8. Determine the maximum and minimum values of the function $f(x ; y ; z)$ on the set $S \subset \mathbb{R}^{3}$ where:
b) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and $S=\{(x, y, z)$: $\quad 3 x+2 y+z=6\}$.

Solution 1. The set S is a plane. The vector $(1,2,3)$ is orthogonal (perpendicular) to this plane. Therefore The set $L=\{(3 t, 2 t, t): \quad t \in \mathbb{R}$ is a straight line perpendicular to S. The line L contains the origin. It meets the plane S at the point $(3 t, 2 t, t)$ for t such that $9 t+4 t+t=6$ i.e. for $t=\frac{6}{14}=\frac{3}{7}$. The common point of S and L is therefore $\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right)$. This means that the least value of f is $\left(\frac{9}{7}\right)^{2}+\left(\frac{6}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}=\frac{81+36+9}{49}=\frac{18}{7}$. The function f is unbounded from above because if contains all points of the form $(0, t, 6-2 t)$ and $f(0, t, 6-2 t)=t^{2}+(6-2 t)^{2} \geqslant t^{2} \xrightarrow[t \rightarrow \infty]{ } \infty$.
Solution 2. An extremal value of f may be attained at a point (x, y, z) at which the following equation $2(x, y, z)=\nabla f=\lambda(3,2,1)=\nabla(3 x+2 y+z-6)$ is satisfied for some number λ. Since $3 x+2 y+z=6$ the inequality $\lambda \neq 0$ holds. Therefore $x=3 z$ and $y=2 z$. This implies that $9 z+4 z+z-6=0$ so $z=\frac{3}{7}, y=\frac{6}{7}$ and $x=\frac{9}{7}$. This proves that if f attains its least upper bound or its greatest lower bound then it does this at a point $\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right)$ so the bound is $f\left(\frac{9}{7}, \frac{6}{7}, \frac{3}{7}\right)=\frac{81+36+9}{49}=\frac{18}{7}$. At the moment we do not know whether $\frac{18}{7}$ is a bound of F and if it is whether $\sup f=\frac{18}{7}$ or $\inf f=\frac{18}{7}$. Let $\hat{S}=\left\{(x, y, z): \quad 3 x+2 y+z=6 \quad\right.$ and $\left.\quad x^{2}+y^{2}+z^{2} \leqslant 100\right\}$. Obviously $\hat{S} \subset S$ and if $(x, y, z) \in S \backslash \hat{S}$ then $f(x, y, z)=x^{2}+y^{2}+z^{2}>100>3>\frac{18}{7}$. The set \hat{S} is compact thus the continuous function f attains its greatest lower bound at some point of \hat{S}. Obviously $\inf _{S} f=\inf _{\hat{S}} f<3$. Therefore $\inf _{S} f=\frac{18}{7}$. As in the first solution we prove that $\sup _{S}=\infty$. The solution is now complete.
f) $f(x, y, z)=x^{2}+y^{2}+z^{2} \quad S=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad x+y+z=1, x+2 y+3 z=6\right\}$.

Solution 1. The set S the intersection of the 2 planes which are not parallel. Therefore S is a straight line. The function f is the square of the distance from (x, y, z) to $(0,0,0)$ so it is not bounded from above: $\sup _{S} f=\infty$. From the equations $x+y+z=1$ and $x+2 y+3 z=6$ it follows that $z-x=4$ so $z=4+x$ and $y=-3-2 x$. This implies that $f(x, y, z)=x^{2}+(-3-2 x)^{2}+(4+x)^{2}=6 x^{2}+20 x+25=6\left(x+\frac{20}{12}\right)^{2}-6\left(\frac{5}{3}\right)^{2}+25$. This implies that the smallest value of f is $-6\left(\frac{5}{3}\right)^{2}+25=\frac{1}{3}(3 \cdot 25-2 \cdot 25)=\frac{25}{3}$. This may be written in the form $\inf _{S} f=\frac{25}{3}=f\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right)=\frac{25+1+49}{9}=\frac{25}{3}$.
Solution 2. The gradients $\nabla(x+y+z-1)=(1,1,1)$ and $\nabla(x+2 y+3 z-6)=(1,2,3)$ are linearly independent. Therefore for every point (x, y, z) at which an extreme value is attained there exist numbers λ_{1}, λ_{2} such that
$\nabla\left(x^{2}+y^{2}+z^{2}\right)=2(x, y, z)=\lambda_{1}(1,1,1)+\lambda_{2}(1,2,3)=\lambda_{1} \nabla(x+y+z-1)+\lambda_{1} \nabla(x+2 y+3 z-6)$
Therefore $2 x=\lambda_{1}+\lambda_{2}, 2 y=\lambda_{1}+2 \lambda_{2}$ and $2 z=\lambda_{1}+3 \lambda_{2}$. Now subtract the consecutive equations to get $2(y-x)=\lambda_{2}$ and $2(z-y)=\lambda_{2}$. Therefore $z-y=y-x$ i.e. $x-2 y+z=0$. This implies that $3 y=(x+y+z)-(x-2 y+z)=1$ so $y=\frac{1}{3}$. Thus $x+z=\frac{2}{3}$ and $x+3 z=\frac{16}{3}$ and $2 z=\frac{16}{3}-\frac{2}{3}$ hence $z=\frac{7}{3}$ and $x=-\frac{5}{3}$. We proved that if an extreme value exists it is attained at the point $\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right)$ so it equals $\left(-\frac{5}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{7}{3}\right)^{2}=\frac{25}{3}$. As many times before let us restrict the domain of f. Let $\tilde{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad x+y+z=1, x+2 y+3 z=6, x^{2}+y^{2}+z^{2} \leqslant 100\right\}$. The set \tilde{S} is
bounded and closed i.e. it is compact. Therefore f attains its greatest lower bound which is not greater than $\frac{25}{3}$ because $\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right) \in \tilde{S}$. But the point $\left(-\frac{5}{3}, \frac{1}{3}, \frac{7}{3}\right)$ is the only one at which extreme value can be attained so $\inf _{\tilde{S}} f=\frac{25}{3}$. The biggest value of f on \tilde{S} os also attained but the point lying on the boundary of the ball $x^{2}+y^{2}+z^{2} \leqslant 100$ and if we change the radius of the ball the maximum will change, too. We still need to notice that $\sup _{S} f=\infty$. This can be done either by saying that S is a straight line so the distance from the points of the line to the origin is unbounded from above or by indicating points from S which „escape" to ∞ e.g. $(x,-3-2 x, 4+x)$. We are done.
9. Using the Kuhn-Tucker theorem, find the maximum value of the function $f(x, y)=x+a y$ on the set $M=\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}+y^{2} \leqslant 1, x+y \geqslant 0\right\}$ (the coefficient α is a fixed parameter).
Solution. The set M is half of the unit disk (with radius 1 centered at $(0,0)$) above the line $x+y=0$. the gradient $\nabla(x+y)=(1,1)$ tells us in what direction the function $x+y$ grows the fastest. It is bounded by the semicircle from one side (NE) and by a straight line segments from another side (SW). The gradient of the optimized function $\nabla(x+\alpha y)=(1, \alpha)$ never vanishes. Due to this maximal and minimal values of f on M are attained at some boundary points of the set M which is compact that guarantees the existence of the extreme values. If (x, y) is a point at which one of them is attained the either $x+y=0$ or $x^{2}+y^{2}=1$. In the first case we have $f(x, y)=x+\alpha y=(-1+\alpha) y$. This is a linear function in y. It attains its maximal and minimal values at the end of the interval $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ so they are $-\frac{-1+\alpha}{\sqrt{2}}=f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\frac{-1+\alpha}{\sqrt{2}}=f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ depending on its relation of α to 1 . In the second case there exists λ such that $(1, \alpha)=\lambda(2 x, 2 y)$. If it does then $y=\alpha x$ and therefore $1=x^{2}+y^{2}=x^{2}\left(1+\alpha^{2}\right)$ thus $x= \pm \frac{1}{\sqrt{1+\alpha^{2}}}$ and $y=\alpha x= \pm \frac{\alpha}{\sqrt{1+\alpha^{2}}}$. The two obtained points or one of them should belong to M so $0 \leqslant x+y= \pm \frac{1+\alpha}{\sqrt{1+\alpha^{2}}}$. This tells us that if $\alpha \geqslant-1$ then $x+y=\frac{1+\alpha}{\sqrt{1+\alpha^{2}}} \geqslant 0$ and if $\alpha<-1$ then $x+y=-\frac{1+\alpha}{\sqrt{1+\alpha^{2}}}>0 . f\left(\frac{1}{\sqrt{1+\alpha^{2}}}, \frac{\alpha}{\sqrt{1+\alpha^{2}}}\right)=\sqrt{1+\alpha^{2}}$ and $f\left(-\frac{1}{\sqrt{1+\alpha^{2}}},-\frac{\alpha}{\sqrt{1+\alpha^{2}}}\right)=$ $-\sqrt{1+\alpha^{2}}$. It is time to write the answer. There will be few cases.
Let $\alpha \geqslant-1$. In this case the points at which the extreme values can be attained are $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{1+\alpha^{2}}}, \frac{\alpha}{\sqrt{1+\alpha^{2}}}\right)$. The corresponding values of f are:
$\frac{1-\alpha}{\sqrt{2}}, \frac{\alpha-1}{\sqrt{2}}$ and $\sqrt{1+\alpha^{2}}$. If $\alpha>1$ then the smallest is $\frac{1-\alpha}{\sqrt{2}}$ the biggest is $\sqrt{1+\alpha^{2}}$, note that $|\alpha-1| \leqslant 2 \sqrt{1+\alpha^{2}}$.
If $\alpha=1$ then the smallest value of f is 0 , the biggest is $\sqrt{2}$. If $-1<\alpha<1$ the the smallest value of f is $\frac{\alpha-1}{\sqrt{2}}$ and the biggest is $\sqrt{1+\alpha^{2}}$. If $\alpha=-1$ then the inequalities $-\sqrt{2}=f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \leqslant f(x, y) \leqslant f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\sqrt{2}$ hold.
Let $\alpha<-1$. In this case eventually possible extreme values are $\frac{1-\alpha}{\sqrt{2}}, \frac{\alpha-1}{\sqrt{2}}$ and $-\sqrt{1+\alpha^{2}}$. The biggest is $\frac{1-\alpha}{\sqrt{2}}$, the smallest is $-\sqrt{1+\alpha^{2}}$.

