
Integration in several variables

We remind basic theorems.

Theorem 10.1 (Fubini)

If f is Riemann integrable on the rectangle [a, b]× [c, d] then
∫∫

[a,b]×[c,d]

f(x, y)dxdy =

∫ d

c

(
∫ b

a

f(x, y)dx

)

dy =

∫ b

a

(
∫ d

c

f(x, y)dy

)

dx.

Theorem 10.2 (change of the variables formula)

If Φ: G′ −→ G is a diffeomorhpism of an open set G′ onto an open set G (Φ(u, v) = (x, y) ∈ G′),

f : G → R is a Riemann integrable function on a set A = Φ(A′) then
∫∫

A

f(x, y)dxdy =

∫∫

A′

f(Φ(u, v))| detDΦ(u, v)|dudv.

Both theorems hold in more dimensional case. In the one dimensional case in the second

theorem there was no absolute value. This is in fact the same theorem. If ϕ maps an interval

[a, b] onto the interval [c, d] and ϕ′ < 0 then the function ϕ decreases and we have ϕ(a) = d

and ϕ(b) = c and instead of writing
∫ b

a
f(ϕ(t))ϕ′(t)dt =

∫ ϕ(b)

ϕ(a)
f(u)du =

∫ c

d
f(u)du (as in the

previous semester) we can write
∫ b

a
f(ϕ(t))|ϕ′(t)|dt =

∫ ϕ(a)

ϕ(b)
f(u)du =

∫ d

c
f(u)du – this time we

put smaller end of the interval down and the bigger up. This is due to the problems with

several variables which we shall not discuss here.

Example 10.3 Let Φ(u, v) = (au + bv, cu + dv). We have Φ(0, 0) = (0, 0), Φ(1, 0) = (a, c),

Φ(0, 1) = (b, d) and Φ(1, 1) = (a + b, c + d). The map Φ maps the unit square Q with the

vertices (0, 0), (1, 0), (1, 1), (0, 1) onto the quadrilateral P with the vertices (0, 0), (a, c), (a+b, c+

d), (b, d). If it is assumed that

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= ad − bc 6= 0 then the map is one–to–one (injective)

and the points (0, 0), (a, c), (a+ b, c + d), (b, d) do not lie on one straight line: equation of the

line L through (0, 0) and (a, c) is cx − ay = 0 so the point (b, d) does not lie on L. Neither

(a + b, c + d) does since c(a + b) − a(c + d) = bc − ad 6= 0. If we integrate the function 1 (a

constant function) over P we obtain the area of P . On the other hand
∫∫

P

dxdy =

∫∫

Q

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

dudv =

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

= |ad− bc|.

This example shows that the formula for the change of the variables contains a formula for the

area of a parallelogram. �

If we integrate a function which is 1 at each point of the set A ⊆ R and 0 outside A then

we obtain the length of A. A may be an interval or a union of finitely many disjoint intervals

or enem a union of infinitely many intervals (in this case some additional assumption should

be made). If A ⊂ R
2 is a compact set and f is a function with the value 1 at each point of A

and which is 0 outside A then the integral of f over A is the area of A. Analogous statement

is true in the three–dimensional space. If we apply the Fubini theorem the results is: the area

equals to the integral of lengths of horizontal sections over the appropriate domain. This is not

very precise statement. Let us look at examples.

Example 10.4 Area of a triangle. Suppose that the base of a triangle lies on the x–axis and

has length a > 0. Let us assume also that the altitude of the triangle is h > 0, let the vertex
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of the triangle outside the horizontal axis be (c, h). If we cut the triangle with straight line

consisting of points with the second coordinate y ∈ (0, h) we obtain an interval of the length

ℓ(y) = h−y
h

· a (the ratio of the lengths of corresponding elements in similar triangles is equal
to the scale. We can write

∫ h

0
ℓ(y)dy =

∫ h

0
a(h−y)

h
dy = − a

2h
(h− y)2

∣

∣

∣

h

0
= − a

2h
(02 − h2) = ah

2
. �

Example 10.5 Area of an ellipse. Let a, b > 0 and let E = {(x, y) : x2

a2
+ y2

b2
6 1}.

E is an ellipse (if a = b it is a disc of radius a). We shall find the area of E. Let us fix

y ∈ (−b, b) for a moment. Then x satisfies the inequality

−a

b

√

b2 − y2 6 x 6
a

b

√

b2 − y2.

The numbers x corresponding to this y form an interval of the length 2a
b

√

b2 − y2. The area of

E is therefore
∫ b

−b

2
a

b

√

b2 − y2dy
y=b sin t
==========
dy=b cos tdt

∫ π/2

−π/2

2
a

b
· b2 · cos2 tdt = ab

∫ π/2

−π/2

(cos(2t) + 1)dy =

= ab(1
2
sin(2t) + t)

∣

∣

∣

π/2

−π/2
= ab(2 sin π + π) = πab.

Notice that for a = b we have obtained the formula for the area of a dis of radius a. �

In the same way we obtain formulas for the volumes. The difference is that instead of

the length of cross–sections we have to integrate now the area of them. Let us look at some

examples.

Example 10.6 Volume of a cone. Let us assume that there is a compact set B contained in

the plane z = 0 (the plane contains x–axis and y–axis). Let us assume that there is a point

v = (a, b, h) with h > 0. The cone with the base B and a apex v consists of all straight line

segments with one end in B and another one v. If B is a polygon then the cone is a pyramid

If B is a disc and v is right above the center of the disc the cone is a real cone (which one can

obtain by roteting a right triangle about one of its catheti). So our cone is more general than a

traditional cone. We are going to prove that the volume of the cone is 1
3
A(B)h where A(B) is

the area of B. This means that the volume of our cone is one third of the product of the area

of its base and of the altitude.

The cross-section on the level z ∈ (0, h) is a set similar to B the scale of this similarity is
h−z
h
(the lines through v define the similarity). The area of the cross–section is therefore

A(z) = (h−z
h
)2A(B) = (h−z

h
)2A(0). The volume is therefore

∫ h

0

A(z)dz =

∫ h

0

(

h− z

h

)2

A(0)dz = −A(0)(h− z)3

3h2

∣

∣

∣

∣

h

0

=
1

3
A(0)h =

1

3
A(B)h.

We are done. �

Example 10.7 Volume of an ellipsoid. Let a, b, c > 0 and let E={(x, y, z) : x2

a2
+ y2

b2
+ z2

c2
6 1}.

Let us fix z ∈ (−c, c) for a moment. The set defined by the inequality

x2

a2
+

y2

b2
6 1− z2

c2
}

is an ellipse with area A(z) = πab
(

1− z2

c2

)

. This implies that the volume of the ellipsoid is
∫ c

−c

A(z)dz =

∫ c

−c

πab

(

1− z2

c2

)

dz = πab

(

z − z3

3c2

)
∣

∣

∣

∣

c

−c

=
4

3
πabc.

For a = b = c the ellipsoid becomes a ball of the radius a. �
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Example 10.8 An integral.
∫ 1

0

∫ 1

y
1

1+x4dxdy (Temat 28. part 2m) One can use the partial

fractions. At first such person factors out the denominator

1 + x4 = (1 + x2)2 − 2x2 = (1− x
√
2 + x2)(1 + x

√
2 + x2).

Then writes 1
1+x4 = Ax+B

1−x
√
2+x2

+ Cx+D
1+x

√
2+x2
. This equation is satisfied for all x ∈ R. We may

substitute any number for x. We are looking for the coefficients A,B,C,D. We need four

equations. Lets us use x ∈ {0,−1, 1} and lim
x→∞

x
1+x4 = 0. We get

1 = B +D,
1
2
= −A+B

1+
√
2+1

+ −C+D
1−

√
2+1

= −A+B
2+

√
2
+ −C+D

2−
√
2
= −A(2−

√
2)+B(2−

√
2)−C(2+

√
2)+D(2+

√
2)

2
,

1
2
= A+B

1−
√
2+1

+ C+D
1+

√
2+1

= A+B
2−

√
2
+ C+D

2+
√
2
= A(2+

√
2)+B(2+

√
2)+C(2−

√
2)+D(2−

√
2)

2
,

0 = lim
x→∞

x
1+x4 = lim

x→∞

x(Ax+B)

1−x
√
2+x2

+ lim
x→∞

x(Cx+D)

1+x
√
2+x2

= A+ C.

It implies that −1 = (A − C)
√
2 + (D − B)

√
2 and −1 = (A − C)

√
2 − (D − B)

√
2. Adding

the two equations results in −2 = 2
√
2(A − C) so A − C = − 1√

2
so A = − 1

2
√
2
and C = 1

2
√
2
.

Also D − B = 0 so B = D = 1
2
. We are ready to write

1

1 + x4
=

− 1
2
√
2
x+ 1

2

1− x
√
2 + x2

+

1
2
√
2
x+ 1

2

1 + x
√
2 + x2

=
1

2
√
2

(

−x+
√
2

1− x
√
2 + x2

+
x+

√
2

1 + x
√
2 + x2

)

.

Now we are ready to integrate. Twice. We obtain (after some standard work)
1

2
√
2

∫

x+
√
2

1+x
√
2+x2

dx = 1
4
√
2
ln(1 + x

√
2 + x2) + 1

2
√
2
arctan(1 + x

√
2) + const and

1
2
√
2

∫

−x+
√
2

1−x
√
2+x2

dx = − 1
4
√
2
ln(1− x

√
2 + x2)− 1

2
√
2
arctan(1− x

√
2) + const.

We can now write
∫ 1

y
1

1+x4dx = 1
4
√
2
(ln(2 +

√
2)− ln(2−

√
2)) + 1

2
√
2
(arctan(1 +

√
2)− arctan(1−

√
2))−

− 1
4
√
2
ln(1 + y

√
2 + y2)− 1

2
√
2
arctan(1 + y

√
2) + 1

4
√
2
ln(1 − y

√
2 + y2) + 1

2
√
2
arctan(1 − y

√
2).

Now it is time for integration. At first we simplify the formula a little bit.. Notice that
1

4
√
2
(ln(2 +

√
2)− ln(2−

√
2)) = 1

4
√
2
ln 2+

√
2

2−
√
2
= 1

4
√
2
ln

√
2+1√
2−1

= 1
4
√
2
ln(

√
2 + 1)2 = 1

2
√
2
ln(

√
2 + 1).

Also (
√
2− 1)(

√
2+1) = 1 so if tanα =

√
2− 1 then

√
2+1 = cotα = tan(π

2
−α). This proves

that arctan(1 +
√
2) − arctan(1 −

√
2) = arctan(1 +

√
2) + arctan(

√
2 − 1) = π

2
− α + α = π

2

Now we can write

(1)
∫ 1

y
1

1+x4dx = 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
− 1

4
√
2
ln(1 + y

√
2 + y2) + 1

4
√
2
ln(1− y

√
2 + y2)−

− 1
2
√
2
arctan(1 + y

√
2) + 1

2
√
2
arctan(1− y

√
2).

Let us start with
∫

ln(1 + y
√
2 + y2)dy =

∫ (

ln(2 + 2y
√
2 + 2y2)− ln 2

)

dy =

=
∫ (

ln(1 + (y
√
2 + 1)2)− ln 2

)

dy
u=y

√
2+1

========
du=

√
2dy

1√
2

∫

(ln(1 + u2)− ln 2)du =

= −u ln 2√
2
+ 1√

2

(

u ln(1 + u2)−
∫

2u2

u2+1
du
)

= u ln(1+u2)−u ln 2√
2

−
∫ √

2du+
∫

√
2

u2+1
du

= u ln(1+u2)−u ln 2√
2

−
√
2u+

√
2 arctan u+ const = u√

2
ln 1+u2

2
−

√
2u+

√
2 arctanu+ const =

= (y + 1√
2
) ln(1 + y

√
2 + y2)−

√
2(y

√
2 + 1) +

√
2 arctan(y

√
2 + 1) + const =

= y
√
2+1√
2

ln(1 + y
√
2 + y2)− 2y +

√
2 arctan(y

√
2 + 1) + Const. The constant has changed.

From the obtained result it follows easily that
∫ 1

0
ln(1 + y

√
2 + y2)dy = (

√
2+1)(ln(2+

√
2)√

2
− 2 +

√
2
(

arctan(
√
2 + 1)− arctan 1

)

=

= (
√
2+1)(ln(2+

√
2)√

2
− 2 + π

√
2

8
.

We used the formula tan 3π
8
=

√
2+1 which one can derive using the formula tan 2α = 2 tanα

1−tan2 α
,

namely 2(
√
2+1)

1−(
√
2+1)2

= 2(
√
2+1)

−2−2
√
2
= −1 = tan 3π

4
. This proves that if 0 < α < π

2
and tanα =

√
2 + 1

then α = 3π
4·2 = 3π

8
. Now let us compute
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∫ 1

0
ln(1− y

√
2 + y2)dy

u=−y
=======
du=−dy

=
∫ 0

−1
ln(1 + u

√
2 + u2)du =

=
√
2 arctan 1− ( (1−

√
2) ln(2−

√
2)√

2
+ 2 +

√
2 arctan(1−

√
2) =

=
√
2 arctan 1 + (

√
2−1) ln(2−

√
2)√

2
− 2 +

√
2 arctan(

√
2− 1) = (

√
2−1) ln(2−

√
2)√

2
− 2 + 3π

√
2

8
.

It is time for
∫

arctan(1 + y
√
2)dy = y arctan(1 + y

√
2)−

∫

y
√
2

1+(1+y
√
2)2

dy =

= y arctan(1 + y
√
2)− 1

2

∫ 2(y
√
2+1)

1+(1+y
√
2)2

dy +
∫

1
1+(1+y

√
2)2

dy =

= y arctan(1 + y
√
2)− 1

2
√
2
ln(1 + (1 + y

√
2)2) + 1√

2
arctan(1 + y

√
2) + const =

=
(

y + 1√
2

)

arctan(1 + y
√
2)− 1

2
√
2
ln(2 + 2y

√
2 + 2y2) + const =

=
(

y + 1√
2

)

arctan(1 + y
√
2)− 1

2
√
2
ln(1 + y

√
2 + y2)− 1

2
√
2
ln 2 + const =

=
(

y + 1√
2

)

arctan(1 + y
√
2)− 1

2
√
2
ln(1 + y

√
2 + y2) + Const.

Now we compute
∫

arctan(1− y
√
2)dy

u=−y
=======
du=−dy

−
∫

arctan(1 + u
√
2)du =

= −
(

u+ 1√
2

)

arctan(1 + u
√
2) + 1

2
√
2
ln(1 + u

√
2 + u2) + const =

=
(

y − 1√
2

)

arctan(1− y
√
2) + 1

2
√
2
ln(1− y

√
2 + y2) + const.

Now we can write
∫ 1

0
arctan(1 + y

√
2)dy =

(

1 + 1√
2

)

arctan(1 +
√
2)− 1

2
√
2
ln(2 +

√
2)− 1√

2
arctan 1 =

=
(

1 + 1√
2

)

3π
8
− 1√

2
π
4
− 1

2
√
2
ln(2 +

√
2) = π

8

(

3 + 1√
2

)

− ln(2+
√
2)

2
√
2
and

∫ 1

0
arctan(1− y

√
2)dy =

(

1− 1√
2

)

arctan(1−
√
2) + 1

2
√
2
ln(2−

√
2) + 1√

2
arctan 1 =

= −
(

1− 1√
2

)

π
8
+ 1√

2
π
4
+ 1

2
√
2
ln(2−

√
2) = π

8

(

3√
2
− 1
)

+ ln(2−
√
2)

2
√
2

Let us return to the formula (1) in order to compute at last the integral
∫ 1

0

(

∫ 1

y
1

1+x4dx
)

dy =
∫ 1

0

(

1
2
√
2
ln(

√
2+ 1)+ π

4
√
2
− 1

4
√
2
ln(1+ y

√
2+ y2) + 1

4
√
2
ln(1− y

√
2+ y2)−

− 1
2
√
2
arctan(1 + y

√
2) + 1

2
√
2
arctan(1− y

√
2)
)

dy =

= 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
+ 1

4
√
2

∫ 1

0

(

ln(1− y
√
2 + y2)− ln(1 + y

√
2 + y2)

)

dy +

+ 1
2
√
2

∫ 1

0

(

arctan(1− y
√
2)− arctan(1 + y

√
2)
)

dy =

= 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
+ 1

4
√
2

(

(
√
2−1)(ln(2−

√
2)√

2
− 2 + 3π

√
2

8
− (

√
2+1)(ln(2+

√
2)√

2
+ 2− π

√
2

8

)

+

+ 1
2
√
2

(

π
8

(

3√
2
− 1
)

+ ln(2−
√
2)

2
√
2

− π
8

(

3 + 1√
2

)

+ ln(2+
√
2)

2
√
2

)

=

= 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
+ 1

4
√
2

(

(
√
2−1)(ln(2−

√
2)√

2
− (

√
2+1)(ln(2+

√
2)√

2
+ π

√
2

4

)

+

+ 1
2
√
2

(

π
8

(√
2− 4

)

+ ln(2−
√
2)

2
√
2

+ ln(2+
√
2)

2
√
2

)

=

= 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
+ 1

4
√
2

(

ln 2−
√
2

2+
√
2
− 1√

2
ln(4− 2) + π

√
2

4

)

+ 1
2
√
2

(

π
8

(√
2− 4

)

+ ln(4−2)

2
√
2

)

= 1
2
√
2
ln(

√
2 + 1) + π

4
√
2
+ 1

4
√
2
ln

√
2−1√
2+1

+ π
16

+ π
16

√
2

(√
2− 4

)

= π
8
+ 1

4
√
2
ln (

√
2−1)(

√
2+1)2√

2+1
= π

8
.

It is not difficult but it takes time. One may integrate by parts. This leads to the result.

I hope that all readers understand at this point that before applying a correct method that

gives a solution one should try to find another method (it is not always possible) and solve

the problem faster with much less effort. In this case a good idea is to change the order of

integration. The Fubini theorem allows this. We have
∫ 1

0

∫ 1

y
1

1+x4dxdy =
∫ 1

0

∫ x

0
1

1+x4dydx =
∫ 1

0
x

1+x4dx
u=x2

========
du=2xdx

1
2

∫ 1

0
1

1+u2du =

= 1
2
(arctan 1− arctan 0) = π

8
.

As you the problem may take just few minutes but an idea is necessary. �
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