
Cross-sections of a cube

Let start with some remainders. If (A,B,C) 6= (0, 0, 0) then the equation Ax+By+Cz = D

describes the plane perpendicular to the vector (A,B,C). Let us prove it. Let Π be a set

consisting of such points (x, y, z) that Ax + By + Cz = D. If (x1, y1, z1), (x2, y2, z2) ∈ Π i.e. if

Ax1 +By1 + Cz1 = D = Ax2 +By2 + Cz2 then

0 = A(x1 − x2) +B(y1 − y2) + C(z1 − z2) = 〈(A,B,C), (x1 − x2, y1 − y2, z1 − z2)〉

This means that the vectors (A,B,C) and (x1 − x2, y1 − y2, z1 − z2) are perpendicular so if 2

points are in Π then the vector with initial point at one of them and the end point at another one

is perpendicular to (A,B,C). On the other hand if Ax1+By1+Cz1 = D and 0 = Ax+By+Cz

then A(x1 + x) +B(y1 + y) +C(z1 + z) = D. This means that Π consist of all points which are

end points of vectors perpendicular to (A,B,C) with initial point (x1, y1, z1).

One may think of equations of planes with A2+B2+C2 = 1 for multiplying an equation by

a number different from 0 does not change equation’s solutions, in our case it does not change

the plane. The result is that the set of vectors under consideration becomes compact (bounded

and closed).

Now we are looking at all planes that intersect the unit cube C with the vertices v1 =

=(0, 0, 0), v2 = (1, 0, 0), v3 = (1, 1, 0), v4 = (0, 1, 0), v5 = (0, 0, 1), v6 = (1, 0, 1), v7 = (1, 1, 1),

v8 = (0, 1, 1). We want to show that there is a cross-section of C with the largest area. First of

all let us notice that if the plane

Ax+By + Cz = D intersects the cube C then

|D| = |Ax+By + Cz| 6 |Ax|+ |By|+ |Cz| = |A|x+ |B|y + |C|z 6 |A|+ |B|+ |C|.
Therefore the set of quadruplets (A,B,C,D) ∈ R4 that correspond to the planes that intersect

C is bounded. The area of the cross-section depends continuously on the vertices of the polygon.

This polygon may a triangle e.g. with the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), it may be a square

or a trapezium e.g. with the vertices V1 = (1
2
, 0, 1), V2 = (1, 0, 0), V3 = (0, 2

3
, 0) and V4 = (0, 1

3
, 1).

Each student should prove that V1V4 ‖ V2V3 and V1V2 ∦ V3V4 so the quadrilateral is a trapezium

but it is not a parallelogram. Also ‖V1 − V2‖2 6= ‖V3 − V4‖2 so the trapezium is not equilateral.
Write an equation of the plane Π′ through the points (0, 0, 1), (1, 1

2
, 0) and (1

2
, 1, 0). How many

sides the polygon obtained as a cross–section of C with Π′ has?

Now write an equation of the plane Π′′ through the points (1
2
, 0, 1), (1, 1

2
, 0) and (1

2
, 1, 0). Show

that in this case the cross section is a hexagon. Is it regular (equal sides and equal angles)?

Let V1, V2, V3 be arbitrary points in R3 and V1 6= V2. I want to find a point V on the line

through V1, V2 such that the vector V3 − V ) will be perpendicular to the vector V1 − V2. It is

easy. Every point V on the line through V1, V2 may be written as V1 + t(V2 − V1) for some real

number t. We want 〈(V3 − V ), (V2 − V1)〉 = 0 i.e.

0 = 〈(V3 − V ), (V2 − V1)〉 = 〈(V3 − V1), (V2 − V1)〉 − t 〈(V2 − V1), (V2 − V1)〉.
Therefore

t =
〈(V3 − V1), (V2 − V1)〉
〈(V2 − V1), (V2 − V1)〉

.

The distance from V3 to the line through V1, V2 equals
∥

∥

∥
V3 −

(

V1 +
〈(V3−V1),(V2−V1)〉
〈(V2−V1),(V2−V1)〉

)

(V2 − V1)
∥

∥

∥

2
.

Let u = V2 − V1 and w = V3 − V1. The distance may be written as ‖w − 〈w,u〉
〈u,u〉u‖2. Its square

is
〈

w − 〈w,u〉
〈u,u〉u,w − 〈w,u〉

〈u,u〉u
〉

= 〈w,w〉 − 2 〈w,u〉
〈u,u〉 〈u,w〉+

(

〈w,u〉
〈u,u〉

)2

〈u,u〉 = 〈w,w〉 − 〈w,u〉
〈u,u〉 〈u,w〉

This implies that the area of the triangle V1V2V3 equals to

(1) 1
2
‖u‖2 ·

√

〈w,w〉 − 〈w,u〉
〈u,u〉 〈u,w〉 = 1

2

√

〈w,w〉 · 〈u,u〉 − (〈w,u〉)2.

This formula holds inRk independently of k we thought of k = 3 but we never used it in the

derivation of the formula. So k can be 2, 3, 4, . . .. The conclusion is that the area is a continuous



function of the coordinates of the vertices and it a differentiable function of the coordinates if

the point V3 does not lie on the line through V1, V2.

This implies that the area of the cross–section of the cube C depends continuously on the

coefficients A,B,C,D defining the plane. Prove it!!! The next conclusion is that there is a

cross–section with the largest area (Weierstrass Maximum Principle).

To find this cross–section is another story. What is your guess?

Let us start to work on the largest possible area of a cross-section of the cube. One the the

simplest possible sections is one that contains v1, v5, v7 and v3. Obviously It is a rectangle 2

sides if which have length 1 and 2 other have length
√
2, So the area of it is

√
2.

The cross-section is either a triangle or quadrangle or pentagon or heksagon. There is no

other possibility since the cube has 6 faces and the sides of polygon which is a cross-section of

the cube are intersections of the plane that is cutting the cube and one ot its faces. So there

are at most 6 of them. Let us consider all 4 possibilities.

Triangle . The plane intersects three of the six faces of the cube. No to are parallel because

no two sides of a triangle are parallel. It is easy to see that three faces are intersected then they

contain one of vertices of the cube. Let it be (0, 0, 0). Let us assume the the three edges that

meet at (0, 0, 0). Let us assume that the vertices of the triangle are: p = (a, 0, 0), q = (0, b, 0)

and r = (0, 0, c). Let u = q − p = (−a, b, 0) and w = r − p = (−a, 0, c). By formula (1) the

area of the triangle is
1
2

√

〈w,w〉 · 〈u,u〉 − (〈w,u〉)2 = 1
2

√

(a2 + c2)(a2 + b2)− (a2)2 = 1
2

√
a2b2 + a2c2 + b2c2.

Since a, b, c ∈ [0, 1] this area does not exceed the number 1
2

√
1212 + 1212 + 1212 = 1

2

√
3 <

√
2.

We know now that we have to look for the largest area somewhere else.

I want to reduce using geometry as much as possible in this geometrical problem because

I want you to see how the theory works. One theorem which years ago was taught at high

schools and according to my knowledge does not appear in the present curricula can be stated

as follows.

Theorem 1 (about the area of the projection)

Let Π and P be two nonparallel and nonperpendicular planes in R3 and let α be the acute angle

between them. Let A ⊂ Π be some set with the area a ∈ (0,∞) and let B be the orthogonal

projection of A onto the plane P with the are b. Then b = a cosα.

I shall sketch the proof of the theorem. First let us notice that it is true if A is a triangle

with one side parallel to the line P ∩ Π. Let the length of this side be ℓ and the altitude to

this side be h. Then a = 1
2
ℓ · h. B is then a triangle with one side ℓ and the corresponding

altitudeℓ cosα. Therefore b = ℓ · h cosα = a cosα. We proved the theorem in this very special

case. Therefore the theorem holds also for sets A which are unions of non–overlapping triangles

with one side parallel to P ∩ Π. Therefore it is proved for all polygons because every polygon

can be expressed as a union of the triangles with one side parallel to P ∩Π. To see it you just

draw lines parallel to P ∩ Π through all vertices of the polygon considered. The part of the

polygon located between the 2 consecutive lines appears to be the union of triangles or trapezia

with some sides parallel to P ∩ Π. Then you divide each trapezium with one of its diagonals

and the theorem follows. Other sets one approximates with polygons. This allows us to prove it

in the general case. There are some mathematical problems in the above proof but this proofs

covers all cases we need. �

Let us mention that the angle between 2 planes is equal to the angle between the vectors

perpendicular to these planes. We will be interested in the angle between the plane z = 0 and

the plane Ax + By + Cz = D that is between the vectors (0, 0, 1) and (A,B,C). Recall that

the scalar product of the vectors is A · 0 +B · 0 + C · 1 =
√
A2 = B2 + C2 · 1 · cosα where α is



the angle between the two planes. This implies that

(2) cosα =
C√

A2 = B2 + C2
.

Quadrangle. The plane intersects 4 faces so it intersects 2 parallel faces. That is the cross

section is a trapezium. Let us assume that these 2 faces are v1v4v8v5 and v2v3v7v6.

Case 1. Let us assume that the plane has no common points with the planes v3v4v8v7

and v5v6v7v8. It intersects 4 other planes. Therefore it must intersect the edges v1v5, v2v6,

v2v3 and v1v4. Let these intersection points be b1 = (0, 0, β1), b2 = (1, 0, β2), b3 = (1, β3, 0)

and b4 = (0, β4, 0). These points lie in a plane β3(β1 − β2)x + β2y + β3z = β1β3 because

β3(β1 − β2) · 0+ β2 · 0+ β3 · β1 = β1β3 etc. The plane contains b1,b2,b3 so it must contain also

b4 thus β1β3 = β3(β1 − β2) · 0 + β2 · β4 + β3 · 0 = β2β4. Thus β4 =
β1β3

β2

∈ (0, 1), so β1β3 < β2.

By the theorem 1 the area of b1b2b3b4 equals

F (β1, β2, β3) =
1

2

(

β3 +
β1β3

β2

)

·
√

β2
3(β1 − β2)2 + β2

2 + β2
3

β3

=
β1 + β2

2β2

√

β2
3(β1 − β2)2 + β2

2 + β2
3 .

W need to find the least upper bound of F (i.e. sup(F )) on its domain. This is equivalent

to finding the sup(F 2). We have F 2(β1, β2, β3) =
(β1+β2)2(β2

3
(β1−β2)2+β2

2
+β2

3
)

4β2

2

. This function is

increasing in β3 > 0.

If β1 6 β2 then the largest possible value of β3 is 1, otherwise it is
β2

β1

. Evaluate
∂(F 2)
∂β1

F 2(β1, β2, 1) =
2

4β2

2

(

(β1 + β2)((β1 − β2)
2 + β2

2 + 1) + (β1 + β2)
2(β1 − β2)

)

=

= β1+β2

2β2

2

(

(β1 − β2)
2 + β2

2 + 1 + (β1 + β2)(β1 − β2)
)

= β1+β2

2β2

2

((β1 − β2)
2 + 1 + β2

1) > 0.

So the function F 2(β1, β2, 1) increases in β1 thus F
2(β1, β2, 1) 6 F 2(β2, β2, 1) = β2

2 + 1 6 2.

Now β1 > β2. The the largest possible value of β3 is
β2

β1
. We have

F 2
(

β1, β2,
β2

β1

)

= (β1+β2)2

4β2

2

(

β2

2

β2

1

(β1 − β2)
2 + β2

2 +
β2

2

β2

1

)

= (β1+β2)2

4β2

1

((β1 − β2)
2 + β2

1 + 2).

In the same way as above we conclude that the function F 2
(

β1, β2,
β2

β1

)

increases in β2 so

F 2
(

β1, β2,
β2

β1

)

6 F 2(β1, β1, 1) = β2
1 + 1 6 2. Case 1 is completely done.

Case 2. This time we assume that the plane does not intersect the faces v1v2v3v4 and

v5v6v7v8 so in intersects the edges v1v5, v2v6, v3v7 and v4v8. Denote the corresponding

intersection points by b1 = (0, 0, β1), b2 = (0, 0, β2), b3 = (0, 0, β3) and b4 = (0, 0, β4). Since the

faces are pairwise parallel b1b2b3b4 is a parallelogram so the diagonals meet at the common

midpoint of both of them. The midpoint is 1
2
(b1+b3) =

1
2
(b2+b4). Therefore β1+β3 = β2+β4

or β3 = β2 + β4 − β1. The equation of the plane b1b2b4 is (β1 − β2)x + (β1 − β4)y + z = β1.

From the theorem 1 it follows that the area of b1b2b3b4 equals

G(β1, β2, β4) =
√

(β1 − β2)2 + (β1 − β4)2 + 1.

With no loss of generality we may assume that β1 6 β2 6 β4 because neither rotation around

the line x = y = 1
2
nor symmetry relative to the plane x = y change the area of the cross-section

so we can first turn the cube around the line x = y = 1
2
by ±90circ or 180◦ so that the lowest

of the edges after the rotation will start at the origin and then if necessary apply the symmetry

relative to the plane x = y. We are looking for the smallest value of G or equivalently for the

smallest value of G2. The arguments have to satisfy the inequalities: 0 6 β1 6 1, 0 6 β2 6 1,

0 6 β4 6 1 and 0 6 β3 = β2 + β4 − β1 6 1 i.e. β2 + β4 − 1 6 β1 6 β2 + β4. It is clear that that

G2 is decreasing in β1 (recall that β1 6 β2 6 β4). This implies that if β2 + β4 − 1 < 0 then

G2(0, β2, β4) > G2(β1, β2, β4). We know that G
2(0, β2, β4) = β2

2 + β2
4 + 1 < (β2 + β4)

2 + 1 < 2.

If β2 + β4 − 1 > 0 then G2(β1, β2, β4) 6 G2(β2 + β4 − 1, β2, β4) = (β4 − 1)2 + (β2 − 1)2 + 1 6

(1−β2−1)2+(β2−1)2+1 = β2
2 +(β2−1)2+1. The biggest value of this quadratic polynomial

is attained at the ends of the interval [0, 1] (the smallest at 1
2
, but it is out of our interest). This



biggest value equals 2.

In this part of the solution no derivatives were used. We did not need them because the investi-

gated functions were quadratics. In this case It is enough to be able to write the function (one

or more variables) in a so called canonical form.

Pentagon. In this case the plane intersects five of six faces of the cube. Let us assume

that the plane does not meet the square v1v2v3v4. Therefore it intersects all other faces. It is

clear that the plane intersects at least 3 of four of the edges v1v5, v2v6, v3v7, v4v8. With no

loss of generality we may assume that it intersects the edge v1v5 at the point (0, 0, β1) and

that if one of the edges v2v6, v3v7, v4v8 is not intersected by the plane the it is v3v7. Let the

intersection points will be (1, 0, β2 and (0, 1, β4). The equation od the plane may be written:

(β1 − β2)x + (β1 − β4)y + z = β1. Let us denote A = β1 − β2, B = β1 − β4. The equation

of the plane takes the form Ax + By + z = β1. The area of the orthogonal projection of the

cross–section onto the plane v5v6v7v8 equals 1 − (1+A+B−β1)2

2AB
, so the area of the cross-section

is
(

1− (β1 − 1− A− B)2

2AB

)√
A2 +B2 + 1.

The plane intersects the edges at the points (0, 0, β1), (1, 0, β1−A), (0, 1, β1−B), (1, β1−A−1
B

, 1),

(β1−B−A

A
, 1, 1). This implies that 0 < β1 < 1, 0 < β1 − A < 1, 0 < β1 − B < 1, 0 < β1−A−1

B
< 1

and 0 < β1−B−1
A

< 1. This implies that A < β1 < A+1, B < β1 < B+1, A,B < 0, β1−B−1 > A

i.e. β1 > A + B + 1. Therefore
(

1− (β1−1−A−B)2

2AB

)√
A2 +B2 + 1 <

√
A2 +B2 + 1. The right

hand side is obtained for 1 +A+B = β1. This means that the point (1, 1, 1) lies on the plane.

The result is that 2 vertices of the pentagon coincide so it turns into a quadrilateral. The area

grew, so at the end it is less than the area of some quadrilateral so it does not exceed
√
2.

Hexagon. Now the plane intersects all six faces of the cube so it is not parallel to any

face. We may write the equation of the plane in the form Ax + By + z = D, A,B,D ∈ R.

We may assume that it intersects the following edges v1v2, v2v6, v6v7, v7v8, v8v4 and v4v1.

The intersection points are (D
A
, 0, 0), (1, 0, D − A), (1, D−A−1

B
, 1), (D−B−1

A
, 1, 1), (0, 1, D − B),

(0, D
B
, 1). As in the case of the pentagon one can easily see that the constants A,B,D satisfy

many inequalities among them: A < D < 0, D < 1 + A, B < D < 0, D < 1 + B and

A + B + 1 < D. The area of the orthogonal projection of the cross–section onto the plane

v1v2v3v4 equals 1− (1+A+B−D)2

2AB
− D2

2AB
, so the area of the cross-section is

(

1− (1 + A+B −D)2

2AB
− D2

2AB

)√
A2 +B2 + 1.

From the properties of quadratic polynomials it follows that for fixed A,B it attains its biggest

value for D = 1+A+B
2
. In this case the plane contains the center of the cube namely the point

(1
2
, 1
2
, 1
2
). This biggest value is

(

1− (1+A+B)2

4AB

)√
A2 +B2 + 1. The numbers A,B have to satisfy

the inequalities: A < 0, B < 0, A+B < −1 and |A−B| < 1. The last inequality follows from

the following two inequalities D − 1 < A < D and D − 1 < B < D which imply that both

numbers A,B lie in the same interval of the length 1.

Let us define u = −(A + B) and v = AB. We have u > 1, 1 > (A − B)2 = (A + B)2 −
2AB = u2 − 4v, so 1 > u2 − 4v > 0. It is easy to see that if the above inequalities are

satisfied and A = −1
2
(u +

√
u2 − 4v) and B = −1

2
(u −

√
u2 − 4v) the A + B = −u < −1

and |A − B| =
√
u2 − 4v < 1. This means that the the last thing to be done is to find the

maximal value or rather sup g(u, v) where g(u, v) =
(

1− (1−u)2

4v

)√
1 + u2 − 2v with (u, v) such

that 1 > u2 − 4v > 0 and u > 1. From these two inequalities it follows that 4v > u2 − 1 > 0.

We shall find sup g on the set G = {(u, v) : u > 1, 1 > u2 − 4v > 0 instead of on the set

G = {(u, v) : u > 1, 1 > u2 − 4v > 0 but this will not change the least upper bound of

g due to the continuity of g if we set g(1, 0) =
√
2. This extends g to a continuous function



on G because (1−u)2

4v
= (u2−1)2

4v(u+1)2
6 16v2

4v(u+1)2
= v

(u+1)2
so (1−u)2

4v
−→ 0 if (u, v) −→ (1, 0) in G.

Unfortunately the set G is not compact although it is closed because it is unbounded. This

means that there is no guarantee that there is a number c such that sup g = g(c).

Let us notice that if (u, v) ∈ G then u−1
u+1

= (u−1)2

u2−1
>

(u−1)2

4v
>

(u−1)2

u2 therefore
2

u+1
= 1− u−1

u+1
< 1− (u−1)2

4v
6 1− (u−1)2

u2 = 2
u

(

2− 2
u

)

.

Another useful inequality
√

1 + u2 − 1
2
(u2 − 1) >

√
1 + u2 − 2v >

√

1 + u2 − 1
2
u2 so

√

1

2
(u2 + 2) 6

√
1 + u2 − 2v <

√

1

2
(u2 + 3).

The above inequalities imply that
√

2 u2+2
u2+2u+1

= 2
u+1

√

1
2
(u2 + 2) < g(u, v) =

(

1− (1−u)2

4v

)√
1 + u2 − 2v <

< 2
u

(

2− 2
u

)

√

1
2
(u2 + 3) =

(

1− 1
2u

)

√

2u2+3
u2 .

This implies that limu→∞ g(u, v) =
√
2 (recall that u2−1 6 4v 6 u2 so if u → ∞ then v → ∞).

Therefore either sup g is attained at some point or sup g =
√
2. If there is a point (x, y) ∈ G so

that sup g = g(x, y) then

0 =
∂g

∂u
(x, y) = −x− 1

2y

√

1 + x2 − 2y +

(

1− (x− 1)2

4y

)

x
√

1 + x2 − 2y
,

0 =
∂g

∂v
(x, y) =

(x− 1)2

4y2

√

1 + x2 − 2y −
(

1− (x− 1)2

4y

)

1
√

1 + x2 − 2y
.

Therefore 0 = ∂g

∂u
(x, y) + x∂g

∂v
(x, y) =

(

−x−1
2y

+ x(x−1)2

4y2

)

√

1 + x2 − 2y. Since (x, y) ∈ G we have

x > 1 and y > 0 so 1 + x2 − 2y > 1 + x2 − 4y > 0 therefore 2y = x(x− 1). Using this equation

we can rewrite the equation 0 = ∂g

∂u
(x, y) in the following way

0 = − x−1
x(x−1)

√

1 + x2 − x(x− 1) +
(

1− (x−1)2

2x(x−1)

)

x√
1+x2−x(x−1)

= −
√
x+1
x

+
√
x+1
2
.

The conclusion is x = 2 so y = 1. The set G is neither open nor closed. The point (2, 1) lies on the

boundary of G. There is no critical point in the interior of G. This means that there no hexagon

with maximal area. g(2, 1) =
(

1− (1−2)2

4

)√
1 + 22 − 2 = 3

4

√
3 <

√
2 so g(2, 1) 6= sup g. We have

to take care of the boundary of G. There are three parts of the boundary: u = 1, u2 = 4v and

u2 − 1 = 4v.

In the first case we have g(1, v) =
√
2− 2v and 0 = u2 − 1 6 4v 6 u2 = 1. Thus

0 6 g(1, v) 6
√
2.

In the second case we have

g(u, u
2

4
) =

(

1− (1−u)2

u2

)

√

1 + u2 − u2

2
= 2u−1

u2

√

2+u2

2
=

√

(2u−1)2(u2+2)
2u4 =

√

1
2

(

2− 1
u

)2 (
1 + 2

u2

)

.

It easy to see that the function t 7→ 1
2
(2 − t)2(1 + 2t2) decreases on the interval (0, 1) because

its derivative −(2− t)(1−2t)2 is negative on it. Therefore 2 > 1
2
(2− t)2(1+2t2) > 3

2
. Therefore

√

3
2
6 g(u, u

2

4
) 6

√
2.

The third case. If u > 1 then

g(u, u
2−1
4

) =
(

1− (1−u)2

u2−1

)

√

1 + u2 − u2−1
2

= 2u−2
u2−1

√

3+u2

2
= 2

u+1

√

3+u2

2
=

√
2
√

u2+3
u2+2u+1

<
√
2.

The final conclusion is: the maximal area has the cross–section which contains 2 diagonals

of the cube e.g. v1v3v7v5. Among the cross–section which are pentagons there no with maximal

area. The same is true for the hexagons. In these cases it is possible to find a pentagon or hexagon

close to the rectangle v1v3v7v5.


