
Some problems to be solved at home. Choose 4 of them, write down your solutions and

mail them to me.

1. Given a triangle ABC. Let d(P ) = PA+PB+PC so it is the sum of the distances from

P to the vertices of the triangle. Prove that here exists a point Q contained in the triangle

ABC such that d(Q) 6 d(p) for every point P of the given triangle.

Solution. Let us recall that if Q,R, S are points (in the plane) then

‖Q− S‖2 6 ‖Q− R‖2 + ‖R− S‖2.

This inequality turns into equality iff R lies on straight line segment with ends Q, S. This implies

that ‖Q− S‖2 − ‖Q− R‖2 6 ‖R− S‖2. Also ‖Q− R‖2 − ‖Q− S‖2 6 ‖S − R‖2 = ‖R− S‖2.

Therefore
∣

∣‖Q−S‖2−‖Q−R‖2
∣

∣ 6 ‖R−S‖2. Noe let Q,R be any points on the plane. Be the

previous inequalities we obtain

|d(Q)− d(R)| =
∣

∣‖Q−A‖2 + ‖Q− B‖2 + ‖Q− C‖2 − ‖R− A‖2 − ‖R− B‖2 − ‖R− C‖2
∣

∣ 6

6
∣

∣‖Q−A‖2 − ‖R−A‖2
∣

∣+
∣

∣‖Q−B‖2 − ‖R−B‖2
∣

∣+
∣

∣‖Q−C‖2 − ‖R−C‖2
∣

∣ 6 3‖Q−R‖2.

This proves that d is a continuous function on the plane. It one thinks of a triangle ABC only

then the function is considered on a compact set set. By Weierstrass Maximum Principle it

attains minimum at some point of the triangle. QED �

Remark. The solution contains no indication of how to find the point at which the minimum

is attained nor wether there is one such point or more. What is your guess?

2. Find all critical points of the function f and its least upper bound and its greatest lower

bound if f(x, y) = x2 + y2(1 + x)3 for (x, y) ∈ R
2.

Solution. ∂f

∂x
= 2x+3y2(1+x)2, ∂f

∂y
= 2y(1+x)3. At a critical point both partial derivatives

should equal to 0. ∂f
∂y

= 2y(1+x)3 = 0 iff y = 0 or x = −1. It y = 0 and ∂f

∂x
= 2x+3y2(1+x)2 = 0

the y = 0. If x = −1 and ∂f

∂x
= 2x + 3y2(1 + x)2 = 0 then x = 0 a contradiction. Thus there

is only one critical point namely (0, 0). If x > −1 then f(x, y) = x2 + y2(1 + x)3 > 0 and

f(x, y) = 0 iff x = y = 0. This means that the function f has local minimum at (0, 0).

f(x, 1) = x2 + (1 + x)3−−−−→
x→∞

+∞ and f(x, 1) = x2 + (1 + x)3−−−−→
x→−∞

−∞. This proves that f

is unbounded from above so sup f = +∞ and it is unbounded from below so inf f = −∞. �

Remark. One may evaluate second partial derivatives at (0, 0). ∂2f

∂x2 = 2+6y2(1+ x), ∂2f

∂x∂y
=

6y(1+x)2 and ∂2f

∂y2
= 2(1+x)3. This implies that d2f(0, 0) =

(

2 0

0 2

)

. This matrix is positively

defined because its eigenvalues are 2, 2 so they are positive. One may also use the Sylvester

theorem or the definition of positively defined matrix that. The last method leads to looking at

the expression 2 · x2 + 2 · 0 · xy + 2 · y2 = 2(x2 + y2). This positive for all (x, y) except for

x = 0 = y. So the matrix is positively defined and the function has a local minimum at (0, 0).

�

3. (a) Let f(x, y) = 6x5+15x4−50x3−90x2+ 1

4
(−e2y+x2(x+ 3)2)2 for all (x, y) ∈ R

2. Find

all critical points of f , determine their charakter (local minimum, local maximum or saddle),

find sup f and inf f .

(b) Let g(x, y) = 6x5+15x4−50x3−90x2+ 1

4
(−e2y +(x+1)2(x−2)2)2 for all (x, y) ∈ R

2. Find

all critical points of g, determine their charakter (local minimum, local maximum or saddle),

find sup g and inf g.

(c) Let h(x, y) = 6x5+15x4−50x3−90x2+ 1

4
(−e2y +(x+1)2(x+3)2)2 for all (x, y) ∈ R

2. Find

all critical points of h, determine their charakter (local minimum, local maximum or saddle),

find sup h and inf h.

Solution. Let p(x) = 6x5 + 15x4 − 50x3 − 90x2. We have

p′(x) = 30x4 + 60x3 − 150x2 − 180x = 30x(x3 + 2x2 − 5x − 6) = 30x(x + 1)(x − 2)(x + 3).
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This implies that p′(x) > 0 iff x ∈ (2,∞) ∪ (−1, 0) ∪ (−∞,−3). This implies that the function

p increases (strictly) on each of the intervals (−∞,−3], [−1, 0], [2,∞) and decreases (strictly)

on each of the intervals [−3,−1] and [0, 2].

Let α(x, y) = p(x). The function α has local minima at points (−1, y), (2, y) independently

of y and local maxima at points (−3, y), (0, y). All are of course improper.

Let ϕ1(x, y) = 1

4
(−e2y + x2(x+ 3)2)2. We have ∂ϕ1

∂y
= −e2y(−e2y + x2(x+ 3)2) = 0 iff

e2y = x2(x+ 3)2. Now ∂ϕ1

∂x
= p′(x) + x(x+ 3)(2x+ 3)(−e2y + x2(x+ 3)2). Therefore

∇f(x, y) =
(

p′(x) + ∂ϕ1

∂x
, ∂ϕ1

∂y

)

= (0, 0)

iff e2y = x2(x+ 3)2 and p′(x) = 0 i.e. either x = −3 or x = −1 or x = 0 or x = 2.

Obviously ϕ1(x, y) = 1

4
(−e2y + x2(x+ 3)2)2 > 0 everywhere so at all points (x, y) at which

−e2y + x2(x+ 3)2 = 0 it has an absolute minimum. Since 0 < e2y it follows that either x = −1

or x = 2. We proved that f has 2 critical points (−1, ln 2) and (2, ln 10). Since the functions ϕ1

and α have local minima at (2, ln 10) their sum f has a local minimum at (2, ln 10), too. Since

this is an isolated critical point of f the local minimum is proper. This means that if x ≈ 2

and y ≈ ln 10 and (x, y) 6= (2, ln 10) then f(x, y) > f(2, ln 10). We do not explain how close to

(2, ln 10) the point (x, y) should be because this information is not necessary for the solution

of the problem.

All we wrote above applies to the point (−1, ln 2) The main point is that the polynomial p

has local minima at −1 and at 2.

Let ϕ2(x, y) =
1

4
(−e2y + (x+1)2(x− 2)2)2, so g(x, y) = p(x) +ϕ2(x, y) = α(x, y)+ϕ2(x, y).

The situation is a little bit different from the one discussed above. The difference is that now

the critical points are (0, ln 2) and (−3, ln 15). At the points 0 and 3 the polynomial p has local

maxima so does the function α at the points (0, ln 2) and (−3, ln 15). But the function ϕ2 has

local minima at the points (0, ln 2) and (−3, ln 15). We shall prove that the function g has saddles

at the points (0, ln 2) and (−3, ln 15). If one moves away from (0, ln 2) along the line x = 0 (y–

axis) then ϕ2(x, y) becomes strictly positive so f(x, y) > f(0, ln 2). If one moves away from the

point (0, ln 2) along the graph of the function y = 1

2
ln((x + 1)2(x − 2)2) = ln((x + 1)(2 − x))

w otoczeniu punktu 0 then the function f decreases because ϕ2 does it and the value of α is 0

at all points of the graph. The same argument applies to the point (−3, ln 15).

Let ϕ3(x, y) =
1

4
(−e2y + (x+ 1)2(x+ 3)2)2, so

h(x, y) = α(x, y) + ϕ3(x, y) = 6x5 + 15x4 − 50x3 − 90x2 + 1

4
(−e2y + (x+ 1)2(x+ 3)2)2.

Applying the same arguments as above we discover the critical points (0, ln 3) and (2, ln 15).

At the first one the function f has a saddle while at the second one it has local minimum.

Remark. One may also evaluate the second derivatives of f , g and h at the critical points

and decide by investigating the d2f , d2g and d2h. We have
∂f

∂x
= 30(x4 + 2x3 − 5x2 − 6x) + x(x+ 3)(2x+ 3)((x2 + 3x)2 − e2y),

∂f

∂y
= −e2y(−e2y + (x2 + 3x)2) and

∂2f

∂x2 = 60(2x3 + 3x2 − 5x− 3) + (6x2 + 18x+ 9)((x2 + 3x)2 − e2y) + 2x2(x+ 3)2(2x+ 3)2,

∂2f

∂x∂y
= −2x(x+ 3)(2x+ 3)e2y , ∂2f

∂y2
= 4e4y − 2e2yx2(x+ 3)2) = 2e2y (2e2y − x2(x+ 3)2).

Therefore d2f(−1, ln 2) =

(

188 16

16 32

)

and d2f(2, ln 10) =

(

10800 −14000

−14000 20000

)

. The entries

at left upper corners are positive, also the determinants of both matrices are positive so the

matrices are positively defined and the function f has local minima at both points.

There are no other critical points so there are no saddles nor local maxima. The function

f is unbounded from above since f(x, 0)−−−−→
x→∞

∞. Since f(x, ln((x+ 1)(x+ 3)))−−−−→
x→−∞

−∞ it

is also unbounded from below .
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4. Let f(x, y) = (x2 − y)(4x2 − y). Prove that if the domain of f is restricted to any line L

through the origin then it has a proper local minimum at (0, 0), i.e. there is δ > 0 such that if

p ∈ L and ‖p‖ < δ and p 6= (0, 0) then f(p) > f(0, 0) = 0. Prove that f does not have local

minimum at the origin.

f < 0f < 0 f > 0f > 0

f > 0f > 0

y
=

4
x
2

y
=
x
2

y =
0.4

x
y = −0.4x

Solution. We have f(0, y) = y2 and

obviously this function attains its

smallest value at 0. We are done with

one line. Let us assume now that

y = ax for some real number a 6= 0.

We have

f(x, ax) = (x2 − ax)(4x2 − ax) =

=x2(a − x)(a − 4x). If 0 < |x| < |a|
4

then x2(a − x)(a − 4x) > 0 because

either both numbers (a−x), (a−4x)

are positive or both are negative so

their product is positive. So f re-

stricted to the line y = ax has

local minimum at the point (0, 0).

Since f(x, 0) = 4x4 the same is true

for the x–axis. On the other hand

f(x, 2x2) = −2x4 < 0 for all x 6= 0.

Therefore at any neighbourhood of

the origin one can find a point at

which the value of the function is

less (strictly) than at (0, 0). There-

fore the function f does not have mi-

nimum at (0, 0).

Remark. The inequality f(x, y) > 0

holds if either y > 4x2 or if y < x2.

The inequality f(x, y) < 0 holds if

4x2 > y > x2. This in equality chan-

ges when one of the red curves is

overstepped
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