
Some problems to be solved at home. Choose 4 of them including problem 4, write down

your solutions and mail them to me.

Definition 7.1 If U, V are an open subsets of Rk and f : U → V is a Cr map which maps

U onto V and is one–to–one and f−1 : V → U is also Cr, r > 1 they we say that f is a

Cr–diffeomorphism. �.

1. Let Q = {(x, y) ∈ R
2 : x > 0 and y > 0} and P = {(x, y) ∈ R

2 : x > 0 or y > 0}.
Prove that if f(x, y) = (x3−3xy2, 3xy2−y3) is a diffeomorphism of the first open quadrant

Q onto the set P which consist of points with at least one positive coordinate (it is the

compliment of the fourth closed quadrant).

Solution. Unfortunately there is an error in the statement of the problem. I shall discuss

the problem as it was stated and later on as I planed to write it.

Df(x, y) =

(

3x2 − 3y2 −6xy

3y2 6xy − 3y2

)

so det(Df(x, y)) = (3x2−3y2)(6xy−3y2)+18xy3 = 9y(y3−x2y+2x3) > 0 for (x, y) ∈ Q

because if y > x then y3 − x2y + 2x3y = y(y + x)(y − x) + 2x3 > 2x3 > 0 and if

y < x then y3 − x2y + 2x3y = y3 + x2(x − y) + x3 > 0. This creates a hope for

validity of the theorem we have to prove. From the definition of the diffeomorphism it

follows that 1 = det(D(f ◦ f−1)(f(x, y))) = det(Df(x, y)) · det(Df−1(f(x, y))) therefore

det(Df(x, y)) 6= 0. Let us notice that that f(tx, ty) = t3f(x, y) for each t ∈ R and

each (x, y) ∈ Q. If (x, y) ∈ Q then there exist numbers r > 0 and ϕ ∈ (0, π
2
) such that

x = r cosϕ and y = r sinϕ. First assume that r = 1. We have

f(cosϕ, sinϕ) = (cos3 ϕ− 3 cosϕ sin2 ϕ, 3 cosϕ sin2 ϕ− sin3 ϕ).

This is never (0, 0) because if cos3 ϕ− 3 cosϕ sin2 ϕ = 0 then either cosϕ = 0 or cos2 ϕ =

=3 sin2 ϕ. In the first case sinϕ = ±1 so 3 cosϕ sin2 ϕ− sin3 ϕ = ∓1 6= 0. In the second

case 3 cosϕ sin2 ϕ− sin3 ϕ = cos3 ϕ− sin3 ϕ. If 0 = cos3 ϕ− sin3 ϕ then cosϕ = sinϕ so

cos2 ϕ = sin2 ϕ = 1

2
. This contradicts our hypothesis i.e. the equality cos2 ϕ = 3 sin2 ϕ.

Let

̺(ϕ) =
√

(cos3 ϕ− 3 cosϕ sin2 ϕ)2 + (3 cosϕ sin2 ϕ− sin3 ϕ)2.

This is a C∞ function of ϕ because the quantity under the square root is always positive.

Let α(ϕ) be such a number that the following three conditions hold

cosα(ϕ) =
cos3 ϕ− 3 cosϕ sin2 ϕ

̺(ϕ)
, sinα(ϕ) =

3 cosϕ sin2 ϕ− sin3 ϕ

̺(ϕ)
, 0 < α(ϕ) < 2π.

The number α(ϕ) exists because 0 < ϕ < π
2
so sinϕ 6= 0 and if sinα(ϕ) = 0 then

sinϕ = 3 cosϕ but then ̺(ϕ) cosα(ϕ) = cos3 ϕ − 3 cosϕ sin2 ϕ = −26 cos3 ϕ < 0. This

means that the range of f considered on the domain Q contains no points of the form

(x, 0) with x > 0 and due to this we can choose α as required above. It is not hard to show

that α is a C1 function of ϕ, in fact it is C∞. It is enough to use the properties of arcsin
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and arccos. Another way of proving it is to use the inverse function theorem. Thus we can

differentiate α and functions which depend on ϕ. We have ̺ cosα = cos3 ϕ−3 cosϕ sin2 ϕ

and ̺ sinα = 3 cosϕ sin2 ϕ− sin3 ϕ. This implies that

cosα
d̺

dϕ
− ̺ sinα

dα

dϕ
= −3 cos2 ϕ sinϕ+ 3 sin3 ϕ− 6 cos2 ϕ sinϕ = 3 sin3 ϕ− 9 cos2 ϕ sinϕ

and

sinα
d̺

dϕ
+ ̺ cosα

dα

dϕ
= −3 sin3 ϕ+ 6 cos2 ϕ sinϕ− 3 cosϕ sin2 ϕ.

We multiply the last equation by ̺ cosϕ and the next to the last by −̺ sinϕ and add

the results to obtain

̺2 dα
dϕ

= ̺ cosα(−3 sin3 ϕ+6 cos2 ϕ sinϕ−3 cosϕ sin2 ϕ)−̺ sinα(3 sin3 ϕ−9 cos2 ϕ sinϕ) =

= (cos3 ϕ− 3 cosϕ sin2 ϕ)(−3 sin3 ϕ+ 6 cos2 ϕ sinϕ− 3 cosϕ sin2 ϕ) +

+ (3 cosϕ sin2 ϕ− sin3 ϕ)(−3 sin3 ϕ+ 9 cos2 ϕ sinϕ) =

= 3 sinϕ(2 cos5 ϕ− cos4 sinϕ+ 2 cos3 ϕ sin2 ϕ+ sin5 ϕ) =

= 3 sinϕ(2 cos3 ϕ+ sinϕ(sin4 ϕ− cos4 ϕ)) = 3 sinϕ(2 cos3 ϕ+ sinϕ(sin2 ϕ− cos2 ϕ)) =

= 3 sinϕ(2 cos3 ϕ+sin3 ϕ−sinϕ cos2 ϕ) > 0 because 0 < cosϕ < 1 and 0 < sinϕ < 1. As

e result we obtain dα
dϕ

> 0. Therefore α is a strictly increasing function of ϕ. This shows

that each infinite ray that starts at (0, 0) meets the set {(̺ cosα, ̺ sinα) : 0 < ϕ < π
2
}

at most at one point. The map f is defined and continuous not only on the set Q but on

the whole plane. f(1, 0) = (1, 0), f(0, 1) = (0,−1). This implies that lim
ϕց0

α(ϕ) = 0 and

lim
ϕրπ/2

α(ϕ) = π
2
. Since α is a continuous function of ϕ all numbers from the interval (0π

2
)

are its values. Therefore on each ray starting at the origin contained in P there is a point

from f(Q). This together with the equation f(rx, ry) = r3f(x, y) proves that f(Q) = P .

This also proves that f is one–to–one on each ray and maps a ran onto a ray. Therefore

f is one–to–one map on Q and its image is P . We did it.

Black is a quarter of the unit circle, green its image under the first map, red its image

under the second.
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Now we shall solve a problem as it was planned.

This time f(x, y) = (x3 − 3xy2, 3x2y − y3). Obviously f(rx, ry) = r3f(x, y) (as above).

Now

(x3 − 3xy2)2 + (3x2y − y3)2 = x6 − 6x4y2 + 9x2y4 + 9x4y2 − 6x2y4 + y6 =

= x6 + 3x4y2 + 3x2y4 + y6 = (x2 + y2)3.

We have f(cosϕ, sinϕ) = (cos3 ϕ − 3 cosϕ sin2 ϕ, 3 cos2 ϕ sinϕ − sin3 ϕ) and from the

above equation it follows that the point (cos3 ϕ−3 cosϕ sin2 ϕ, 3 cos2 ϕ sinϕ− sin3 ϕ) lies

on the unit circle so there exist α such that

(cos3 ϕ− 3 cosϕ sin2 ϕ, 3 cos2 ϕ sinϕ− sin3 ϕ) = (cosα, sinα).

Some people (very good in trigonometry) know that cos(3ϕ) = cos3 ϕ − 3 cosϕ sin2 ϕ

and sin(3ϕ) = 3 cos2 ϕ sinϕ − sin3 ϕ. If someone does know this and she/he does not

want to look for the formula in the internet or in books she/he may notice that α is

a differentiable function of ϕ provided that α ∈ (0, 2π). Such choice is possible because

if 0 = 3 cos2 ϕ sinϕ − sin3 ϕ (this means that f(cosϕ, sinϕ) lies on x–axis) then either

sinϕ = 0 or 3 cos2 ϕ − sin2 ϕ = 0. But 0 < ϕ < π
2
so 0 < sinϕ < 1 and 0 < cosϕ < 1.

The first possibility has been excluded. In the second case we have cos3 ϕ−3 cosϕ sin2 ϕ =

cos3 ϕ − 9 cos3 ϕ = −8 cos3 ϕ < 0. We proved that f(cosϕ, sinϕ) lies on x–axis then it

lies to the left of the origin, so in such case we define α(ϕ) = π. The differentiability

follows from the differentiability of arccos and arcsin on the interval (−1, 1).

The map f is diffeomorphism because it is one–to–one map of Q onto P . �

Remark 7.2 Df(x, y) =

(

3x2 − 3y2 −6xy

6xy 3x2 − 3y2

)

so det(Df(x, y)) = 9(x2−y2)2+36x2y2 =

9(x2+y2)2 > 0 for (x, y) ∈ Q. this guarantees that for each point p = (x, y) ∈ R
2\{(0, 0)}

there a number rp such that f is o diffeomorphism of the disc of radius rp centered at

p onto some open subset of R2. Unfortunately this does not prove the the map is

one–to–one on the whole set R2 \ {(0, 0)}. In fact the map is NOT one–to–one e.g.
f(
√
3, 1) = (0, 8) = f(−

√
3, 1). The set R2\{(0, 0)} is connected, the derivative Df(x, y)

is everywhere invertible (Df(x, y) is an isomorphism for each (x, y)) but the map f is not

invertible. This is one of many important differences between one dimension and more

of them. �

Definition 7.3 A × B is a set consisting of all ordered pairs (a, b) with a ∈ A and b ∈ B.

For example {1, 2, 3, 4} × {4, 5} = {(1, 4), (2, 4), (3, 4), (4, 4), (1, 5), (2, 5), (3, 5), (4, 5)},
(0,∞) × (0,∞) is the first open quadrant which consists of all pairs of positive real

numbers. �.

2. Does there exist a diffeomorphism of the set {(x, y) : x < y < 2x and 1 < x + y < 4}
onto

(1) an open square,

(2) the whole plane R2.
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Solution. In both cases the answer is yes. Notice that from the inequality x < 2x

it follows that x > 0, so the set is contained in the first quadrant ant it is open and

bounded. In fact it is a quadrilateral with two paralel sides so it is a trapezium (British

English not American English). The vertices of this quadrilateral are (1
3
, 2
3
), (1

2
, 1

2
), (2, 2)

and (4
3
, 8

3
) as you can check. Do it!

(1, 0) (4, 0)

(2, 2)

( 4
3
,
8

3
)

(0, 1)

(0, 4)

( 1
2
,
1

2
)

( 1
3
,
2

3
)

Let us define f(x, y) = y
x
, x + y and T = {(x, y) : x < y < 2x and 1 < x + y < 4}. If

( y
x
, x+ y) = (u, v) then x = v

1+u
and y = uv

1+u
in other words f−1(u, v) =

(

v
1+u

, uv
1+u

)

. All

numbers in these formulas are positive. To be more precise 1 < u < 2 and 1 < v < 4. The

image of T is a rectangle, f(T ) = (1, 2)×(1, 4), and we can make easily a square out of it.

Just define f̂(x, y) = (3y
x
, x+ y). One can see that f̂(T ) = (3, 6)× (1, 4) so it is a square

with side length 3. It is worth to notice that f̂
(

(0,∞)× (0,∞)
)

=
(

(0,∞)× (0,∞)
)

so

the first quadrant is mapped onto itself.

Let us define now g(x, y) =
(

tan(π( y
x
− 3

2
)), tan(π

3
(x+ y − 5

2
))
)

. I claim that g(T ) = R
2.

The map u 7→ π(u − 3

2
) maps the interval (1, 2) onto the interval (−π

2
, π
2
) then tangent

maps the interval (−π
2
, π
2
) onto R. The map v 7→ π

3
(v− 5

2
) onto the interval (−π

2
, π
2
) which

is mapped by tangent onto (−∞,∞). We are done. �

3. Prove that there is no diffeomorphism f : R2 −→ R
2 such that the x–axis is mapped onto

the set {(x, 0) : x > 0}∪{(0, y) : y > 0} i.e. onto the boundary of the first quadrant.
Hint. How Df(p), p ∈ R

2 maps tangent vectors?

In this problem we are asked of the existence of a diffeomorphism which maps the straight

line onto the union of two rays with initial point (0, 0). We shall show that this is not

possible, in general the image of a smooth curve under a diffeomorphism is smooth.

The union of the two rays is not smooth, there is a corner at (0, 0) - these statements

are not precise because we never said what is a smooth curve, I wrote hoping that it

would give some intuition. Let us assume that there is such a diffeomorphism and let

(γ1(t), γ2(t)) = γ(t) = f(t, 0). There is a point t0 such that γ(t0) = (0, 0). This means
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that γ1(t0) = 0 and γ2(t) = 0. There are two possibilities. Either γ1(t) = 0 and γ2(t) > 0

for t > t0 – this means that of the first quadrant and therefore the half line (−∞, t0] is

mapped onto the horizontal part of the boundary that is for t < t0 the equality γ2(t) = 0

and the inequality γ1(t) > 0 hold. Of course it may happen that the half line [t0,∞) is

mapped onto the horizontal part of the boundary while the half line (−∞, t0] is mapped

onto the vertical part of the boundary. In both cases the functions γ1, γ2 assume their

extreme values at t0. Therefore γ
′
1(t0) = 0 = γ′

2(t0) so γ
′(t0) = (0, 0). This is not possible

since γ1(t0) =
∂f
∂x
(t0, 0) and det(Df(t0, 0)) 6= 0 so it is not possible a column of the matrix

Df(t0, 0) vanishes. �

4. We consider the system of two equations






a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

with unknowns x1, x2, x3, x4. Under what condition on the coefficients

a11, a12, a13, a14, a21, a22, a23, a24, b1, b2 the system can solved for x1, x2 treating the un-

knowns x3, x4 as parameters.

Solution. The problem is not very well stated. It should be uniquely solved instead of

solved. We shall show the solution with this slightly extended statement to avoid long

considerations which are not hard. This is in fact to say that we want a condition that

guarantees the system a11x1 + a12x2 = c1 and a21x1 + a22x2 = c2 is uniquely solvable for

x1, x2. This is or at least should be very well known to everybody but I show it.

If both equations are satisfied then

(a11a22 − a21a12)x1 = c1a22 − c2a12 and (a22a11 − a21a12)x2 = c2a11 − c1a21

– the equations have been multiplied by the appropriate numbers and added later on.

If a22a11 − a21a12 = 0 then necessarily c1a22 − c2a12 = 0 = c2a11 − c1a21.

If a11 = a12 = 0 then there is no unknown in the first equation. If in addition c1 = 0

the we have only second equation (the first 0x1 + 0x2 = 0 is satisfied for all x1, x2 ∈ R).

If c1 6= 0 the system has no solution. If a21 6= 0 or a22 6= 0 the second equation has

infinitely many solutions so the has the system in this (stupid) case. The same happens

if a21 = 0 = a22.

Now we assume that a22a11−a21a12 = 0 and (a11, a12) 6= (0, 0) 6= (a21, a22). If a11 6= 0 then

a22 = a21
a11

a12, so (a21, a22) = a21
a11

(a11, a12). The system has a solution iff also c2 = a21
a11

c2

but this means that the second equation follows from the first one so the system has

infinitely many solutions (for each number x2 we can find a number x1 such that the

(x1, x2) satisfies the first equationso it satisfies the second one.

We proved that if a22a11 − a21a12 = 0 then the system either has no solution or it has

infinitely many ot them.

Now assume that a22a11 − a21a12 6= 0. The it is easy to see that the the pair (x1, x2)

with x1 = c1a22−c2a12
a22a11−a21a12

, x2 = c2a11−c1a21
a22a11−a21a12

solves the system, just substitute the obtained

quantities for x1 and x2 in the system. It is clear that this the unique choice of the

solution. So the seeked condition is a22a11 − a21a12 6= 0. �
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Remark 7.4 Notice that in the implicit function theorem with the equation

F (x1, x2, x3, x4) =

(

a11x1 + a12x2 + a13x3 + a14x4 − b1

a21x1 + a22x2 + a23x3 + a24x4 − b2

)

=

(

0

0

)

the condition concides with saying that the matrix

(

∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

)

is nonsingular i.e. its

determinant does not vanish. One may say that the implicit function theorem generalizes

the linear algebra theorem but due to hypothesis about derivatives at one point only the

theorem becomes local – it says something about existence and uniqueness of the solutions

at sufficiently small neighbourhood only. �

5. Find all c ∈ R for which the set {(x, y) : xy = c} an embedded submanifold of R2.

Solution. Let f(x, y) = xy − c. One can see that ∇f(x, y) = (y, x) so it does not vanish

unless x = 0 = y. The point (0, 0) is in the set iff c = 0 so if c 6= 0 the set is a manifold b

y the theorem that apperas in prof. Warhurst’s notes. If c = 0 then the equation xy = c

is satisfied by all points that lie on the union of x–axis (y = 0) and y–axis (x = 0).

This set is not a manifold because of (0, 0). If one looks at any connected neighbourhood

of (0, 0) then it is a „open cross”. If one throws out the point (0, 0) it is divided into

four connected parts (straight line segments). This cannot happen to one dimensional

manifold because locally it is equivalent to an open interval so if a point is thrown away

it falls apart into two pieces (connected components). �

6. Draw the setM defined by the equation xy(x2−y2) = 0. What points should be removed

from M so that the remaining part of M will be an embedded submanifold of R2. The

number of the removed points should be as small as possible.

Solution. Let f(xy) = xy(x2− y2). We have ∇f(x, y) = (3x2y− y3, x3−3xy2). It is easy

to see that (3x2y − y3, x3 − 3xy2) = (0, 0) iff x = 0 = y.

x
=

0

x
+
y
=
0

x
− y

=
0

y = 0

This shows that if we remove the origin from the set then it will become a 1–dimensional

submanifold of R2. With (0, 0) the set is not a submanifold. It consists of four straight

lines that meet each other at (0, 0). If we consider any connected neighbourhood of (0, 0)

in the set and remove the origin from it then it becomes a union of eight disjoint pieces.

This is not a property of any open interval: a point divides it into two two disjoint parts

(components). This proves that there is only one point to be removed from the set,

namely (0, 0). �
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