = x + 2y + 3z = 20x so x = 1, y = 2 and z = 5 or

20 = x+ 2y + 3z = −10x so x = −2, y = −4 and z = 20. In the second case z = 0 and

then x = y = 0, a contradiction to 20 = x+2y+3z. f(−2,−4, 20) = 4+16+400 = 420,

f(1, 2, 5) = 1+2+25 = 30. This proves that infA f = 30 and supA f = 420. The solution

is now complete. �

6. Let A = {(x, y) : xy = 10}. Find sup f and inf f , if f(x, y) = 5x+ 2y on the set A.

Solution. ∇(xy − 10) = (y, x) 6= (0, 0) for (x, y) ∈ A. sup(5x+ 2y) = sup(5x+ 20
x
) = ∞.

From the equations xy = (−x)(−y) and 5(−x) + 2(−y) = −5x − 2y it follows that

infA(5x+ 2y) = −∞. We are done.
Let us define B = {(x, y) : xy = 10 and x > 0}. We shall find infB f . If it is

attained at some point of B the there is a number λ such that ∇(5x + 2y) = λ(y, x).

We have equations 5 = λy and 2 = λx. This implies that 10 = λ2xy = 10λ2. This

in view of x > 0 implies that λ > 0 so λ = 1 thus y = 5 and x = 2 therefore if the

smallest value exists it equals to 5 · 2 + 2 · 5 = 20. We have to prove that the smallest

value exist. This can be done by looking at a smaller set than B. If x > 10 then

f(xy) > 50. If ) < x < 1
25
then f(xy) > 50. Therefore we can restrict our attention

to the set B̂ = {(x, y) ∈ B : 1
25

6 x 6 10}. This set is compact so by Weierstrass
max/min theorem the continuous function f attains its inf and sup. This proves that

infB̂ f = infB f = 20. The end of the problem. �

7. Let B = {(x, y, z) : x+ 6y + 7z = 10 and 4x+ 3y + 7z = 12}. Find sup g and inf g if
g(x, y, z) = x2 + 9y2 + 4z2 on the set B.

Solution. We start as usually in this kind of problem. ∇(x+6y+7z−10) = (1, 6, 7) and

∇(4x+3y+7z− 12) = (4, 3, 7). These gradients are linearly independent so if supB g or

infB g is attained then the Lagrange equations must be satisfied so there exist numbers

λ1, λ2 such that

2(x, 9y, 4z) = ∇g = λ1(1, 6, 7) + λ2(4, 3, 7) = (λ1 + 4λ2, 6λ1 + 3λ2, 7λ1 + 7λ2).

We should solve the system of five equations with unknowns x, y, z, λ1, λ2. Adding the

first two coordinates we get 2x + 18y = 7λ1 + 7λ2 = 8z i.e. x + 9y − 4z = 0 or

7x+63y− 28z = 0. This implies that 40 = 4(x+6y+7z) + 7x+63y− 28z = 11x+ 87y

and 48 = 4(4x+3y+7z)+7x+63y−28z = 23x+75y so 8 = 12x−12y thus 2 = 3x−3y.

This implies that 98 = 40 + 2 · 29 = (11x + 87y) + (87x − 87y) = 98x. Thus x = 1.

Therefore y = 1
3
and z = 1

4
(1 + 9

3
) = 1. We compute f

(

1, 1
3
, 1
)

= 1 + 1 + 4 = 6.So we

know now that if the smallest value exists then it is 6. As in few other problems we can

look at the values of the function g on the set B̂ = {(x, yz) ∈ B : x2 + y2 + z2 6 10

because outside of B̂ the inequality g(x, y, z) > 10 holds. The set B̂ is bounded and

closed therefore it is compact so the function attains maximal and minimal values on B̂.

From the above statements it follows right away that infB g = infB̂ g = 6. �

Remark 8.6 The set B above is the intersection of the two planes so it is a straight line.

We could have parameterized this line with one variable and find the smallest value of
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a function of one variable. One way would be to solve the system x + 6y + 7z = 10,

4x+3y+7z = 12 of two equations e.g. for x, z. The result would be x = 2+3y
3
, z = 4−3y

3
.

The rest of the solution is left to the readers. �

8. Let A = {(x, y) : x2+y2 = 100}. Find sup f and inf f if f(x, y) = 3x+4y on the set A.

Solution. ∇(x2 + y2 − 100) = 2(x, y) 6= (0, 0) for (x, y) ∈ A. The set A is compact so

the function f attains maximal and minimal value on this set. Lagrange theorem implies

that for each point at which maximal or minimal value is attained there exist a number λ

such that (3, 4) = λ∇(x2 + y2 − 100) = 2λ(x, y). This implies that 25 = 4λ2(x2 + y2) =

400λ2 so λ = ±1
4
. Then either (x, y) = (6, 8) or (x, y) = (−6,−8). This proves that

maxA f = 3 · 6 + 4 · 8 = 50 and minA f = 3 · (−6) + 4 · (−8) = −50. We are done. �

9. Find sup and inf of the distances of points (x, y) ∈ B = {(x, y) : x2

4
+ y2

9
= 1} from the

point (0, 4
3
).

Solution. Let f(x, y) = x2 + (y − 4
3
)2 so f(x, y) is a square of the distance from (x, y) to

(0, 4
3
). We shall find the smallest and the largest value of f constrained to B. The extreme

values are attained because the set B is compact. ∇(x
2

4
+ y2

9
− 1) = (x

2
, 2y

9
) 6= (0, 0) for

(x, y) ∈ B. If at the point (x, y) an extreme value is attained the there exits a number λ

such that 2(x, y − 4
3
) = ∇(x2 + (y − 4

3
)2) = λ(x

2
, 2y

9
). λ 6= 0 because (x, y) 6= (0, 4

3
) /∈ B.

Therefore 4xy
9
λ = 2(y− 4

3
)x
2
·λ so 4xy = 3x(3y−4) thus 5xy = 12x. Therefore either x = 0

or y = 12
5
. Extreme values may attained only at the points: (0, 3), (0,−3), (6

5
, 12

5
) and

(−6
5
, 12

5
). The corresponding values of the function are: 25

9
, 169

9
and 116

45
. This proves that

the closest to (0, 4
3
) are the points (±6

5
, 12

5
). Their distance from (0, 4

3
) is 2

3

√

29
5
≈ 1.61.

The farthest is the point (0,−3) at the distance 13
3
. �

10. Let A = {(x1, x2, . . . , x10) : x1x2 + x1x3 + · · · + x9x10 =
∑

16i<j610

xixj = 45, x1 > 0,

x2 > 0, . . . , x10 > 0} and f(x1, x2, . . . , x10) = x1 + x2 + . . . + x10. Find the biggest and

the smallest value of f on the set A or prove that one of them does not exist or both do

not exist.

Solution. Notice that the set A is closed and bounded i.e. it is compact. The function f

has therefore maximal and minimal values. We shall find them.

Let g(x1, x2, . . . , x10) = x1x2 + x1x3 + · · · + x9x10 – there are
(

10
2

)

= 45 summands.
∂g

∂x1
= x2 + x3 + x4 + · · · + x10,

∂g

∂x2
= x1 + x3 + x4 + · · · + x10 etc. The gradient of

g does not vanish at points of the set A had it been (0, 0, . . . , 0) the following equality

9(x1 + x2 + x3 + · · ·+ x9 + x10) = 0 holds i.e. x1 + x2 + x3 + · · ·+ x9 + x10 = 0, therefore

x1 = (x1+x2+x3+· · ·+x9+x10)−(x2+x3+· · ·+x9+x10) = 0 etc. but (0, 0, 0 . . .0) 6= A.

From Lagrange theorem it follows that if the function f attains max or min at a point

(x1, x2, . . . , x10) then either at least one of the numbers x1, x2, . . . , x10 is 0 or there exists

a number λ such that ∇f(x1, x2, . . . , x10) = λ∇g(x1, x2, . . . , x10). This means that






















1 = λ(x2 + x3 + x4 + · · ·+ x9 + x10)

1 = λ(x1 + x3 + x4 + · · ·+ x9 + x10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 = λ(x1 + x2 + x3 + x4 + · · ·+ x9)

(4)
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This implies that

x2+x3+x4+ · · ·+x9+x10 = x1+x3+x4+ · · ·+x9+x10 = . . . = x1+x2+x3+x4+ · · ·+x9

From these equations it follows that x1 = x2 = x3 = . . . = x10. This implies that

1 = x1 = x2 = x3 = . . . = x10. There remains a question of points with one or more

coordinates equal to 0. Let A1 = {(x2, x3, x4, . . . , x10) : x2x3+x2x4+ · · ·+x9x10 = 45}.
In the same way we define the sets A2, A3, . . . , A10. Now we do the same with f on

the sets Ai as we have done with f on the set A. The result is that either the extreme

value is attained at a point with equal coordinates or at a point with some coordinate

equal to 0. Equal coordinates means that they are
√

45
36

=
√
5
2
. The value of f is

9 ·
√
5
2

> 10. Now we have to deal with points with two coordinates being 0. This leads

to the value 8 ·
√

45
28

= 12
√

5
7
> 9

2

√
5. We continue with more zeros. If one looks at

points with k zeros, 1 6 k 6 8. Then if all 10− k coordinates are equal the value of f is

(10 − k)
√

90
(10−k)(9−k)

=
√

90(10−k)
9−k

=
√

90
(

1 + 1
9−k

)

. This expression increases as k does

it. So its biggest value is attained for k = 8. This biggest value is
√

90
(

1 + 1
9−8

)

= 6
√
5.

We proved that infA f = 10 and supA f = 6
√
5. �

Remark 8.7 All these problems were exam problems at the beginning of the XXI century at

Economy Department of University of Warsaw. There were many others. Some of them

are very easy. Usually it was a part of a problem consisting of an easy question and a

harder question. �

Remark 8.8 In the online class on Tuesday the problem 5-th of temat24 was discussed. A

function of one variable with the two local maxima was needed. The simplest way of

finding such a function is to start with its derivative. It should have three roots and

appropriate signs on the intervals between the roots. The simplest example is x(1− x2).

This expression is negative iff x > 1 or −1 < x < 0. Let us integrate this function and

multiply the result by 4. We obtain 2x2−x4. This function has local maxima at ±1 and it

has local minimum at 0. Define f(x, y) = 2x2−x4−y2. This function has local maxima at

the points (±1, 0). It has a saddle at (0, 0). We have∇f(x, y) =
(

4x(1−x2),−2y
)

= (0, 0)

iff (x, y) = (−1, 0) or (x, y) = (0, 0) or (x, y) = (1, 0). Therefore there are no other local

maxima nor local minima.

We shall give an example of a function which has two local maxima and no other

critical point in the plane. Let g(x, y) = (x, x2y + ey). The map g is a diffeomorphism

of the whole plane onto the set B = R
2 \ {(0, y) : y 6 0} (the plane without one

closed vertical half–axis). ∂(x2y+ey)
∂y

= x2 + ey > 0. This proves that if we fix x the

map y 7→ x2y + ey is strictly increasing. It is easy to see that lim
y→∞

(x2y + ey) = ∞ and
lim

y→−∞
(x2y + ey) = −∞ for x 6= 0 and lim

y→−∞
ey = 0. This proves that each vertical line

except for y–axis is mapped onto itself while y–axis is mapped onto the upper vertical

open half–axis. The map is injective (different points are mapped to different points). It is

also continuous. We have Dg(x, y) =

(

1 0

2xy x2 + ey

)

so det(Dg(x, y)) = x2 + ey > 0.

This proves that the ma p g is locally invertible (inverse function theorem) and the

12



inverse map is C∞ as g is. This shows that g maps diffeomorphically the plane onto

the set B. Now we define a function F (x, y) = f(g(x, y)). g−1(1, 0) ≈ (1,−0.567143)

and g−1(−11, 0) ≈ (−11,−0.567143) are the only critical points of F because DF (x, y) =

=Df(g(x, y))Dg(x, y) and Dg(x, y)maps to (0, 0) only the vector (0, 0) (here we multiply

the matrix Dg(x, y) from the left by a vector written horizontally). If one likes an explicit

formula for F she/he may see that F (x, y) = 2x2−x4−(x2y+ey)2 and then realize that F

has only two critical points. For students who want to be sure they understand correctly

these stories.

How to define a Cr function on the whole plane, r > 1, which has three critical

points all of them local minima?

Remark 8.9 More of diffeomorphisms from temat XXV and related maps.

g1(x, y) =
(

x+ y, 2
π
arctan( y

x
)
)

. This maps an interior of the triangle with the vertices

(0, 0), (1, 0) and (0, 1) onto the interior of the square with the vertices (0, 0), (1, 0), (1, 1)

and (0, 1).

g2(x, y) =
(

x
1−y

, y
)

. This maps an interior of the triangle with the vertices (0, 0), (1, 0)

and (0, 1) onto the interior of the square with the vertices (0, 0), (1, 0), (1, 1) and (0, 1).

In both cases it is easy to write formulas for the inverse map. Left to the students.

g3(x, y) = (2x−1, 2y−1) maps the square with the vertices (0, 0), (1, 0), (1, 1) and (0, 1)

onto the square with the vertices (−1,−1), (1,−1), (1, 1) and (−1, 1). Everybody should

check it - it is very easy.

g4(x, y) =

(

x√
1−x2

, y√
1−y2

)

. g4 maps the square with the vertices (−1,−1), (1,−1), (1, 1)

and (−1, 1) onto the whole plane.

g5(x, y) =
(

tan πx
2
, tan πy

2

)

. maps the square with the vertices (−1,−1), (1,−1), (1, 1)

and (−1, 1) onto the whole plane.

g6(x, y) =
(

x
1−x2−y2

, y

1−x2−y2

)

maps the interior of the unit circle centered at the point

(0, 0) onto the whole plane. The interior of the unit circle consists of all points (x, y)

satisfying x2 + y2 < 1. On this set the map g6 is C
∞ (it has derivatives of all orders).

We have

Dg6(x, y) =

(

1−x2−y2+2x2

(1−x2−y2)2
2xy

(1−x2−y2)2

2xy
(1−x2−y2)2

1−x2−y2+2y2

(1−x2−y2)2

)

=
1

(1− x2 − y2)4

(

1 + x2 − y2 2xy

2xy 1− x2 + y2

)

det(DG6(x, y)) =
(1+x2−y2)(1−x2+y2)−4x2y2

(1−x2−y2)4
= 1−(x2−y2)2−4x2y2

(1−x2−y2)4
= 1−(x2+y2)2

(1−x2−y2)4
> 0 for all (x, y)

from the interior of the unit disc. Therefore g6 is locally invertible (inverse function

theorem) and the inverse function g−1
6 is C

∞ (as g6 is). It is globally invertible on the

unit disc because it maps each radius onto the infinite ray starting at the origin (the

points (0, 0), (x, y) and g6(x, y) lie on one straight line).

g7(x, y) = (x2 − y2, 2xy) is C∞ and maps the quadrant {(x, y) : x > 0, y > 0} onto the
half–plane {(x, y) : y > 0}. Obviously x > 0, y > 0 ⇒ 2xy > 0. If u = x2 − y2 and

0 < v = 2xy then u2+v2 = (x2−y2)2+4x2y2 = (x2+y2)2. Therefore x2+y2 =
√
u2 + v2

and 2x2 = u +
√
u2 + v2 so x =

√

1
2
(u+

√
u2 + v2). Also 2y2 = −u +

√
u2 + v2 so

y =
√

1
2
(−u+

√
u2 + v2). We just proved that
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g−1
7 (u, v) = (x, y) =

(

√

1
2
(u+

√
u2 + v2),

√

1
2
(−u+

√
u2 + v2)

)

.

This shows that g−1
7 is a C

∞ map (all numbers under the square roots are positive).

Let r > 0 and g8(x, y) =
(

r2x
x2+y2

, r2y

x2+y2

)

. Clearly if x2 + y2 = r2 then g8(x, y) = (x, y).

g8 is defined for every point of the plane with one exception: (0, 0). It is a C
∞ map. Its

inverse is g8 i.e. g8(g8(x, y)) = (x, y) for all x, y) 6= (0, 0). Let us look at the image of the

horizontal line y = r. The line consists of points (x, r). g8(x, r) =
(

r2x
x2+r2

, r3

x2+r2

)

. Now

we compute
(

r2x
x2+r2

)2

+
(

r3

x2+r2
− r

2

)2

= 4r4x2+(r3−rx2)2

4(r2+x2)2
= (r3+rx2)2

4(r2+x2)2
= r2

4
. This means that

the image of the line in question is contained in the circle of radius r
2
centered at (0, r

2
).

The only point which is not in this image is (0, 0). The reader may conclude that the

image of the open half–plane {(x, y) : y > r is the interior of the circle centered at the

point (0, r
2
) of radius r

2
.

These diffeomorphism allow to find many really different solutions of the problems from

temat XXV. �
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