
Some problems to be solved at home. Choose 2 of them, write down your solutions and mail

them to me.

1. Let f : U −→ R be a function defined on an open set U ⊆ R
k differentiable at a point

p ∈ U (the definition of a differentiable function can be found in prof. Warhursts’s note, page

6). Let us assume that ∇f(p) 6= (0, 0, . . . , 0). Prove that if ‖v‖ = 1 and α(t) = f(p+ tv) then

−‖∇f(p)‖ 6 α′(0) 6 ‖∇f(p)‖. For what v the equality holds on the right hand side?
Solution. Let v = (v1, v2, . . . , vk). By the chain rule we have α

′(t) =
∑k

j=1
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(p+ tv)vj, so
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(p)vj . By Cauchy–Schwarz inequality we have
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(p))2. The equality on

the right-hand side holds iff there exist t > 0 such that v = t · ∇f(p). This means that the

vectors v and ∇f(p) are parallel and point in the same direction. If the vectors are parallel

but point in the opposite directions then there exist w number t < 0 such that v = t · ∇f(p),

then the left–hand side inequality holds. �

2. (a) Let f(x, y) = ax2 + 2bxy + cy2 for all (x, y) ∈ R
2 for some fixed numbers a, b, c.

Prove that f(x, y) > 0 for all (x, y) 6= (0, 0) iff a > 0 and ac > b2 iff c > 0 and ac > b2.

(b) Let g(x, y, z) = Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz for all x, y, z) ∈ R
3 for some

fixed numbers A,B,C,D,E, F . Prove that g(x, y, z) > 0 for all (x, y, z) 6= (0, 0, 0) iff A > 0,

AB > D2 and A(BC − F 2)−D(DC −EF ) + E(DF −BE) > 0.

High school algebra is sufficient for a solution of this problem.

One may use the result of the part (a) in a solution of the part (b).

Solution. (a) Let us assume at first that f(x, y) > 0 for all points (x, y) 6= (0, 0). Then

0 < f(1, 0) = a. We may write f(x, y) = ax2 + 2bxy + cy2 = a
(

x+ b
a
y
)2 − b2y2

a
+ cy2 =

a
(

x+ b
a
y
)2

+ ca−b2

a
y2. Since 0 < f(b,−a) = ca−b2

a
(−a)2 = a(ca− b2) we have ac > b2.

Let us assume now that a > 0 and ac > b2 We may write f(x, y) = ax2 + 2bxy + cy2 =

=a
(

x+ b
a
y
)2

+ ca−b2

a
y2. Both summands are nonnegative so the sum is nonnegative. It may be

0 only if both summands vanish. If ca−b2

a
y2 = 0 then y = 0 but then a

(

x+ b
a
y
)2

= ax2 so it is

0 only when x = 0. QED

(b) Let us assume at first that g(x, y, z) > 0 for all points (x, y, z) 6= (0, 0, 0), therefore

0 < g(1, 0, 0) = A. We have

0 = g(x, y, z) = A
(
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A
z
)2

+
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We have 0 < g
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(
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yz. Therefore for

each (y, z) 6= (0, 0) the inequality (AB−D2)y2+(AC −E2)z2+(AF −DE)yz > 0 holds (note

thatA > 0). By part (a) we have AB−D2 > 0 and 0 < (AB−D2)(AC−E2)− (AF −DE)2 =

= A2BC − ACD2 −ABE2 − A2F 2 + 2ADEF = A(ABC − CD2 −BE2 − AF 2 + 2DEF ) =

= A
(

A(BC − F 2)−D(CD − EF ) + E(DF − BE)
)

, so

A(BC − F 2)−D(CD −EF ) + E(DF −BE) > 0. The proof of the necessity is done.

Now we assume that A > 0, AB > D2 and A(BC−F 2)−D(CD−EF )+E(DF−BE) > 0. By

part (a) we know that
(

B − D2

A

)
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yz > 0 for all (y, z) 6= (0, 0).

Therefore g(x, y, z) = A
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(
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for all (x, y, z) 6= (0, 0, 0). Moreover if g(x, y, z) = 0 then x+ D
A
y + E
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z = 0 and
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yz = 0, so y = 0 = z and thus x = 0. QED. �

Remark. The condition may be written as follows
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The similar theorem is true for functions of arbitrarily number of the variables, it is called

Sylvester theorem.

One can also prove it using the discriminant of a quadratic polynomial

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz = Ax2 + 2(Dy + Ez)x+By2 + 2Fyz + Cz2

of the variable x with y, z kept constant. The discriminant equals

4(Dy + Ez)2 − 4A(By2 + 2Fyz + Cz2) = 4
(

(D2 − AB)y2 + 2(DE − AF )yz + (E2 − AC)z2
)

.

If all values are positive then the discriminant must be negative etc. This is equivalent to what

was done above, recall the canonical form of quadratic polynomials. �

3. Let F (r, ϕ) = (r cosϕ, r sinϕ) for r > 0 and ϕ ∈ R.

Let ∂
∂r
F =

(

∂
∂r
(r cosϕ), ∂

∂r
(r sinϕ)

)

and ∂
∂ϕ
F =

(

∂
∂ϕ
(r cosϕ), ∂

∂ϕ
(r sinϕ)

)

.

Find the angle between the vectors ∂
∂r
F and ∂

∂ϕ
F . How does the angle depend on (r, ϕ)?

Solution. We have ∂
∂r
(r cosϕ) = cosϕ and ∂

∂r
(r sinϕ) = sinϕ so ∂

∂r
F = (cosϕ, sinϕ). Other

equations are ∂
∂ϕ
(r cosϕ) = −r sinϕ, ∂

∂ϕ
(r sinϕ) = r cosϕ thus ∂

∂ϕ
F =

(

− r sinϕ, r cosϕ
)

.

Therefore
∂
∂r
F · ∂

∂ϕ
F =

〈

∂
∂r
F, ∂

∂ϕ
F
〉

=〈(cosϕ, sinϕ), (−r sinϕ, r cosϕ)〉=cosϕ(−r sinϕ)+sinϕ(r cosϕ) = 0.

This means that that the vectors are perpendicular. The angle made by them is 90◦ or π
2
radians

independently of the point. �

4. Find all points of differentiability of the three functions defined on R3:

(a) x 7→ ‖x‖1 (b) x 7→ ‖x‖2, (c) x 7→ ‖x‖∞.
You may draw the sets defined by the equations ‖x‖1 = 1, ‖x‖2 = 1, ‖x‖∞ = 1. This should

help in guessing the answer.

Solution. ‖(x, y, z)‖1 = |x|+ |y|+ |z|, so ∂
∂x
(‖(x, y, z)‖1) = ∂

∂x
(|x|) = |x|

x
for all (x, y, z) with

x 6= 0. Also ∂
∂y
(‖(x, y, z)‖1) = ∂

∂y
(|y|) = |y|

y
for all (x, y, z) with y 6= 0 and ∂

∂z
(‖(x, y, z)‖1) =

∂
∂z
(|z|) = |z|

z
with z 6= 0. These partial derivatives are continuous as functions of (x, y, z) at

all points (x, y, z) with xyz 6= 0. Hence ‖ · ‖ is differentiable at all such points. At points with
x = 0 the derivative ∂

∂x
does not exist so norm is not differentiable at such points. The similar

statements are true in the case of 2 other partial derivatives. The norm ‖ · ‖1 is differentiable
at a point (x, y, z) iff xyz 6= 0.
∂
∂x
(‖(x, y, z)‖2 = ∂

∂x

√

x2 + y2 + z2 = ∂
∂x
(x2 + y2 + z2)1/2 = 1

2
(x2 + y2 + z2)−1/2 · 2x = x√

x2+y2+z2

if x2 + y2 + z2 > 0. The function (x, y, z) 7→ x√
x2+y2+z2

is continuous at every point

(x, y, z) 6= (0, 0, 0). The same is true for functions (x, y, z) 7→ ∂
∂y
(‖(x, y, z)‖2 = y√

x2+y2+z2
and

(x, y, z) 7→ ∂
∂z
(‖(x, y, z)‖2 = z√

x2+y2+z2
At the point (0, 0, 0) the function is not differentiable

because ‖(x, 0, 0)‖ = |x| so partial derivative relative to x does not exist at the origin.
‖(x, y, z)‖∞ = max(|x|, |y|, |z|). If |x| 6= |y| 6= |z| 6= |x| then one of the three numbers is the
largest. Let it be |x|. Then there exists a number δ > 0 such that if |x− u| < δ and |y− v| < δ

and |z − w| < δ then |u| > |v| and |u| > |w| therefore ‖(u, v, w)‖∞ = |u| 6= 0. Therefore

‖ · ‖∞ is differentiable around (x, y, z) and the gradient of it is ( |x|x , 0, 0) so it is either (1, 0, 0)
or (−1, 0, 0). The problem with the differentiability arises if |x| = |y| > |z| or |y| = |z| > |x| or
|z| = |x| > |y|. Suppose the first case holds and x > 0. Then limh→0+

‖(x+h,y,z)‖∞−‖(x,y,z)‖∞
h

= 1

while limh→0−
‖(x+h,y,z)‖∞−‖(x,y,z)‖∞

h
= 0 because ‖(x+ h, y, z)‖∞ −‖(x, y, z)‖∞ = x+ h− x = h

for h > 0 and ‖(x + h, y, z)‖∞ − ‖(x, y, z)‖∞ = |y| − |y| = 0 for −x < h < 0. At (0, 0, 0) the

norm is not differentiable because ‖(x, 0, 0)‖∞ = |x| so even partial derivative relative to x does
not exist at this point. This ends the solution, �

Remark The equation |x| = |y| describes the union of 2 planes in R3 as do equation |x| = |z|
and |y| = |z|. Outside of the union of these six planes the norm ‖ · ‖ is differentiable, at some
points of these planes the norm differentiable, too. E.g. at (2, 2, 3), in general at all points at



which 2 coordinates are equal in the absolute value and the absolute value of the third one

is greater (not equal but greater). There are six „infinite quadrilateral cones” with a common

vertex at (0, 0, 0) and their faces are contained in the union of the six planes described above.

5. Prove that among the triangles inscribed into the circle of radius 1 there is a triangle

with the largest area.

Solution. Let (x1, y1), (x2, y2), (x3, y3) be the vertices of a triangle. Therefore the equalities

x2
1 + y21 = x2

2 + y22 = x2
3 + y23 = 1 hold so the set consisting of points (x1, y1, x2, y2, x3, y3) ∈ R

6

is bounded and closed in R6 so it is compact. By Weierstrass Maximum Principle the function

A(x1, y1, x2, y2, x3, y3) =
1
2
|(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)|

which is continuous attains its largest value at some point of this set. The value of the function

A is the area of the triangle with the vertices (x1, y1), (x2, y2), (x3, y3). Maximal value of A

is positive because because it is not less than the area of the triangle with the vertices (1, 0),

(0, 1) and (−1, 0) which is equal to 1. The minimal value of A is 0. This is obvious and happens

when 2 vertices coincide.

6. Prove that among the 17-gons inscribed into the circle of radius 1 there is a 17-gon with

the largest area. (17-gon has 17 vertices.)

Solution. We may say the vertices of the 17-gon are of the form V1 = (cos t1, sin t1), V2 =

(cos t2, sin t2), V3 = (cos t3, sin t3),. . . , V17 = (cos t17, sin t17), with 0 6 t1 6 t2 6 t3 6 . . . 6

6t17 6 2π. The inequalities are NOT sharp so some vertices may coincide which means that a

degenerate 17–gons may appear. We have to admit degenerate polygons to ensure compactness

of the domain. The area of the triangle V1VjVj+1, j = 2, 3, 4, . . . , 16, is equal to

1
2
|(cos tj − cos t1)(sin tj+1 − sin t1)− (sin tj − sin t1)(cos tj+1 − cos t1)|

so it is a continuous function of (t1, t2, t3, . . . , t17). The sum of these 15 continuous function

is also continuous thus the are of the 17-gon is a continuous function of (t1, t2, t3, . . . , t17). Its

domain is bounded and closed i.e. it is compact. Therefore By Weierstrass Maximum Principle

it attains the maximal value. The only problem left is whether or not the obtained 17 points

are really distinct, theoretically it could happen that e.g. two or three vertices coincide. This

is not the case. Assume for example that Vj−1 6= Vj = Vj+1. Then one may replace Vj with the

midpoint of the arc with ends Vj−1, Vj+1 and the new 17-gon will have greater area than the

one which was supposed to have the greatest area. This contradiction shows that for the 17-gon

with the biggest area all the vertices are distinct so this one is nondegenerate.

Remark. One can prove that the largest area has the regular 17-gon but you were not asked

to do it.

7. Prove that among the flat cuts (cross-sections) of the cube with edge of length 1 there is

one with the largest area.

Remark. It is not true that among the pentagons which are cross-sections of the given cube

there is one with the largest area.

The solution appears at another file that I have mailed to all students of group 2.


