1. Is there a C? function f(z,y), such that & = kjzy? and &L = kya?y.

O%f _ 0%f
dydxr — Ozdy

that k; = ko. Therefore if k; # ko there is no such function. If k&1 = ks the function exists
eg. f(z,y) = sk’ O

Solution. Suppose the function exists. Then 2k;xy = = 2koxy. This implies

Remark 6.1 % <%) = % = % (ﬁ) but there exits no such function
f:R?\ {(0,0)} — R that af = =77 and f = 71,7 although there exist such func-

tions defined on half-planes the boundaries of Which are straight lines through the point

(0,0) for example arctan 2 for x > 0 or arccos = for y > 0. Suppose that there

is such function f defined for all (z,y) with 2> + y* > 0. Then by the chain rule we
get L(f(cost,sint) = gi(cost sint)(—sint) + gf(cost sint)(cost) = % = 1.
The function ¢ — f(cost,sint) is therefore strictly increasing but this is not true because
f(cos0,sin0) = f(cos(2m),sin(27)). The information tells us that the proof without the
example of a function at the end would not be complete. The little puncture in the
domain (just one point missing) caused serious problems. We end at this place although

there is a long story ahead. [J



2. Let f: R® — R be given by f(z,y,2) = 2% + y> + 2% — Z—;xy+:c+2z+k2.
Find and classify the critical points of f.

ATISWET. & o ottt ettt e ettt 4 pt
. . 2
Solution. V f(x,y,z) = 2z — —y +1,2y — —:c 224+2)=(0,0,0)iff z=—-1, z = k;_k—zkg
and y = kfi’ff}ﬁ — we solved a system of linear equations in x, ¥y, z. Now we need to decide
1 3

whether or not it is a local maximum, a local minimum or a saddle for f. The following

formula explains everything

2
f(%?/az):( _2%1') +(1_(%))($+ 21— (_L))) (1)~ 14k - 401~ (st))

Squares of real numbers are non—negative, 0 < 2121 < % so the function f attains its
.. . 1 o 2k2 _ k. ki 2k3  kiks
minimal value for x = Iy - 4k2, Y= gnT = o k2_4k§ T and z = —1.
3

. 2k2 k1k .. .
Obviously for (z,y, z) # (k%—Zkg’ k%i 413, —1) the strict inequality

kf _kiks
f(zaya )> f(kZ 4k2’k214k2’_1)

holds. In fact at the critical point the function f attains its smallest value so it has
absolute (not only local) minimum at the point.

We could have proceeded differently.

9 _k
k3
D2f(l’,y,2): _I]z_;) 2
0
) _k 2 -2 0
Obviously 2 > 0, ’ s ’;3 ‘:4—(2—;)2>O, —Z—; 2 0 :2(4—(%)2)>080
ks 0 0 2
by the Sylvester criterion the point ( 4k2, kflljjgz, —1) is local minimum for f [.

Remark 6.2 In fac at the end of the solution we could say more because the second derivative
of f is positively defined at all points not only at the critical. This allows us to say that
the function f is strictly convex in the whole plane. Using this statement we are allowed
to say that the local minimum is in fact global (absolute). This paragraph goes beyond

what we were expected to do. It is enough to write that the minimum is local. [J



3. Let g: R* — R be given by g(x,y, 2) = zyz + 22 — 3y> + 23 — 10 and let

M ={(z,y,2) e R3: g(x,y,2) =0, (z,y,2) # (0,0,0)}.
Part A. Give the solutions to the equation Vg(z,y, z) = (0,0,0).

Is M a manifold? Yes/NOt oo 1 pt
Solution. If Vg(z,y,z) = (yz + 2z, 2z — 6y, vy + 32?) = (0,0,0) then zyz + 222 = 0 =
xyz — 6y? so 222 = —6y? but this is possible only for = y = 0. Then z = 0, too. This
implies that if (z,y,2) € M then Vg(z,y, z) # (0,0,0) so M is a manifold. [J

Part B. Let p € R3 be the point given in case (ki) of the following list:

(1). (5,-2,3) (2). (3,0,1) (3). (0,3v/2,4)
(4). (0,-3v/2,4) (5). (v/2,0,2) (6). (—v/2,0,2).
Which of the following equations describes the tangent plane to M at the point p.
(1). —12v/22 + 18y/2y + 482 = 84 (2). =227 — 2y/2y + 122 = 28
(3). 1227 — 182y + 482 = 84 (4). 4z + 2Ty + 172 = 17
(5). 2v2z + 22y + 122 = 28 (6). 6z + 3y + 32 =21
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Solution. The gradient of the function g at (x,y, z) is perpendicular to the tangent plane
at (z,y,z) (in particular the plane given by Az + By + Cz = D is perpendicular to the
vector V(Az + By + Cz) = (A, B,C)) . The following equations are therefore satisfied:
Vg(5,—2,3) = (4,27,17) so dx 4+ 27y + 172 = 20 — 54 + 51 = 17,

Vg(3,0,1) = (6,3,3) so 6x + 3y +32 =184+ 0+ 3 = 21,

Vg(0,3v2,4) = (122, —18v/2,48) so 12v/2z — 182y + 482 = 0 — 108 + 192 = 84,
Vg(0, —3v/2,4) = (—12v/2,18/2,48) so —12v/2x + 182y + 48z = 0 — 108 + 192 = 84,
V9(v2,0,2) = (2v/2,2v/2,12) s0 22z + 22y + 122 = 4 + 0 + 28 = 28,

Vg(—v2,0,2) = (—2v/2,-2v/2,12) so =222 — 22y + 122 =4 + 0 + 28 = 28. [



4. Let F = (Fy, Fy) be the function F: R3 — R? where Fi(z,y,2) = v+ yz — y* + 2 and
Fy(z,y, 2) = kix + ksy + ksz — 1.
Part A. Is the set M = {(z,y,2) € R®: F(z,y,2) = (0,0)} a manifold?

Solution. VFy(x,y,z) = (1,2 — 3y%,y + 1), VEy(2,vy, 2) = (ky, ks, k3). These vectors are

linearly independent if at least one of the 2 x 2 determinants below does not vanish

— 3y? 1
- L Y y;— =ks(z—3y*—y—1), (--+# 0=y, 2 are locally functions of z),
3 3
1 y+1 .
L L =ks—ki(y+1), (---# 0= x, z are locally functions of y),
1 3
1 z—3y? 9 .
L L = ks — ki(z —3y?). (---# 0= x,y are locally functions of z).
1 3

the sentences inside the parenthesis are references to the implicit function theorem.

If the three determinants vanish then
ks+3k1y> k3k1+3k3y? Kak1+3(k1—k3)? 3k3 —5ksk1 +3k32

o kl . . . - . . .
z = = = = . This implies that
v 7 2k1 2 ki 2 2 ki K P
_ 3k2—5kgk +3k 22— dksky +3K; .

y+z= k3k1k1 + =5 15k 2 2 9% The point (z, 7, z) should belong to M so

1 1
ks (2k? —4k1ks+3k3 k2 —2k2k3+4k k2 —3k3

byFQZOWegetx:kilO— bl 3) = 5 13;13 L By Fi = 0 we get
g 5 3k?—bksky+3k2 —2k3+2k3k

r=yl—z(y+1)= (’“3]‘3—1’“)3 — ],z—f - ,:% 1190 — +k3 +—L. This is the same number

x so it implies that —2k3 + 2k3ky — k3 = ki — 2k3ks + 4]{:11{:32, — 3k3 so
0= k2 4 I — 22hy + 2h1 k2 — kS = 12(1 + by — ky) — Koy — ky)2.

The constants k1, k3 were chosen so that k; > 0 and 1+ k; < 1+ ki + ky = k3. Thus the
right—hand side is negative, a contradiction. This proves that the gradients VF}, V Fxq
are linearly independent at all points of the set M. Therefore M is a manifold. [J

Part B. Let p = (ks%l 0, 1 ) Is the vector (1,1, 1) an element of the perpendicular

Frt ) ka—
space T, M+

Yes/Not oo 2 pt
Solution. The space T,M* is spanned by the vectors VFl(kg_%kl, 0, k;kl) = (1, o k1 1)
and VF(—-,0, ks wo) = (k1. ks, k3). So the question is: Do there exist numbers Aq, Az

such that )\ ( N — k 1) + Xa(kq, ks, k3) = (1,1,1). Three equations should be satisfied
A+ Aok =1, k3_—kl 4+ XAoks = 1 and A\; + Agks = 1. This implies that ﬁ = )\ SO
ks = k1 + 1 but this does not happen in our situation because k3 = k1 + ko +1 > k1 + 1.
Therefore (1,1,1) ¢ T,M*. O

Remark 6.3 We shall remind the implicit function theorem in the situation above.
G qr) Gr(pog,r)

#0
p:q;r) p:q;T)
and Fi(p,q,r) = 0 = Fy(p,q,r) then there exist numbers € > 0 and § > O such that if

If Fy and F; are C*' functions on an open subset of R? and

8F2( 8F2 (

|z — r| < ¢ then there is a unique pair (x,y) such that |z — p| < ¢ and |y — ¢| < € and
Fi(z,y,2) = 0 and Fy(x,y,2) = 0. The map 2 — (z,y) is C' on (r — §,r +4). O



5. Find the maximum and minimum values of the function f(x,y,z) = k1z + koy subject

to the constraints:

1
gl(fv,y,Z)Z(x—§)2+y2+22—1:0

1
P+ -1=0.

g2($,y,2) = (I + 2
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Solution. Subtract the two equations 0 = (z + 3)? — (z — 3)? = 2z so « = 0 under the

constraints. We have to find the biggest and the smallest value of kyy i.e. the biggest
and the smallest value of y. Since y? + 2% = % we know that —@ <y < @ so for each

admissible point (x,y, z) the inequalities

—k2£ < flz,y,2) < k2\/7§

are fulfilled so max f = k3 and min f= — kL3 -2 on the admissible set.

Solution 2. Let M = {(x,y, 2): g@,y,2) =0 = ga(x,y, 2)}. Compute the gradients
Vor(@.y.2) = 20z — $,5.2), Vaalwy.2) = 2+ Ly, 2).

If (0,0,0) = =\Vai(z,y,2) + \aVga(z,y, z) then

ME—3)+ Xz +3) =0, My + Ay =0, Mz + Az = 0.

If A+ X =0then 0= A (2 — 3) + Xo(z + 5) =2(A1 + A2) + 3(Aa — A1) = 2(Xa — Ay) s0
A=Ay =0. If \{ + Ay # 0 then y = z = 0 and therefore (z — 1) =1 and (z + 3)* = 1.

The first equation implies that x = % orx = —%. The second equation implies that z =

3
2 )
are linearly independent at at all points of the set M. Therefore M C R? is a manifold

\_/ B[

or x = —=, a contradiction. We proved that the gradients Vgi(z,y, z) and Vgs(z,y, 2

of dimension 3 —2 = 1. M is compact because it is closed and id (z,y,z) € M then
lyl,]2] <1 and |z — 3|,|z+ 3] < 1so |z] < 3. Therefore maxy f and miny f exist.
By the Lagrange theorem at a point at which an extreme value is attained there exist
numbers Aq, Ay such that
(k1,k2,0) = V[(z,y,2) = Migi(2,y, 2) + Aaga(,y, 2) =

= (M(z —3) + Xz +3), ¥+ Xa), 2(A1 + Aa)).
Since 0 < ky = y(A; + Ag) the inequality A; + Ay # 0 holds. Therefore 0 = z(A\; + A2)
implies z = 0. Thus (z — 1)+ y*> = 1 and (z + 1)* 4+ y* = 1. Subtract these equations
0= (r—3%)*—(z+3)* = =2z so x = 0. Therefore y*> = 2. This shows that there are two
candidates for points at which an extreme value is attained: (0, —i ,0) and (0, \é_, O)
The corresponding values of f are —]{52 o> and ]{?2 -2. This proves that miny, f = —]{52 >

and max,; f = ]{?2\/_. O



Let S C R? be the compact subset bounded by the plane {(z,y,z) € R*: 2z = —k;}

and the paraboloid {(z,y,2) € R®: 2=k — 2% —y*}.

Part A. Express the volume of S as an iterated integral in (z,y, z) coordinates.
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Solution. We have S = {(z,y,2): —k <z <ki—2?—y?}. Thus —k; < k3 — 2% —¢?

ie. 0 <2+ > <k + k% Therefore the volume of S equals

VEitk:  pyfkitk3—a? pkd-a?—y?
= / / / dzdydzx.
—VVk1+kE J =k +k3—a? J —ky

—z—x2
/ / / v dydzdz.
—\/kE—2—22

Part B. Express the volume of S as an iterated integral in cylindrical coordinates (r, 0, z),

We can do it differently.

i.e., x=rcos(0),y=rsin(f), z = z.
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Solution.

k2 pm pa/k3—z m pASkE4k pk2—r2
:/ / / rdrdfdz or V(S5) :/ / / rdzdrdf O
—k1J—mJO —m JO —k1

Part C. What is the volume of S?
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NIEET — m Kk
Solution. V(S / / / rdzdrdf = / / (k3 + ki — r*)rdzdrdd =

P (;(lﬁerkl) —4(k2+k1)) S+ k)



