
Integrals

Integration is an operation converse to differentiation. We start from the definition.

Definition 0.1 (of a primitive function or an antiderivative or an indefinite integral)
Let G ⊂ R be the union of pairwise disjoint intervals. If f : G −→ R is a function defined on
the set G then each function F : G −→ R for which the equality F ′(x) = f(x) holds for all
x ∈ G is called an antiderivative (or a primitive or an indefinite integral) of f . We write

F (x) =

∫
f(x)dx

Obviously if F is an antiderivative of f then for each C ∈ R the function F + C is jest an
antiderivative of f , too.

Theorem 0.2 (uniqueness of an antiderivative)
If f : P −→ R P is a function defined on an interval P and F1, F2 are its antiderivatives then
there exists a number C ∈ R such that the equality F2(x) = F1(x) + C holds for all x ∈ P .

Proof. The derivative of F2−F1 is equal to 0 for all x ∈ P . Therefore the function F2−F1

is constant (by the Lagrange mean value theorem).
For a function defined on the union of at least two disjoint intervals the theorem is not

true. The function ln |x| is an antiderivative of the function 1
x
. Let us denote F1(x) = ln |x| and

F2(x) = 1 + ln x dla x > 0 and F2(x) = ln(−x) for x < 0. Clearly F ′
2(x) = 1

x
for all x 6= 0 so F2

is an antiderivative of ln so is F1. The difference F2 − F1 assumes two distinct values namely 0

for x < 0 and 1 for x > 0. This difference is not constant but it is constant on each interval
contained in the domain of f . Sometimes we shall call such a function locally constant.
In the sequel we shall write: ∫

f(x) dx = F (x) + C,

if F is an antiderivative of f and C will be understood as a locally constant function.

Example 0.3
∫

dx = x + C.

Example 0.4
∫

ex dx = ex + C.

Example 0.5
∫

cos x dx = − sin x + C.

Example 0.6
∫

sin x dx = cos x + C.

Example 0.7
∫

1
x

dx = ln |x|+ C.

Example 0.8
∫

xa dx = 1
a+1

xa+1 + C for a 6= −1 and all x for which the value xa is defined (if
a > 0 is a rational number of the form k

2m+1
, k, m ∈ Z then the domain ot this function is R;

if a < 0 is a rational number of the form k
2m+1

, k, m ∈ Z then its domain consists of all reals
x 6= 0; if a > 0 is either a rational number of another form or an irrational number then the
domain is [0,∞); if a < 0 is a rational number that cannot be written as k

2m+1
, k, m ∈ Z or an

irrational number then its domain is (0,∞)).

Example 0.9
∫

1
1+x2 dx = arctg x + C.

These formulas should be memorized by all students. This means that everybody should
evaluate quite a few integrals.
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There are functions without any antiderivative at all. Niech f(x) = 0 for x 6 0 and f(x) = 1

for x > 0. Suppose that F is an antiderivative of f . Then for all x 6 0 the equality F ′(x) = 0

holds. Therefore the function F is constant of the half line (−∞, 0]. For x > 0 we have F ′(x) = 1

so there is a number c such that F (x) = x + c for all x > 0. Since F is differentiable on R
in particular at the point 0 it is continuous at this point therefore F (0) = c. This implies
that F (x) = c for all x 6 0 and F (x) = x + c for all x > 0. Unfortunately this function
has no derivative at 0: the left–hand side derivative at 0 equals 0 while the right–hand side
derivative equals 1. This is an illustration of the more general statement. One can show that if
the derivative of some function defined on an interval exists for all points of the interval then
this derivative has the intermediate value property, called also Darboux property.

We shall shown that continuous functions have antiderivatives.

Theorem 0.10 (about an antiderivative of a continuous function on an interval)
If f : P −→ R a continuous function defined on an interval P then there exists a function
F : R −→ R such that F ′(x) = f(x) for all x ∈ P .

Proof. (sketch). At first we assume that f(x) > 0 for allx. Let x0 ∈ P and x > x0.
Let F (x) be the area of the region bounded from below by the segment [x0, x], bounde from
above by the graph of f , bounded from the left by the vertical line through (x0, 0) and from
the right by the line through (x, 0). If x < x0 then instead of the area we consider a ne-
gative number whose absolute value is the corresponding area. We are going to show that
F ′(x) = f(x) for x > x0 leaving the later case to students. Let h > 0 be so small that x+h ∈ P .
Let

M(h) = sup{f(t) : x 6 t 6 x + h} and m(h) = inf{f(t) : x 6 t 6 x + h}.

The number F (x + h) − F (x) is the area of the region contained in the rectangle of height
M(h) with bottom side [x, x + h] and contains the rectangle of height m(h) with bottom side
[x, x + h]. Therefore

m(h) 6 F (x + h)− F (x)

h
6 M(h).

x0 x

(x,M(h))

F(x)
F(x+h)−F(x)

(x+h,m(h))

(x,f(x))

x+h

(x+h,f(x+h))

The function f is continuous. Therefore

lim
h→0+

m(h) = f(x) = lim
h→0+

M(h).

This implies that lim
h→0+

F (x+h)−F (x)
h

= f(x). Small changes in the above reasoning prove that

lim
h→0−

F (x+h)−F (x)
h

= f(x). If the function f attains negative values one can add to it a positive
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number c so big that f(t) + c > 0 for all t that lie between x and x + h. This is possi-
ble because a function continuous on a closed interval is bounded. We consider only a part
of the domain of f (the interval P does not need to be closed) because it suffices for this
proof.

The above proof shows a connection of integrals and areas.

Corollary 0.11 (from the proof of the existence of an antiderivative)
If a function f is continuous and non–negative on an interval [a, b] and F is its antiderivative
then the area of the region A =

{
(x, y) : a 6 x 6 b, 0 6 y 6 f(x)

}
i.e. „the area under the

graph of f”is equal to
F (b)− F (a).

Proof. In the proof of the existence of an antiderivative we have indicated an antideri-
vative F of f for which the above formula holds. By the uniqueness theorem the difference
F (b) − F (a) does not depend on the choice of the antiderivative for the antiderivatives differ
only by a constant.

Definition 0.12 Newton’s integral)
The definite integral of f : [a, b] −→ R is the number F (b)− F (a) where F denotes an antide-
rivative of f . It is denoted by

∫ b

a

f(x)dx = F (b)− F (a).

We shall also write F (b)− F (a) = F (x)
∣∣∣
b

a
so

∫ b

a

f(x)dx = F (x)
∣∣∣
b

a
.

Example 0.13
∫ b

a
dx = b− a since the area of the rectangle with bottom equal to b− a and the

altitude 1 equals b− a.

Example 0.14
∫ b

a
xdx = b2−a2

2
for

∫
xdx = 1

2
x2+C. It is an expected result because if 0 6 a then∫ b

a
xdx is the area o the trapezium with bases a and b and the height b−a so it is 1

2
(b+a)(b−a).

If b 6 0 then the bases of the trapezium are |a| = −a and |b| = −b, the height is b−a therefore
the integral is a number opposite to the area so it equals −1

2

(− b + (−a)
)
(b− a) = b2−a2

2
. There

is one more case, namely a < 0 < b. We may see that
∫ b

a
xdx =

∫ 0

a
xdx +

∫ b

0
xdx. In this case

the integral is the difference of the areas of the two right isosceles triangles with the legs |a|
and b. These areas are 1

2
b2 and 1

2
a2 so the integral equals 1

2
(b2 − a2).

Example 0.15
∫ a

0
x2dx = a3

3
, for

∫
x2dx = 1

3
x3 + C. Therefore „the area under the parabola”

equals to 1
3

of the area of the rectangle with the vertices (0, 0), (a, 0), (a2, a), (0, a2). The formula
was known to Archimedes but his derivation was quite difficult for no integrals were known and
only few people were able to understand it.

Theorem 0.16 (integral of the sum)
If both functions f and g have the antiderivatives then the functions f ± g also have the
antiderivatives and the following formulas hold:

∫ (
f(x)± g(x)

)
dx =

∫
f(x)dx±

∫
g(x)dx

and ∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx.

Proof. All formulas follow immediately from the properties of the derivatives.
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Theorem 0.17 (integral of the product of a number and a function)
If the function f has an antiderivative and c is a real number then the function cf also has an
antiderivative and: ∫

cf(x)dx = c

∫
f(x)dx.

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx.

Proof. These formulas follow right away from the properties of the derivatives.
Integrating of a product of two functions is usually much harder. There are two important

formulas which can make it easier.

Theorem 0.18 (integration by parts)
Let the functions f and g will be continuously differentiable. Then

∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx.

For the definite integral one has

∫ b

a

f ′(x)g(x)dx = f(x)g(x)
∣∣∣
b

a
−

∫ b

a

f(x)g′(x)dx = = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x)dx.

It is an immediate consequence of the product rule for the derivatives.

Theorem 0.19 (integration by substitution)
Let the functions f and g′ be continuous and let F be an antiderivative of f . Then:

∫
f(g(x))g′(x)dx = F (g(x)) + C.

For the definite integral one has

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

F (y)dy = F (g(b))− f(g(a)).

Proof. This formula follows immediately from the chain rule
We shall show soon how these theorems may be applied.
On the notation. Instead of g′(x)dx we shall frequently write dg(x); if y = g(x) then

dy = g′(x)dx = dg(x).
Note that g is a one–to–one function so there exists an inverse function g−1 then the

equalities y = g(x) and x = g−1(y) are equivalent. Then dx = d(g−1)(y) = (g−1)′(y)dy.
Inverse function derivative rule tells us that

(
g−1

)′
(y) =

(
g−1

)′(
g(x)

)
= 1

g′(x)
. Therefore

dx = d
(
g−1

)
(y) = 1

g′(x)
dy. If one looks at the formula dy = dg(x) = g′(x)dx, then he/

she thinks that the statement is obvious. It is not so. The symbols dx, dy do not denote
numbers in fact we never defined them. dy

dx
denotes the derivative of y withe respect to x

but dy alone was not defined. Therefore if one wants to use some rules she/he must ju-
stify the rules. It turned out that if dy = g′(x)dx then dx = 1

g′(x)
dy also but to justify

it we applied the formula dor the derivative of an inverse function. The symbol dy
dx

denotes
the derivative not a quotient. But it turned out that sometimes it may be treated as a ra-
tio. This is convenient but it should be applied with some caution. If x = h(t) then along
with the equality dy = g′(x)dx we have also dx = h′(t)dt. We would like to conclude that
dy = g′(x)h′(t)dt. This is allowed by the Chain Rule: y = g

(
h(t)

)
so dy = (g ◦ h)′(t)dt
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and
(
g ◦ h

)′
(t) = g′

(
h(t)

)
h′(t). Therefore dy = g′

(
h(t)

)
h′(t)dt. Again it is very similar to ra-

tios:
dy

dt
=

dy

dx
· dx

dt
,

that is:
dy = (g ◦ h)′(t)dt = g′(h(t))h′(t)dt =

dy

dx
· dx

dt
· dt.

Usually the formula for integration by parts is written as
∫

f(x)g′(x)dx =

∫
fdg = fg −

∫
gdf = f(x)g(x)−

∫
g(x)f ′(x)dx

and the formula for integration by substitution:
∫

f(g(x))g′(x)dx =

∫
f(y)dy.

Example 0.20
∫

e2xdx
y=2x

=======
dy=2dx

∫
ey 1

2
dy = 1

2
ey + C = 1

2
e2x + C.

Example 0.21
∫

xex2
dx

y=x2

========
dy=2xdx

∫
ey 1

2
dy = 1

2

∫
eydy = 1

2
ey + C = 1

2
ex2

+ C.

Example 0.22
∫

tg xdx =
∫

sin x
cos x

dx
y=cos x

===========
dy=− sin xdx

− ∫
1
y
dy = − ln |y|+ C = − ln | tg x|+ C.

Example 0.23
∫

tg xdx =
∫

sin x
cos x

dx =
∫

sin x · 1
cos x

dx
integration
========
by parts

(− cos x) · 1
cos x

−
− ∫

(− cos x) · sin x
cos2 x

dx = −1 +
∫

tg x. This integration by parts did not help us at all. Moreover
someone could have thought that the result implies 0 = −1. It is not so because an indefinite
integral is defined up to a constant. The obtained formula tells us nothing.

Example 0.24
∫ √

r2 − x2dx
x=r sin t==========

dx=r cos tdt

∫ √
r2 − r2 sin2 tr cos tdt =

∫ √
r2 cos2 t r cos tdt =

=
∫

r2 cos2 tdt = r2
∫

1+cos 2t
2

dt
u=2t=======

du=2dt
r2

∫
1+cos u

2
· du

2
= r2

2

(
u
2

+ sin u
2

)
+ C =

= r2

2

(
t + 1

2
sin 2t

)
+ C = r2

2
(t + sin t cos t) + C = r2

2
arc sin x

r
+ x

2

√
r2 − x2 + C – in the above

we have set x = r sin t, this has been legal because if −π
2

6 x 6 π
2

then x assumes all values
from the interval [−r, r] and cos t > 0 so

√
cos2 t = cos t.

Example 0.25 The results of the previous example yields∫ r

−r

√
r2 − x2dx = 1

2

[
r2 arc sin r

r
+ r

√
r2 − r2 − r2 arc sin −r

r
− (−r)

√
r2 − (−r)2

]
=

= 1
2
[2r2 arc sin 1] = r2 π

2
= πr2

2
.

The integral turned out to the half of the area od a circle of radius r. It is so because the graph
of the function

√
r2 − x2 is a semicircle centered at (0, 0)) of radius r so „the area under the

graph” is half of the area of a circle of radius r.

Example 0.26
∫

xexdx=
∫

x (ex)′ dx
integration
========

by parts
xex−∫

(x)′exdx=xex−∫
exdx=xex−ex+C.

Example 0.27
∫

x2exdx =
∫

x2 (ex)′ dx
integration
========

by parts
x2ex − ∫

(x2)
′
exdx = x2ex − ∫

2xexdx =

= x2ex − 2
∫

xexdx
previous

=========
example

x2ex − 2 (xex − ex) + C = ex(x2 − 2x + 2) + C.

In this example we have used the result of the previous one. In the same way we can eva-
luate the integrals of x3ex, x4ex etc. Each integration by parts lowers by 1 the degree of the
polynomial which is multiplied by ex so we end up with the integral

∫
exdx.
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Example 0.28
∫

xe3xdx =
∫

x
(

1
3
e3x

)′
dx

integration
========

by parts

1
3
xe3x − 1

3

∫
(x)′e3xdx = 1

3
xe3x − 1

3

∫
e3xdx =

=1
3
xe3x − 1

9
e3x + C.

The last integration by substitution (y = 3x) was so obvious that was not mentioned, it
was simply done.

Example 0.29
∫

x cos(5x)dx =
∫

x
(

1
5
sin(5x)

)′
dx

integration
========

byparts

1
5
x sin(5x)− 1

5

∫
(x)′ sin(5x)dx=

=1
5
x sin(5x)− 1

5

∫
sin(5x)dx= 1

5
x sin(5x)− 1

5

(−1
5
cos(5x)

)
+C = 1

5
x sin(5x) + 1

25
cos(5x)+C.

Example 0.30
∫

ln xdx
integration
========

by parts
x ln x− ∫

x(. ln x) = x ln x− ∫
x 1

x
dx = x ln x− ∫

dx =

= x ln x− x + C.

Example 0.31
∫

arc sin xdx
integration
========

by parts
x arc sin x − ∫

x(. arc sin x) = x arc sin x − ∫
x 1√

1−x2 dx =

y=1−x2

=========
dy=−2xdx

x arc sin x + 1
2

∫
1√
y
dy = x arc sin x + 1

2

∫
y−1/2dy = x arc sin x +

+ 1
2(1+(−1/2))

y1+(−1/2) + C = x arc sin x + 1
4
(1− x2)

1/2
+ C = x arc sin x + 1

4

√
1− x2 + C.

Example 0.32
∫

cos x sin x dx = 1
2

∫
sin(2x) dz

y=2x
=======
dy=2dx

1
4

∫
sin y dy = −1

4
cos y + C =

= −1
4
cos(2x) + C. Another way of evaluating the same integral.∫

cos x sin x dx
integration
========

by parts
sin x · sin x − ∫

sin x cos x dx so 2
∫

cos x sin x dx = sin x · sin x + C

hence
∫

cos x sin x dx = 1
2
sin x · sin x + C

2
we solved a linear equation with an unknown∫

cos x sin x dx. Once again the same integral.∫
cos x sin x dx

integration
========

by parts
= cos x(− cos x)− ∫

(− sin x)(− cos x) dx = − cos2 x− ∫
sin x cos x dx

so 2
∫

cos x sin x dx = − cos2 x + C hence
∫

cos x sin x dx = −1
2
cos2 x + C

2
.

Show that the results in all three cases in fact coincide. To this end you may use the formula
cos 2α = cos2 α− sin2 α.

Example 0.33
∫

dx
2x−3

y=2x−3
========
dy=2xdx

∫
1
y
· 1

2
dy = 1

2
ln |y|+ C = 1

2
ln |2x− 3|+ C.

Example 0.34
∫

x
x2+3x+2

dx =
∫

x
(x+1)(x+2)

dx.
One may expect that the expression x

x2+3x+2
may be written as a sum of fractions of the

form A
x+1

or B
x+2

. The equation x
x2+3x+2

= A
x+1

+ B
x+2

is satisfied iff x = A(x + 2) + B(x + 1)

for all real numbers except for −1 and −2.1 Therefore A + B = 1 and 2A + B = 0 so A = −1

and B = 2. So:
∫

x

x2 + 3x + 2
dx =

∫ −1

x + 1
dx+

∫
2

x + 2
dx = − ln |x+1|+2 ln |x+2|+C = ln

(x + 2)2

|x + 1| +C.

1 In fact the equality must hold also for 1 and 2 because the functions x and A(x+2)+B(x+1)
are continuous at all points , x = −1 and x = −2 among them.
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