Quiz, April 7, 2020

Name and surname (type)
Student number (type)
NOTE! The first step is to calculate your parameters a, b, r and s as follows. Let $p=$ the third digit of your student number and $q=$ the last digit of your student number, then

$$
a=1+|p-q|, \quad b=2+p+q, \quad r=\frac{a}{b}, \quad s=\frac{b}{a} .
$$

Step 2. Answer the questions below using your values for the parameters a amd b :

1. Calculate the indefinite integral $\int \frac{1}{x^{2}(a x+b)} d x$. answer: $\quad \frac{a}{b^{2}} \ln \frac{|a x+b|}{|x|}-\frac{1}{b x}+C$

Solution. $\int \frac{1}{x^{2}(a x+b)} d x=\int\left(\frac{-a}{b^{2} x}+\frac{1}{b x^{2}}+\frac{a^{2}}{b^{2}(a x+b)}\right) d x=\frac{-a}{b^{2}} \ln |x|-\frac{1}{b x}+\frac{a}{b^{2}} \ln |a x+b|+C=$ $=\frac{a}{b^{2}} \ln \left|\frac{a x+b}{x}\right|-\frac{1}{b x}+C$.
2. Calculate the definite integral $\int_{0}^{\sqrt{\pi / 2}} x \cos \left(x^{2}\right) d x$. answer: $\frac{1}{2}$.

Solution. $\int_{0}^{\sqrt{\pi / 2}} x \cos \left(x^{2}\right) d x \xlongequal[d u=2 x d x]{u=x^{2}} \frac{1}{2} \int_{0}^{\pi / 2} \cos u d u=\left.\frac{1}{2} \sin u\right|_{0} ^{\pi / 2}=\frac{1}{2} \sin \frac{\pi}{2}-\frac{1}{2} \sin 0=\frac{1}{2}$.
3. Calculate the definite integral $\int_{0}^{\infty} x e^{-a x} d x . \quad$ answer: $\frac{1}{a^{2}}$

Solution. We shall integrate by parts. Le us start with indefinite integral.
$\int x e^{-a x} d x=-\frac{1}{a} e^{-a x} \cdot x+\frac{1}{a} \int e^{-a x} d x=-\frac{1}{a} e^{-a x} \cdot x-\frac{1}{a^{2}} e^{-a x}+C$. For evaluating the definite integral we may choose a number C as we want to. Let $C=0$ and let $F(x)=-\frac{1}{a} e^{-a x} \cdot x-\frac{1}{a^{2}} e^{-a x}$. Recall that in all papers $a>0$. We have $F(0)=-\frac{1}{a^{2}}$ and $\lim _{x \rightarrow \infty} F(x)=0$. The last equality is a consequence of the estimate $e^{a x}=\sum_{n=0}^{\infty} \frac{(a x)^{n}}{n!}>\frac{1}{2} a^{2} x^{2}$ for $x>0$ and therefore $x e^{-a x}=\frac{x}{e^{a x}}<\frac{2 x}{a^{2} x^{2}}=\frac{2}{a^{2} x} \xrightarrow[x \rightarrow \infty]{ } 0$. One also may use the d'Hospital's rule instead of the estimate. This implies that

$$
\int_{0}^{\infty} x e^{-a x} d x=\lim _{x \rightarrow \infty} F(x)-F(0)=0+\frac{1}{a^{2}}=\frac{1}{a^{2}}
$$

4. Is the set $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant s, a x+b y<b\right\}$:

closed	Yes/No:	No
open	Yes/No:	No
bounded	Yes/No:	Yes
compact	Yes/No:	No
connected	Yes/No:	Yes
convex	Yes/No:	Yes

Solution. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant s, a x+b y<b\right\}$. A is not a closed set because $\left(0, \frac{n-1}{n}\right) \in A$ for $n=1,2,3, \ldots$ while $\lim _{n \rightarrow \infty}\left(0, \frac{n-1}{n}\right)=(0,1) \notin A$. A is not open because $(-\sqrt{s}, 0) \in A$ and no point on x-axis to the left of $(-\sqrt{s}, 0)$ is in A - the first inequality in the definition of A is n ot satisfied. A is bounded since it is contained in the disk of radius \sqrt{s} centered at $(0,0)$. A is not compact since it is not closed. It follows from the definition of convexity that A is a convex set: each segment with ends in A is entirely contained in A. A is connected because each convex set is connected.

Uwaga 0.1 In general every set which is convex is also connected. It is not hard to prove that if every 2 points of a set B can be joined with a path contained in B then the set is connected. In the almost simplest case you may think that a path is a sequence of straight line segments $S_{1}, S_{2}, \ldots, S_{k}$ such that the end of S_{i} is the begining of S_{i+1} for $i=1,2,3, \ldots, k-1$. Sometimes such path is called a polygonal chain, see https://en.wikipedia.org/wiki/Polygonal_chain
5. Find the following limit or state that it does not exist

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n]{n^{2}}, \frac{\ln n}{\sqrt{n}},\left(1+\frac{b}{n}\right)^{n}\right) . \quad \text { answer: } \quad\left(1,0, e^{b}\right)
$$

Solution. $\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{2}=1^{2}=1 . \frac{\ln n}{\sqrt{n}}=\frac{4 \ln \sqrt[4]{n}}{\sqrt{n}}<\frac{4 \sqrt[4]{n}}{\sqrt{n}}=\frac{4}{\sqrt[4]{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ thus $\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}=0$. $\lim _{n \rightarrow \infty}\left(1+\frac{b}{n}\right)^{n}=e^{b}$.
6. Find the following limit or state that it does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{a x^{4}+b y^{2}} \quad \text { answer: } 0
$$

Solution. We have $\left|\frac{x y^{2}}{a x^{4}+b y^{2}}\right|=|x| \cdot \frac{y^{2}}{a x^{4}+b y^{2}}=\frac{|x|}{b} \cdot \frac{b y^{2}}{a x^{4}+b y^{2}} \leqslant \frac{|x|}{b} \underset{(x, y) \rightarrow(0,0)}{ } 0$.
7. Let $A=(0,0), B=(2,6)$ and $C=(5,0)$. Is the angle $A B C$ smaller than 90° ?

Yes/No: Yes
Solution. The dot product of the vectors $A-B=(-2,-6)$ and $C-B=(3,-6)$ equals $(-2) \cdot 3+(-6) \cdot(-6)=30>0$ so the cosine of the angle made by these vectors is positive. Thus the angle is less than 90°.
Solution 2. Let $D=(2,0)$. Then $\tan \Varangle A B D=\frac{1}{3}$ and $\tan \Varangle C B D=\frac{1}{2}$. This implies that $\tan \Varangle A B C=\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3} \cdot \frac{1}{2}}=1$. This implies that $\Varangle A B C=45^{\circ}<90^{\circ}$.
8. Let $A=(0,0), B=(2,6)$ and $C=(5,0)$. Let $X=\left(x_{1}, y_{1}\right), Y=\left(x_{2}, y_{2}\right), Z=\left(x_{3}, y_{3}\right)$ be points that lie on the straight line segments $A B, B C$ and $C A$ respectively. Let $K=\subset \mathbb{R}^{6}$ be the set consisting of the sequences $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$. Let $f\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}+$ $+\sqrt{\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}}+\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}}=\|X-Y\|_{2}+\|Y-Z\|_{2}+\|Z-X\|_{2}$ for $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right) \in K$.
Does the function $f: K \longrightarrow \mathbb{R}$ attains its least upper bound? Yes/No:
Does the function $f: K \longrightarrow \mathbb{R}$ attains its greatest lower bound? Yes/No:
Solution. We have $0 \leqslant x_{1} \leqslant 2,0 \leqslant y_{1} \leqslant 6,2 \leqslant x_{2} \leqslant 5,0 \leqslant y_{2} \leqslant 6,0 \leqslant x_{3} \leqslant 5, y_{3}=0$. This proves the set K is bounded. It is also closed. This follows from the fact that the straight line segment which contains its end points is closed. The function in question is continuous: if (X, Y, Z) and $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ are two triples then $\|X-Y\|_{2}+\|Y-Z\|_{2}+\|Z-X\|_{2}-\left(\left\|X^{\prime}-Y^{\prime}\right\|_{2}+\left\|Y^{\prime}-Z^{\prime}\right\|_{2}+\left\|Z^{\prime}-X^{\prime}\right\|_{2}\right) \leqslant$ $\leqslant\left\|X-X^{\prime}\right\|_{2}+\left\|Y-Y^{\prime}\right\|_{2}+\left\|Y-Y^{\prime}\right\|_{2}+\left\|Z-Z^{\prime}\right\|_{2}+\left\|Z-Z^{\prime}\right\|_{2}+\left\|X-X^{\prime}\right\|_{2}=$ $=2\left(\left\|X-X^{\prime}\right\|_{2}+\left\|Y-Y^{\prime}\right\|_{2}+\left\|Z-Z^{\prime}\right\|_{2}\right)$. This inequality proves the continuity of the function f. A continuous function defined on a compact set attains its sup and inf. This Weierstrass maximum/ minimum theorem.
9. Let $f(x, y)=x^{2}(1+y)^{3}+y^{2}$.

Find all critical points of $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$.
Find all points at which $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ has a local minimum.
Find $\inf \left\{f(x, y): \quad(x, y) \in \mathbb{R}^{2}\right\}$.
Find $\inf \left\{f(x, y): \quad(x, y) \in \mathbb{R}^{2}, y>-1\right\}$.
Find $\sup \left\{f(x, y): \quad(x, y) \in \mathbb{R}^{2}, y>-1\right\}$.
answer: $\quad(0,0)$
answer: $\quad(0,0)$
answer: $\quad-\infty$
answer: 0
answer: $\quad \infty$

Solution. $\frac{\partial f}{\partial x}=2 x(1+y)^{3}, \frac{\partial f}{\partial y}=3 x^{2}(1+y)^{2}+2 y$. If $\frac{\partial f}{\partial x}=2 x(1+y)^{3}=0$ then either $x=0$ or $y=-1$. If also $\frac{\partial f}{\partial y}=3 x^{2}(1+y)^{2}+2 y=0$ then $y=0$ in both cases but it is impossible in the second case. So f has one critical point namely $(0,0)$. If $y>-1$ then $f(x, y)>0$ with one exception: $f(0,0)=0$. This prove that at $(0,0)$ the function f has a local minimum and if f is restricted to the half-plane $y>-1$ then $0=f(0,0)$ is its smallest value. $f(1, y)=(1+y)^{3}+y^{2}$ so it is a cubic polynomial in y so it is unbounded from below and from above: $\lim _{y \rightarrow \infty}(1+y)^{3}+y^{2}=+\infty$ and $\lim _{y \rightarrow-\infty}(1+y)^{3}+y^{2}=-\infty$.

This justifies answers to the third and to the fifth questions.
10. Let $f(x, y)=\cos x \cdot \tan y$.

Does f have a local maximum at the point $(0,0)$?
Does f have a local minimum at the point $(0,0)$?
f neither has local minimum nor local maximum at $(0,0)$.

Yes/No:	No
Yes/No:	No
Yes/No:	Yes

Solution. $\frac{\partial f}{\partial y}=\cos x \cdot\left(1+\tan ^{2} y\right)$, so $\frac{\partial f}{\partial y}(0,0)=1 \neq 0$. This proves that $(0,0)$ is not a critical point of f. Therefore f has neither local minimum nor local maximum at $(0,0)$.
11. Let $f(x, y)=\sin ^{2} x+2 a \ln (1+x) \tan y-2 \cos y$.

For what $a \in \mathbb{R}$ the equality grad $f(0,0)=(0,0)$ holds?
For what $a \in \mathbb{R}$ the function f has a local minimum at the point $(0,0)$?
For what $a \in \mathbb{R}$ the function f has a local maximum at the point $(0,0)$?
For what $a \in \mathbb{R}$ the function f has a saddle at the point $(0,0)$? answer: $a \notin(-1,1)$
Solution. $\frac{\partial f}{\partial x}=2 \sin x \cos x+\frac{2 a \tan y}{1+x}, \frac{\partial f}{\partial y}=2 a \ln (1+x)\left(1+\tan ^{2} y\right)+2 \sin y$. From these equalities it follows that $\operatorname{grad} f(0,0)=(0,0)$ for all $a \in \mathbb{R}$.
$\frac{\partial^{2} f}{\partial x^{2}}=2 \cos ^{2} x-2 \sin ^{2} x-\frac{2 a \tan y}{(1+x)^{2}}, \frac{\partial^{2} f}{\partial x \partial y}=\frac{2 a}{1+x}\left(1+\tan ^{2} y\right), \frac{\partial^{2} f}{\partial y}=4 a \ln (1+x) \tan y\left(1+\tan ^{2} y\right)+2 \cos y$. From these equalities it follows that $D^{2} f(0,0)=\left(\begin{array}{cc}2 & 2 a \\ 2 a & 2\end{array}\right)$. The determinant of this matrix equals $4-4 a^{2}=4\left(1-a^{2}\right)$ so the determinant is positive iff $a^{2}<1$. Since the entry at the left upper corner is positive too the matrix is positively defined for $-1<a<1$ which proves that f has a local minimum for such a. If $a^{2}>1$ then the determinant is negative so the function has a saddle at $(0,0)$.
Now let us look at $a=1$. Then $f(x, y)=\sin ^{2} x+2 \ln (1+x) \tan y-2 \cos y$. Now we have $f(x,-x)=\sin ^{2} x-2 \ln (1+x) \tan x-2 \cos x$. We have $\frac{d}{d x}\left(\sin ^{2} x-2 \ln (1+x) \tan x-2 \cos x\right)=$ $=2 \sin x \cos x-\frac{2 \tan x}{1+x}-2 \ln (1+x)\left(1+\tan ^{2} x\right)+2 \sin x$. Then $\frac{d^{2}}{d x^{2}}\left(\sin ^{2} x-2 \ln (1+x) \tan x-2 \cos x\right)=$ $=2 \cos ^{2} x-2 \sin ^{2} x+\frac{2 \tan x}{(1+x)^{2}}-\frac{2\left(1+\tan ^{2}\right) x}{1+x}-\frac{2\left(1+\tan ^{2} x\right)}{1+x}+4 \ln (1+x) \tan x\left(1+\tan ^{2} x\right)+2 \cos x=$ $=2 \cos ^{2} x-2 \sin ^{2} x+\frac{2 \tan x}{(1+x)^{2}}-\frac{4\left(1+\tan ^{2} x\right)}{1+x}+4 \ln (1+x) \tan x\left(1+\tan ^{2} x\right)+2 \cos x$. Substitute 0 for x in this formula. The result is 0 . So the first and the second derivatives of $x \mapsto f(x,-x)$ vanish. Let us compute the third derivative of this function at 0 only. Obviously $\frac{d}{d x}\left(2 \cos ^{2} x-2 \sin ^{2} x+2 \cos x\right)$ is 0 at 0 . It is so because the function attains its maximal value at 0 . The derivative of $\frac{2 \tan x}{(1+x)^{2}}+4 \ln (1+x) \tan x\left(1+\tan ^{2} x\right)$ at 0 is 2 because $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1-$ to obtain this result we use the definition of the derivative. The last part is $-\frac{4\left(1+\tan ^{2} x\right)}{1+x}=\frac{-4}{1+x}-\frac{-4 \tan ^{2} x}{1+x}$. The derivative of $\frac{-4}{1+x}$ equals $\frac{4}{(1+x)^{2}}$ so at 0 it is 4 . $\lim _{x \rightarrow 0} \frac{-4 \tan ^{2} x}{x(1+x)}=\lim _{x \rightarrow 0} \frac{-4 \tan x}{x} \cdot \lim _{x \rightarrow 0} \frac{\tan x}{(1+x)}=-4 \cdot 0=0$ so by definition of the derivative we know that the derivative at 0 of $\frac{-4 \tan ^{2} x}{1+x}$ is 0 . Therefore the third derivative of $x \mapsto f(x,-x)$ at 0 is 6 . Thus proves that the function assumes positive and negative values at any
neighbourhood of 0 . So the function f has a saddle at $(0,0)$.
The same method applies to $f(x, y)=\sin ^{2} x-2 \ln (1+x) \tan y-2 \cos y$. The only difference is that this time we look at $f(x, x)$ but this the same function we just finished to investigate.

Uwaga 0.2 Instead of computing the third derivative one might use Taylor expansions. This would give the same result faster. $\sin x=x-\frac{x^{3}}{6}+o\left(x^{3}\right)$. This is an abbreviation of the sentence $\lim _{x \rightarrow 0} \frac{\sin x-\left(x-\frac{x^{3}}{6}\right)}{x^{3}}=0$. From this it follows that $\sin ^{2} x=\left(x-\frac{x^{3}}{6}+o\left(x^{3}\right)\right)^{2}=x^{2}+o\left(x^{3}\right)$. Then $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right)$ and $\tan x=x+\frac{x^{3}}{3}+o\left(x^{3}\right)$. Therefore $\ln (1+x) \tan x=$ $=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right)\right)\left(x+\frac{x^{3}}{3}+o\left(x^{3}\right)\right)=x^{2}-\frac{x^{3}}{2}+o\left(x^{3}\right)$. The last expansion is $\cos x=1-\frac{x^{2}}{2}+o\left(x^{3}\right)$. The final result is
$\sin ^{2} x-2 \ln (1+x) \tan x-2 \cos x=x^{2}+o\left(x^{3}\right)-2\left(x^{2}-\frac{x^{3}}{2}+o\left(x^{3}\right)\right)-2\left(1-\frac{x^{2}}{2}+o\left(x^{3}\right)\right)=-2+x^{3}+o\left(x^{3}\right)$. The function $-2+x^{3}$ assumes at any neighbourhood of 0 values less than -2 (for negative x) and values greater than -2 (for positive x). The remainder $o\left(x^{3}\right)$ is too little for small x to be able to change the sign of x^{3}. The nonexistence of local extremum follows.

