
Open and closed sets

Definition 0.1 (of an open set)

A set G ⊆ R
k is open iff for each point p ∈ G there exist a number rp > 0 such that if x ∈ R

k

and ‖x− p‖2 < rp then x ∈ G.

It means that if p ∈ G and x is a point in Rk which is sufficiently close to p then x also is

in G. The result depends on k. Let us look at few examples.

Example 0.2 k = 1, G = (3, 7). If p ∈ (3, 7) and rp = min(|3 − p|, |7 − p|) that is rp is the
smaller of the 2 numbers |a − p| and |b − p| and if |x − p| < rp then x ∈ (a, b) because the

distance from p to x is less than the distance from p to any end of the interval (a, b). So open

intervals are open sets in R or we may say any open interval is an open subset of R. �

Example 0.3 k = 1, G = (3, 7]. This set is not open. The problem is with p = 7 We can find

always a number close to 7 which is outside of G = (3, 7]. For example the distance from 7 + r
2

is r

2
< r and 7 + r

2
6∈ (3, 7].

Example 0.4 k = 1, G = {x ∈ R : x 6= 0}. The set G is open. The reason is that if
p ∈ G, so p 6= 0 and if r = |p| and |x − p| < r then x 6= 0. Formally we may write: if

|p| − |x| 6 |p− x| < r = |p| then 0 < |x|, the first inequality is the triangle inequality, then it
is simplified. 0 < |x| implies that x 6= 0 so x ∈ G.

Proposition 0.5 The set G ⊂ R is open if and only if it is a union of arbitrary number of

open intervals.

This proposition is quite obvious. If the set G is open then by the definition of the open set

then together with a point p it contains the set (p− rp, p+ rp) for some rp > 0. If the set G is a

union of open intervals then each point of G is at at least one these open intervals and we can

argue as in the example 0.2. �

Example 0.6 k = 2, G = {(x, y) : x2 + (y − 2)2 < 9 is an open set. Clearly G is a disc of

radius 3 centered at (0, 2) without a circle of radius 3 centered at (0, 2), i.e. without boundary.

Let us prove that G is an open set. Let (p1, p2) = p ∈ G. This means that p21+(p2−2)2 < 9. Let

rp = 3−
√

p21 + (p2 − 2)2. We are going to prove that the inequality (x− p1)
2 + (y − p2)

2 < r2p

implies that G = {(x, y) : x2 + (y − 2)2 < 9 so we are going to prove that the disc of radius

rp centered at p is contained in the disc of radius 3 centered at (0, 2). This is an immediate

consequence of the triangle inequality

‖(x, y)− (0, 2)‖2 6 ‖(x, y)− p‖2 + ‖p− (0, 2)‖2 < (3− rp) + rp = 3. �

Remark 0.7 One can prove in the same way that the set {x ∈ R
k : ‖x − p‖2 < r} is an

open subset of Rk. �

Example 0.8 The set G = {(x, 0) : 0 < x < 1} is NOT an open subset of the plane, so the
open straight line segment is not open subset of the plane although it is an open subset of the

x–axis. It is so because if 0 < y < r then ‖(x, y) − (x, 0)‖2 = y < r and (x, y) 6∈ G. We just

showed that the notion of open set depends on the space containing it. �

1



Remark 0.9 IfM is an arbitrary set in which the distance d between any two points is defined

the we can talk of open sets in it. The distance d is a non-negative function which assigns a

non-negative number d(x,y) to the pair of points x,y ∈ Mso that

(i) d(x,y) = 0 if and only if x = y for all x,y ∈ M ;

(ii) d(x,y) = d(y,x) for all x,y ∈ M ;

(iii) d(x, z) 6 d(x,y) + d(y, z) for all x,y, z ∈ M .

If such distance (or metric) d is defined inM we say thatM is a metric space. The distance may

de defined in different ways. One may say that the distance from the north pole to the south

pole is around 12 742 kilometers but if one wanted to travel from one place to the second one

then we would say that the distance is around 20020 kilometers. Also the symmetry condition

we assume is not very obvious. If one is hiking in mountains it is usually so that if one walks

up then he needs more time then for walking down. Frequently the distance in mountains is

measured by the time needed for a walk. Nonetheless we assume symmetry of the distance. In

any metric space we can define open sets. If the set is contained indifferent metric space it may

may be open in only one of them. So when we talk of open sets it is necessary to indicate a

metric space to which the notion is referred. �

A closed set F ⊂ R
k is such set that Rk \F is open (in Rk). A closed interval [a, b] is a closed

subset of R. The set {(x, y) ∈ R
2 : x2+(y−2)2 6 3} is a closed subset of R2. The set [13,∞)

is a closed subset of R2. A graph of a continuous function defined on a closed interval is a closed

subset of R2.

Proposition 0.10 The set F ⊂ M is closed in M if and only if it follows from the equation

p = lim
n→∞

pn and from the sentence ∀npn ∈ F that p ∈ F . �

This may be read: the limit of the sequence with terms in F is in F .

By this proposition the interval I = (1, 100] is not closed. For each n the point n+1
n
is I

while lim
n→∞

n+1
n

= 1 6∈ I.

∅ and Rk are the only subsets of Rk which are at the same time open and closed. A proof

if the theorem saying that no other subset of Rk is open and closed is not trivial. We are not

going to prove it.

The intersection of finitely many open subsets of Rk is necessarily open in Rk. This sentence

is equivalent to the following the union of finitely many closed subsets of Rk is a closed subset

of Rk.

The union of arbitrarily many of open subsets of Rk is open in Rk. Equivalently the inter-

section of arbitrarily many of closed subsets of Rk is closed in Rk.

Example 0.11 For each natural number n the interval (− 1
n
, 1
n
) is open.

∞
⋂

n=1

(− 1
n
, 1
n
) = {0} so

the intersection of infinitely many open sets need not to be open. �

Example 0.12 Let Gn = {x ∈ R : x 6= n} for n = 1, 2, 3, . . .. It is easy to see that Gn is

open in R for each n ∈ N. The set G[=
∞
⋂

n=1

Gn consists of all real numbers which are not natural.

2



x ∈ G =
∞
⋂

n=1

Gn if and only if x is a real number different from 1, 2, 3, . . .. The set G is open. So

it may happen that the intersection of infinitely many open sets may be open. �

We may say that if a set in R
k is defined with finitely many strict inequalities between

continuous functions then this set is open. We do not say this is a theorem. To make it precise we

should say something about the domains of the functions in questions. But in simple situations

it is true.

If in this sentence strict is replaced with 6 or > then the set is closed.

Example 0.13 The set A = {(x, y) ∈ R
2 : x2+y2 6 4, x+2y < 2} is neither closed nor open.

We are going to prove this. (0, n
n+1

) ∈ A for each natural number n because 02+
(

n
n+1

)2
< 1 < 4

and 0 + 2 n

n+1
) = 2n

n+1
< 2. But lim

n→∞
(0, n

n+1
) = (0, 1) and it is not true that 0 + 2 · 1 < 2 hence

(0, 1) 6∈ A. By proposition 0.10 A is NOT open in R2. It is easy to see that (−2, 0) ∈ A. But

the distance from (−2, 0) to (−2− r

2
, 0) is r

2
< r and (−2− r

2
, 0) 6∈ A because (−2− r

2
)2 +02 =

4 + 2r + r2 > 4 for any number r > 0. This proves that the set A is not open in R2. �

Example 0.14 The set A = {(x, y) ∈ R
2 : x2 + y2 6 1, x + y < 2} is closed. We are going

to prove it. If x2 + y2 6 1 then 2 > 2x2 + 2y2 > x2 + y2 + 2xy = (x+ y)2 thus
√
2 > |x+ y|, so

|x+ y| 6
√
2 < 2. This proves that

A = {(x, y) ∈ R
2 : x2 + y2 6 1, x+ y < 2} = {(x, y) ∈ R

2 : x2 + y2 6 1}.
This proves that the set A is closed. �

Example 0.15 The set A = {(x, y) : x2 < y < 4y2} is open in R
2. Let us assume that

p = (p1, p2) ∈ A that is p21 < p2 < 4p22 and that 0 < ε < p2 − p21 and 0 < ε < 4p21 − p2. Then if

0 < δ < 1 and δ < ε
3(2|p1|+1)

and |x− p1| < δ and |y − p2| < δ then

x2 6 (|p1|+ δ)2 = p21 + 2|p1|δ + δ2 < p21 + 2|p1|δ + δ = p21 + (2|p1|+ 1)δ < p21 +
ε

3
.

Thus if |x − p1| < δ and |y − p2| < ε
3
then x2 < p21 +

ε
3
< p2 − ε

3
< y. Let us assume that one

more inequality is satisfied δ < ε

24|p1|
. If |x− p1| < δ then

4x2 > 4(|p1| − δ)2 = 4|p1|2 − 8|p1|δ + δ2 > 4|p1|2 − 8|p1|δ > 4|p1|2 − ε
3
.

Thus if |x− p1| < δ and |y − p2| < ε

3
then 4x2 > 4|p1|2 − ε

3
> p2 +

ε

3
> y.

We proved that ε > 0 and δ > 0 are chosen so that few inequalities we called upon above are

satisfied then x2 < y < 4y2 so (x, y) ∈ A. This ends the prove. �

The example above may be shortened if instead of finding specific estimates we decide to use

continuity of the functions x2, 4x2 and y. Then we just say that if |x−p1| < δ the 4|x2−p21| < ε

3

where ε > 0 is a number such that 0 < ε < p2 − p21 and 0 < ε < 4p21 − p2. The existence of

δ follows from the continuity of the functions x2, 4x2. Specific value of δ is not needed for the

proof.
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