8. Determine the maximum and minimum values of the function f(x; y; z) on the set $S \subset \mathbb{R}^3$ where:

b) $f(x, y, z) = x^2 + y^2 + z^2$ and $S = \{(x, y, z): 3x + 2y + z = 6\}.$

Solution 1. The set S is a plane. The vector (1, 2, 3) is orthogonal (perpendicular) to this plane. Therefore The set $L = \{(3t, 2t, t): t \in \mathbb{R} \text{ is a straight line perpendicular to } S$. The line L contains the origin. It meets the plane S at the point (3t, 2t, t) for t such that 9t + 4t + t = 6 i.e. for $t = \frac{6}{14} = \frac{3}{7}$. The common point of S and L is therefore $(\frac{9}{7}, \frac{6}{7}, \frac{3}{7})$. This means that the least value of f is $(\frac{9}{7})^2 + (\frac{6}{7})^2 + (\frac{3}{7})^2 = \frac{81+36+9}{49} = \frac{18}{7}$. The function f is unbounded from above because if contains all points of the form (0, t, 6 - 2t) and $f(0, t, 6 - 2t) = t^2 + (6 - 2t)^2 \ge t^2 \xrightarrow[t \to \infty]{} \infty$.

Solution 2. An extremal value of f may be attained at a point (x, y, z) at which the following equation $2(x, y, z) = \nabla f = \lambda(3, 2, 1) = \nabla(3x + 2y + z - 6)$ is satisfied for some number λ . Since 3x + 2y + z = 6 the inequality $\lambda \neq 0$ holds. Therefore x = 3z and y = 2z. This implies that 9z + 4z + z - 6 = 0 so $z = \frac{3}{7}$, $y = \frac{6}{7}$ and $x = \frac{9}{7}$. This proves that if f attains its least upper bound or its greatest lower bound then it does this at a point $\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right)$ so the bound is $f\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right) = \frac{81+36+9}{49} = \frac{18}{7}$. At the moment we do not know whether $\frac{18}{7}$ is a bound of F and if it is whether $\sup f = \frac{18}{7}$ or $\inf f = \frac{18}{7}$. Let $\hat{S} = \{(x, y, z): 3x + 2y + z = 6 \text{ and } x^2 + y^2 + z^2 \leq 100\}$. Obviously $\hat{S} \subset S$ and if $(x, y, z) \in S \setminus \hat{S}$ then $f(x, y, z) = x^2 + y^2 + z^2 > 100 > 3 > \frac{18}{7}$. The set \hat{S} is compact thus the continuous function f attains its greatest lower bound at some point of \hat{S} . Obviously $\inf_S f = \inf_{\hat{S}} f < 3$. Therefore $\inf_S f = \frac{18}{7}$. As in the first solution we prove that $\sup_S = \infty$. The solution is now complete. \Box

f)
$$f(x, y, z) = x^2 + y^2 + z^2$$
 $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1, x + 2y + 3z = 6\}.$

Solution 1. The set S the intersection of the 2 planes which are not parallel. Therefore S is a straight line. The function f is the square of the distance from (x, y, z) to (0, 0, 0) so it is not bounded from above: $\sup_S f = \infty$. From the equations x + y + z = 1 and x + 2y + 3z = 6 it follows that z - x = 4 so z = 4 + x and y = -3 - 2x. This implies that $f(x, y, z) = x^2 + (-3 - 2x)^2 + (4 + x)^2 = 6x^2 + 20x + 25 = 6(x + \frac{20}{12})^2 - 6(\frac{5}{3})^2 + 25$. This implies that the smallest value of f is $-6(\frac{5}{3})^2 + 25 = \frac{1}{3}(3 \cdot 25 - 2 \cdot 25) = \frac{25}{3}$. This may be written in the form $\inf_S f = \frac{25}{3} = f(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}) = \frac{25+1+49}{9} = \frac{25}{3}$.

Solution 2. The gradients $\nabla(x + y + z - 1) = (1, 1, 1)$ and $\nabla(x + 2y + 3z - 6) = (1, 2, 3)$ are linearly independent. Therefore for every point (x, y, z) at which an extreme value is attained there exist numbers λ_1, λ_2 such that

$$\nabla(x^2 + y^2 + z^2) = 2(x, y, z) = \lambda_1(1, 1, 1) + \lambda_2(1, 2, 3) = \lambda_1 \nabla(x + y + z - 1) + \lambda_1 \nabla(x + 2y + 3z - 6)$$

Therefore $2x = \lambda_1 + \lambda_2$, $2y = \lambda_1 + 2\lambda_2$ and $2z = \lambda_1 + 3\lambda_2$. Now subtract the consecutive equations to get $2(y - x) = \lambda_2$ and $2(z - y) = \lambda_2$. Therefore z - y = y - x i.e. x - 2y + z = 0. This implies that 3y = (x + y + z) - (x - 2y + z) = 1 so $y = \frac{1}{3}$. Thus $x + z = \frac{2}{3}$ and $x + 3z = \frac{16}{3}$ and $2z = \frac{16}{3} - \frac{2}{3}$ hence $z = \frac{7}{3}$ and $x = -\frac{5}{3}$. We proved that **if** an extreme value exists it is attained at the point $(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3})$ so it equals $(-\frac{5}{3})^2 + (\frac{1}{3})^2 + (\frac{7}{3})^2 = \frac{25}{3}$. As many times before let us restrict the domain of f. Let $\tilde{S} = \{(x, y, z) \in \mathbb{R}^3: x + y + z = 1, x + 2y + 3z = 6, x^2 + y^2 + z^2 \leq 100\}$. The set \tilde{S} is

bounded and closed i.e. it is compact. Therefore f attains its greatest lower bound which is not greater than $\frac{25}{3}$ because $\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right) \in \tilde{S}$. But the point $\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right)$ is the only one at which extreme value can be attained so $\inf_{\tilde{S}} f = \frac{25}{3}$. The biggest value of f on \tilde{S} os also attained but the point lying on the boundary of the ball $x^2 + y^2 + z^2 \leq 100$ and if we change the radius of the ball the maximum will change, too. We still need to notice that $\sup_S f = \infty$. This can be done either by saying that S is a straight line so the distance from the points of the line to the origin is unbounded from above or by indicating points from S which "escape" to ∞ e.g. (x, -3 - 2x, 4 + x). We are done. \Box

9. Using the Kuhn-Tucker theorem, find the maximum value of the function f(x, y) = x + ay on the set $M = \{(x, y) \in \mathbb{R}^2: x^2 + y^2 \leq 1, x + y \geq 0\}$ (the coefficient α is a fixed parameter).

Solution. The set M is half of the unit disk (with radius 1 centered at (0,0)) above the line x + y = 0. the gradient $\nabla(x + y) = (1, 1)$ tells us in what direction the function x + y grows the fastest. It is bounded by the semicircle from one side (NE) and by a straight line segments from another side (SW). The gradient of the optimized function $\nabla(x + \alpha y) = (1, \alpha)$ never vanishes. Due to this maximal and minimal values of f on M are attained at some boundary points of the set M which is compact that guarantees the existence of the extreme values. If (x, y) is a point at which one of them is attained the either x + y = 0 or $x^2 + y^2 = 1$. In the first case we have $f(x, y) = x + \alpha y = (-1 + \alpha)y$. This is a linear function in y. It attains its maximal and minimal values at the end of the interval $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ so they are $-\frac{-1+\alpha}{\sqrt{2}} = f\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and $\frac{-1+\alpha}{\sqrt{2}} = f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ depending on its relation of α to 1. In the second case there exists λ such that $(1, \alpha) = \lambda(2x, 2y)$. If it does then $y = \alpha x$ and therefore $1 = x^2 + y^2 = x^2(1 + \alpha^2)$ thus $x = \pm \frac{1}{\sqrt{1 + \alpha^2}}$ and $y = \alpha x = \pm \frac{\alpha}{\sqrt{1+\alpha^2}}$. The two obtained points or one of them should belong to M so $0 \leq x+y = \pm \frac{1+\alpha}{\sqrt{1+\alpha^2}}$. This tells us that if $\alpha \ge -1$ then $x+y = \frac{1+\alpha}{\sqrt{1+\alpha^2}} \ge 0$ and if $\alpha < -1$ then $x + y = -\frac{1+\alpha}{\sqrt{1+\alpha^2}} > 0$. $f\left(\frac{1}{\sqrt{1+\alpha^2}}, \frac{\alpha}{\sqrt{1+\alpha^2}}\right) = \sqrt{1+\alpha^2}$ and $f\left(-\frac{1}{\sqrt{1+\alpha^2}}, -\frac{\alpha}{\sqrt{1+\alpha^2}}\right) = \frac{1}{\sqrt{1+\alpha^2}}$ $-\sqrt{1+\alpha^2}$. It is time to write the answer. There will be few cases.

Let $\alpha \ge -1$. In this case the points at which the extreme values can be attained are $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $(\frac{1}{\sqrt{1+\alpha^2}}, \frac{\alpha}{\sqrt{1+\alpha^2}})$. The corresponding values of f are: $\frac{1-\alpha}{\sqrt{2}}, \frac{\alpha-1}{\sqrt{2}}$ and $\sqrt{1+\alpha^2}$. If $\alpha > 1$ then the smallest is $\frac{1-\alpha}{\sqrt{2}}$ the biggest is $\sqrt{1+\alpha^2}$, note that $|\alpha-1| \le 2\sqrt{1+\alpha^2}$.

If $\alpha = 1$ then the smallest value of f is 0, the biggest is $\sqrt{2}$. If $-1 < \alpha < 1$ the the smallest value of f is $\frac{\alpha-1}{\sqrt{2}}$ and the biggest is $\sqrt{1+\alpha^2}$. If $\alpha = -1$ then the inequalities $-\sqrt{2} = f(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \leqslant f(x, y) \leqslant f(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = \sqrt{2}$ hold.

Let $\alpha < -1$. In this case eventually possible extreme values are $\frac{1-\alpha}{\sqrt{2}}$, $\frac{\alpha-1}{\sqrt{2}}$ and $-\sqrt{1+\alpha^2}$. The biggest is $\frac{1-\alpha}{\sqrt{2}}$, the smallest is $-\sqrt{1+\alpha^2}$.