
Exam questions

Let us start with reminding a theorem:

If (A,B,C) 6= (0, 0, 0) then the equation Ax+By+Cz+D = 0 equivalent to Ax+By+Cz = −D

describes a plane perpendicular to the vector (A,B,C).

This a particular case of the following theorem:

Let g be a C1 function defined on an open subset of Rk, c ∈ R, M = {x ∈ R
k : g(x) = c}, v

a vector tangent to M at point p ∈ M . Then ∇g(p) · v = 0. If ∇g(p) 6= 0 then the converse

is true: if v · ∇g(p) then the vector v is tangent to M at p (i.e. v ∈ TpM).

3. Let g : R3 → R be given by the formula g(x, y, z) = 2y ln(z − 2)− xyz + 3x.

(a) Show that there is a neighborhood of the point (x, y) = (1, 1) on which one can define

a function z = z(x, y) of class C1 such that z(1, 1) = 3 and g(x, y, z(x, y)) = 0.

Calculate ∂z
∂x
(1, 1) and ∂z

∂y
(1, 1).

(b) Find the equation of the tangent plane to the surface

M = {(x, y, z) ∈ R
3 : g(x, y, z) = 0}

at the point (1, 1, 3).

Let me start with an approximate formula

g(x, y, z) ≈ g(1, 1, 3) + ∂g
∂x
(1, 1, 3)(x− 1) + ∂g

∂y
(1, 1, 3)(y − 1) + ∂g

∂z
(1, 1, 3)(z − 3)

therefore 2y ln(z − 2)− xyz + 3x ≈ 0 + 0 · (x− 1) + (−3) · (y − 1) + 1 · (z − 3)

because ∂g
∂x
(x, y, z) = −yz + 3, ∂g

∂y
(x, y, z) = 2 ln(z − 2)− xz and ∂g

∂z
(x, y, z) = 2y

z−2
− xy

so ∂g
∂x
(1, 1, 3) = 0, ∂g

∂y
(1, 1, 3) = −3 and ∂g

∂z
(1, 1, 3) = 1.

One may write ∇g(1, 1, 3) = (0,−3, 1).

We want to solve the equation g(x, y, z) = 0 for z. This may look hopeless but approxi-

mate equation 0 = 0 + 0 · (x − 1) + (−3) · (y − 1) + 1 · (z − 3) = −3(y − 1) + (z − 3) is

easy: z = 3y.

The implicit function theorem tells us that this action is legal. More precisely: since
∂g
∂z
(1, 1, 3) = 1 6= 0 there exist numbers ε > 0 and δ > 0 such that if |x − 1| < δ and

|y − 1| < δ then there is exactly one z such that |z − 3| < ε and g(x, y, z) = 0. In other

words there is a function which assigns to each pair of numbers x, y with |x− 1| < δ and

|y− 1| < δ a number z ∈ (3− ε, 3+ ε) so there is a map from (1− δ, 1+ δ)× (1− δ, 1+ δ)

into (3− ε, 3+ ε). The map (x, y) 7→ z is of the same class of differentiability as g, in the

case under consideration it is a C∞ map.

Let me say at this moment that the beginning (from „Let me . . . ” until „The implicit

function . . . is unnecessary. I included it only to tell you where from the implicit function

theorem comes from. It is not a question how to prove, it is a question of what should be

proved.

Now we know that z is a differentiable function of (x, y). Therefore we are allowed to

differentiate the equation 0 = g(x, y, z(x, y)) relative to x and to y. We must use the

chain rule of course. We obtain

0 = ∂
∂x

(

g(x, y, z(x, y))
)

= ∂g
∂x
(x, y, z(x, y)) + ∂g

∂z
(x, y, z(x, y)) · ∂z

∂x
(x, y).
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Now we substitute 1 for x and for y and 3 for z(1, 1):

0 = ∂g
∂x
(1, 1, 3)+ ∂g

∂z
(1, 1, 3) · ∂z

∂x
(1, 1) = 0+1 · ∂z

∂x
(1, 1). The last step is to solve this equation

for ∂z
∂x
(1, 1). The result is ∂z

∂x
(1, 1) = 0.

Now we repeat the calculations for ∂
∂y
. It goes like this

0 = ∂
∂y

(

g(x, y, z(x, y))
)

= ∂g
∂y
(x, y, z(x, y)) + ∂g

∂z
(x, y, z(x, y)) · ∂z

∂y
(x, y).

Now we substitute 1 for x and for y and 3 for z(1, 1):

0 = ∂g
∂y
(1, 1, 3) + ∂g

∂z
(1, 1, 3) · ∂z

∂y
(1, 1) = −3 + 1 · ∂z

∂y
(1, 1). The last step is to solve this

equation for ∂z
∂y
(1, 1). The result is ∂z

∂y
(1, 1) = 3.

Now part b. The tangent plane contains the point (1, 1, 3) and it is perpendicular to the

∇g(1, 1, 3) = (0,−3, 1) Therefore its equation is 0·x+(−3)·y+1·z = 0·1+(−3)·1+1·3 = 0,

in short −3y + z = 0. The end of this story. �

4. Let M = {(x, y, z) ∈ R
3 : (x− 1)2 + y2 + z2 = 1 and x2 − y2 = 1}.

Show that M is a one dimensional manifold and that the maximum and minimum values

of f|M where f(x, y, z) = x+ y occur when z = 0.

Let g1(x, y, z) = (x−1)2+y2+z2−1 and g2(x, y, z) = x2−y2−1. The following formulas

hold:

(1) ∇g1(x, y, z) = 2(x− 1, y, z) and ∇g2(x, y, z) = 2(x,−y, 0).

Now we shall prove that these gradients are linearly independent for (x, y, z) ∈ M .

If (0, 0, 0) = c1 · 2(x − 1, y, z) + c2 · 2(x,−y, 0) = 2(c1(x − 1) + c2x, c1y − c2y, c1z) then

either z = 0 or c1 = 0.

If z = 0 then (x − 1)2 + y2 = 1 and x2 − y2 = 1 so (x − 1)2 + x2 = 2 that is

2x2 − 2x− 1 = 0. This implies that x = 1
2
(1±

√
3) and x2 = 1 + y2 > 1 so

x =
1

2
(1 +

√
3).

Therefore 1 = x2 − y2 =
(

1
2
(1 +

√
3)
)2 − y2 = 1

4
(4 + 2

√
3) − y2 = 1 + 1

2

√
3 − y2. This

implies that y2 =
√
3
2
. There are two such points

(

1

2
(1 +

√
3),

4

√

3

4
, 0

)

and

(

1

2
(1 +

√
3),− 4

√

3

4
, 0

)

.

From the equation c1y − c2y = (c1 − c2)
(

± 4

√

3
4

)

= 0 it follows now that c1 = c2 and in

view of this equality we obtain 0 = c1(x − 1) + c2x = c1(2x− 1) = c1 ·
√
3 so c1 = 0. In

this case the gradients are linearly independent.

If c1 = 0 then (0, 0, 0) = c1 · 2(x− 1, y, z)+ c2 · 2(x,−y, 0) = 2(c2x,−c2y, 0). If c2 6= 0

then x = 0 = y contrary to x2 − y2 = 1. Therefore c2 = 0. This proves that the gradients

are linearly independent also in this case. Therefore M is a manifold.

We can apply the Lagrange theorem. This means that if the function f|M attains its

maximal or minimal value at some point (x, y, z) then there are numbers λ1, λ2 such that

(1, 1, 0) = ∇f(x, y, z) = λ1∇g1(x, y, z)+λ2∇g2(x, y, z) = 2(λ1(x−1)+λ2x, λ1y−λ2y, λ1z).

Either z = 0 or λ1 = 0. If λ1 = 0 then (1, 1, 0) = 2(λ2x,−λ2y, 0) so x = −y i.e. x+ y = 0

contrary to 1 = x2 − y2 = (x+ y)(x− y). If z = 0 then we are done. �

We were not asked to find max f|M nor min f|M so we are done. We can find them anyway.

We already know that if an extreme value is attained then z = 0 so (x − 1)2 + y2 = 1
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and x2 − y2 = 1. This as we know implies that either (x, y, z) =
(

1
2
(1 +

√
3), 4

√

3
4
, 0
)

or (x, y, z) =
(

1
2
(1 +

√
3),− 4

√

3
4
, 0
)

. In the first case x + y = 1
2
(1 +

√
3) + 4

√

3
4
in the

second case x + y = 1
2
(1 +

√
3)− 4

√

3
4
. The second number is smaller than the first one.

Do we know that max f|M or min f|M is attained? The set M is bounded because it is a

subset of a sphere of radius 1 centered at (1, 0, 0). It is closed, so it is compact. Therefore

the strict bounds are values of f|M . This means that max f|M = 1
2
(1 +

√
3) + 4

√

3
4
and

min f|M = 1
2
(1 +

√
3)− 4

√

3
4
.

At the end I want to say something about the set M just to mention that we do not

need to understand geometry of M in order to solve the problem. The manifold M is not

contained in any plane because the points
(

1
2
(1 +

√
3), 4

√

3
4
, 0
)

,
(

1
2
(1 +

√
3),− 4

√

3
4
, 0
)

,

(1, 0, 1) and (1, 0,−1) lie on M and it is easy to see that there is no plane containing the

four points.

Three problems.

1. Find the smallest and the biggest value of f defined as f(x, y, z) = xyz on the set

M = {(x, y, z) : x2 + y2 + z2 6 9 and x+ y + z = 5}.

2. Prove that

x1y1+x2y2+x3y3+· · ·+x7y7 6 (x3
1+x3

2+x3
3+· · ·+x3

7)
1/3(y

3/2
1 +y

3/2
2 +y

3/2
3 +· · ·+y

3/2
7 )2/3

provided that x1 > 0, x2 > 0, x3 > 0, . . . , x7 > 0, y1 > 0, y2 > 0, y3 > 0, . . . , y7 > 0.

Hint. What happens if x1, x2, x3, . . . , x7 are replaced with tx1, tx2, tx3, . . . , tx7 where

t is a positive number? What about y’s?

3. Find the greatest and the least value of f where f(x, y, z) = x+y
3x2+y2+12

on the set

A = {(x, y) : x > 0}.

Solutions.

1. The equation x+ y+ z = 5 describes the plane perpendicular to the vector (1, 1, 1).

On this plane the function f is neither bounded above nor below because

(−n) + (−n) + (2n+ 5) = 5 and lim
n→∞

(−n)(−n)(2n + 5)−−−−→
n→∞

∞ and
n+ n + (−2n+ 5) = 5 and lim

n→∞
n · n · (−2n + 5)−−−−→

n→∞
−∞.

The second condition changes the situation a lot. The set M is compact because it

is closed and bounded (it is contained in the ball of radius 5 centered at (0, 0, 0)).

The function f is continuous so its supM F and infM f are attained. If it is attained

in a point (x, y, z) with x2 + y2 + z2 < 9 then by the Lagrange theorem there exists

a number λ such that

(yz, xz, xy) = ∇f(x, y, z) = λ∇(x+ y + z − 5) = λ(1, 1, 1).

This implies that yz = xz = xy. At least one of the numbers x, y, z is different from

0 because their sum is 5. Since 52 + 02 + 02 > 9 we may assume that at most one

these numbers equals 0. Let x = 0. From yz = xy and y 6= 0 it follows that z = 0,

a contradiction. We proved that xyz 6= 0 (no of the numbers x, y, z is 0). But this

implies that they all are equal so x = y = z = 5
3
. (5

3
)2 + (5

3
)2 + (5

3
)2 = 25

3
< 9. We
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proved that one of the extreme values of f may be 125
3

= f
(

5
3
, 5
3
, 5
3

)

. This is the only

possibility for x2 + y2 + z2 < 9.

Let us assume now that x+y+z = 5 and x2+y2+z2 = 9. The gradients are (1, 1, 1)

and 2(x, y, z). They are linearly dependent iff x = y = z but this not possible for

points satisfying both equations. This proves that if an extreme value is attained

at such point then there exist numbers λ1, λ2 such that the following equations are

satisfied

x+ y + z = 5,

x2 + y2 + z2 = 9 ,

(yz, xz, xy) = λ1(1, 1, 1) + 2λ2(x, y, z).

They imply that yz − xz = 2λ2(x − y) and xz − xy = λ2(y − z). Either x = y or

x 6= y and then z = −2λ2. Also either y = z or y 6= z and then x = −2λ2. This

proves that either x = y or y = z or x = z.

Let us assume that x = y. We have 2x+ z = 5 and 2x2 + z2 = 9. This implies that

0 = 2x2 + (5 − 2x)2 − 9 = 6x2 − 20x + 16 = 6(x − 5
3
)2 − 50

3
+ 16 = 6(x − 5

3
)2 − 2

3
.

This equation has two roots: x = 2 and x = 4
3
. Therefore either (x, y, z) = (2, 2, 1)

or (x, y, z) = (4
3
, 4
3
, 7
3
). The corresponding values of the function xyz are 4 and 112

27
.

Formally speaking we should consider the possibilities y = z and x = z but it is

clear that they lead to points (2, 1, 2) and (4
3
, 7
3
, 4
3
) and (1, 2, 2) and (7

3
, 4
3
, 4
3
) and the

values 4 and 112
27
for xyz.

It is clear that 4 < 112
27

< 125
27
. This proves that

infM f = 4 = f(2, 2, 1) = f(2, 1, 2) = f(1, 2, 2) and supM f = 125
27

= f(5
3
, 5
3
, 5
3
). �

2. If t > 0 and if the numbers x1, x2, x3, . . . , x7 are replaced with the numbers

tx1, tx2, tx3, . . . , tx7 then both sides of the inequality to be proved are multiplied

by t. The same is true for y’s. If x1 = x2 = x3 = · · · = x7 = 0 then the in-

equality holds (both sides vanish). If at least one of x’s is different from 0 then we

can multiply them all by such number that x3
1 + x3

2 + x3
3 + · · · + x3

7 = 1. In the

same way we show that one can assume that y
3/2
1 + y

3/2
2 + y

3/2
3 + · · · + y

3/2
7 = 1.

Later on x = (x1, x2, . . . , x7) and y = (y1, y2, . . . y7). Our aim now is to prove that

if these two equations are fulfilled then x1y1 + x2y2 + x3y3 + · · · + x7y7 6 1. Let

g1(x,y) = x3
1 + x3

2 + x3
3 + · · ·+ x3

7 − 1 and

g2(x,y) = y
3/2
1 + y

3/2
2 + y

3/2
3 + · · ·+ y

3/2
7 − 1.

The set

M = {(x,y) : g1(x,y) = 0, g2(x,y) = 0, x1 > 0, . . . , x7 > 0, y1 > 0, . . . , y7 > 0}
is compact. Let f(x1, x2, . . . , x7, y1, y2, . . . y7) = x1y1+ x2y2 + x3y3 + · · ·+ x7y7. The

function f is continuous so it attains supM f .

Let (x,y) be a point at an extreme value is attained and xi > 0, yi > 0 for all

i ∈ {1, 2, . . . , 7} Then there are numbers λ1, λ2 such that

(LE) ∇f(x,y) = λ1∇g1(x,y) + λ2∇g2(x,y).
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Clearly

∇f(x,y) = (y,x),

∇g1(x,y) = 3(x2
1, x

2
2, . . . , x

2
7, 0, 0, . . . , 0),

∇g2(x,y) =
3
2
(0, 0, . . . , 0, y

1/2
1 , y

1/2
2 , . . . , y

1/2
7 ).

From (LE) and these equations it follows that

yi = 3λ1x
2
i and xi =

3
2
λ2y

1/2
i for all i ∈ {1, 2, . . . , 7} therefore 3λ1x

3
i =

3
2
λ2y

3/2
i for all

i ∈ {1, 2, . . . , 7}. After adding these seven equations we obtain
3λ1 = 3λ1(x

3
1 + x3

2 + · · ·+ x3
7) =

3
2
λ2(y

3/2
1 + y

3/2
2 + · · ·+ y

3/2
7 ) = 3

2
λ2.

The inequalities xi > 0, yi > 0 imply that λ1 > 0 and λ2 > 0. This in turn implies

that x3
i = y

3/2
i so x

2
i = yi for all i ∈ {1, 2, . . . , 7}. From these seven equations we get

x1y1 + x2y2 + · · ·+ x7y7 = x1 · x2
1 + x2 · x2

2 + · · ·+ x7 · x2
7 = x3

1 + x3
2 + · · ·+ x3

7 = 1.

We know now that either supM f = 1 or supM f is attained at a point with at least

one coordinate equal to 0. We can assume that that x7 = 0. We should prove that

x1y1 + x2y2 + · · ·+ x6y6 6 (x3
1 + x3

2 + · · ·+ x3
6)

1/3(y
3/2
1 + y

3/2
2 + · · ·+ y

3/2
6 + y

3/2
7 ). It

suffices to prove that

x1y1 + x2y2 + · · ·+ x6y6 6 (x3
1 + x3

2 + · · ·+ x3
6)

1/3(y
3/2
1 + y

3/2
2 + · · ·+ y

3/2
6 ) because

y
3/2
1 + y

3/2
2 + · · ·+ y

3/2
6 6 y

3/2
1 + y

3/2
2 + · · ·+ y

3/2
6 + y

3/2
7 .

This means that we should prove the same theorem for twelve numbers instead of

for fourteen. If we apply the same method we shall see that either the theorem is

true or at least one of the twelve n umbers is 0. In this case we shall reduce the

problem to the inequality with ten numbers. Then to eight, then to six and then to

four numbers that is to the inequality

x1y1 + x2y2 6 (x3
1 + x3

2)
1/3(y

3/2
1 + y

3/2
2 )2/3.

If one of the numbers x1, x2, y1, y2 is 0 the inequality becomes obvious. If all four

numbers are positive then we apply Lagrange method as we have done at the be-

ginning of the solution. The result is as before. If we assume that x3
1 + x3

2 = 1 and

y
3/2
1 + y

3/2
2 = 1 then the extreme value can be only 1. This ends the proof. �

Remark. . It is possible to use Lagrange method many times that is to consider

three constraints: x3
1 + x3

2 + x3
3 + · · ·+ x3

7 = 1, y
3/2
1 + y

3/2
2 + y

3/2
3 + · · ·+ y

3/2
7 = 1 and

x7 = 0. Then four constraints and so on. I am convinced that the method presented

above gives the result faster.

3. The domain is closed and unbounded. There is no guarantee that there exists a

maximal value or a minimal value of the function. We even do not know that the

function is bounded from either side. If there is an extreme value and if it is attained

at an interior point (x, y) of the domain then ∇f(x, y) = (0, 0) so x > 0 and

0 = ∂f
∂x
(x, y) = 3x2+y2+12−6x(x+y)

(3x2+y2+12)2
and 0 = ∂f

∂y
(x, y) = 3x2+y2+12−2y(x+y)

(3x2+y2+12)2
. This is

equivalent to −3x2 − 6xy + y2 + 12 = 0 = 3x2 − 2xy − y2 + 12. Subtract the left

hand side from the right hand side: 6x2 + 4xy − 2y2 = 0 therefore

0 = 3x2 + 2xy − y2 = (x+ y)(3x− y).

If y = −x then 0 = −3x2−6xy+y2+12 = 4x2+12, a contradiction. If y = 3x then
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0 = −3x2 − 6xy + y2 + 12 = −12x2 + 12 so x = 1 and y = 3 (x = −1 is not allowed

because we look only at the set A). If x = 0 then f(x, y) = f(0, y) = y
y2+12
. One

can see that ∂f
∂y
(0, y) = y2+12−2y(0+y)

(y2+12)2
= 12−y2

(y2+12)2
. This implies immediately that the

function y 7→ f(0, y) decreases on each of the half–lines (−∞,−
√
12], [

√
12,∞) and

increases on the interval [−
√
12,

√
12]. Since f(0, y) < 0 for y < 0 and f(0, y) > 0

for y > 0 we have −
√
3

12
= −

√
12
24

6 f(0, y) 6
√
12
24

=
√
3

12
for each y ∈ R. This implies

that if the maximal value of f in A exists the it equals either f(0,
√
12) =

√
3

12
or

f(1, 3) = 3+1
3·12+32+12

= 1
6
>

√
3

12
, so if maxA f exist the maxA f = 1

6
. Analogously if

minA f exists then minA f = −
√
3

12
.

The numerator of f(x, y) is a first degree polynomial while its denominator is a

quadratic polynomial and 3x2 + y2 = 0 iff x = y = 0. Therefore the quadratic

should dominate over the first degree expression for (x, y) far away from (0, 0). We

are going to show that this is the case. It is well known and easy to prove that

|x+ y| 6
√

2(x2 + y2) (Cauchy–Schwarz inequality). Thus
∣

∣

∣

∣

x+ y

3x2 + y2 + 12

∣

∣

∣

∣

6

√

2(x2 + y2)

3x2 + y2 + 12
6

√

2(x2 + y2)

x2 + y2
=

√
2

√

x2 + y2
.

Therefore if x2 + y2 > 100 then |f(x, y)| =
∣

∣

∣

x+y
3x2+y2+12

∣

∣

∣
6

√
2

10
< 1

6
.

Let B = {(x, y) : x > 0, x2+y2 6 100}. This set is bounded and closed. Therefore
there exist maxB f and minB f . They are attained at points with x2 + y2 < 100

because maxB f > f(1, 3) = 1
6
andminB f 6 f(0,−

√
12) = −

√
3

12
< − 1

10
. This proves

that minA f = minB f = f(0,−
√
12) = −

√
3

12
and maxA f = maxB f = f(1, 3) = 1

6

6


