Quiz, April 7, 2020

Name and surname (type) Student number (type).....

NOTE! The first step is to calculate your parameters a, b, r and s as follows. Let p = the third digit of your student number and q = the last digit of your student number, then

$$a = 1 + |p - q|,$$
 $b = 2 + p + q,$ $r = \frac{a}{b},$ $s = \frac{b}{a}.$

Step 2. Answer the questions below using your values for the parameters a and b:

1. Calculate the indefinite integral $\int \frac{1}{x^2(ax+b)} dx$. answer: $\frac{a}{b^2} \ln \frac{|ax+b|}{|x|} - \frac{1}{bx} + C$ Solution. $\int \frac{1}{x^2(ax+b)} dx = \int \left(\frac{-a}{b^2x} + \frac{1}{bx^2} + \frac{a^2}{b^2(ax+b)}\right) dx = \frac{-a}{b^2} \ln |x| - \frac{1}{bx} + \frac{a}{b^2} \ln |ax+b| + C = \frac{a}{b^2} \ln \left|\frac{ax+b}{x}\right| - \frac{1}{bx} + C$. \Box

2. Calculate the definite integral $\int_0^{\sqrt{\pi/2}} x \cos(x^2) dx$. answer: $\frac{1}{2}$.

Solution.
$$\int_0^{\sqrt{\pi/2}} x \cos(x^2) dx = \frac{u = x^2}{du = 2xdx} \frac{1}{2} \int_0^{\pi/2} \cos u du = \frac{1}{2} \sin u \Big|_0^{\pi/2} = \frac{1}{2} \sin \frac{\pi}{2} - \frac{1}{2} \sin 0 = \frac{1}{2}.$$

3. Calculate the definite integral $\int_0^\infty x e^{-ax} dx$. answer: $\frac{1}{a^2}$ Solution. We shall integrate by parts. Le us start with indefinite integral.

 $\int xe^{-ax}dx = -\frac{1}{a}e^{-ax} \cdot x + \frac{1}{a}\int e^{-ax}dx = -\frac{1}{a}e^{-ax} \cdot x - \frac{1}{a^2}e^{-ax} + C.$ For evaluating the definite integral we may choose a number C as we want to. Let C = 0 and let $F(x) = -\frac{1}{a}e^{-ax} \cdot x - \frac{1}{a^2}e^{-ax}$. Recall that in all papers a > 0. We have $F(0) = -\frac{1}{a^2}$ and $\lim_{x \to \infty} F(x) = 0$. The last equality is a consequence of the estimate $e^{ax} = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!} > \frac{1}{2}a^2x^2$ for x > 0 and therefore $xe^{-ax} = \frac{x}{e^{ax}} < \frac{2x}{a^2x^2} = \frac{2}{a^2x} \xrightarrow[x \to \infty]{} 0.$ One also may use the d'Hospital's rule instead of the estimate. This implies that

$$\int_0^\infty x e^{-ax} dx = \lim_{x \to \infty} F(x) - F(0) = 0 + \frac{1}{a^2} = \frac{1}{a^2}.$$

4. Is the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq s, ax + by < b\}$:

closed	Yes/No:	No
open	Yes/No:	No
bounded	Yes/No:	Yes
compact	Yes/No:	No
connected	Yes/No:	Yes
convex	Yes/No:	Yes

Solution. Let $A = \{(x, y) \in \mathbb{R}^2: x^2 + y^2 \leq s, ax + by < b\}$. A is not a closed set because $(0, \frac{n-1}{n}) \in A$ for $n = 1, 2, 3, \ldots$ while $\lim_{n \to \infty} (0, \frac{n-1}{n}) = (0, 1) \notin A$. A is not open because $(-\sqrt{s}, 0) \in A$ and no point on x-axis to the left of $(-\sqrt{s}, 0)$ is in A - the first inequality in the definition of A is not satisfied. A is bounded since it is contained in the disk of radius \sqrt{s} centered at (0, 0). A is not compact since it is not closed. It follows from the definition of convexity that A is a convex set: each segment with ends in A is entirely contained in A. A is connected because each convex set is connected.

Uwaga 0.1 In general every set which is convex is also connected. It is not hard to prove that if every 2 points of a set B can be joined with a path contained in B then the set is connected. In the almost simplest case you may think that a path is a sequence of straight line segments S_1, S_2, \ldots, S_k such that the end of S_i is the begining of S_{i+1} for i = 1, 2, 3, ..., k-1. Sometimes such path is called a polygonal chain, see https://en.wikipedia.org/wiki/Polygonal_chain

5. Find the following limit or state that it does not exist

$$\lim_{n \to \infty} \left(\sqrt[n]{n^2}, \frac{\ln n}{\sqrt{n}}, \left(1 + \frac{b}{n}\right)^n \right). \qquad \text{answer:} \quad (1, 0, e^b)$$

Solution.
$$\lim_{n \to \infty} \sqrt[n]{n^2} = \left(\lim_{n \to \infty} \sqrt[n]{n}\right)^2 = 1^2 = 1. \quad \frac{\ln n}{\sqrt{n}} = \frac{4 \ln \sqrt[4]{n}}{\sqrt{n}} < \frac{4\sqrt[4]{n}}{\sqrt{n}} = \frac{4}{\sqrt[4]{n}} \xrightarrow[n \to \infty]{} 0 \text{ thus } \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = 0.$$
$$\lim_{n \to \infty} \left(1 + \frac{b}{n}\right)^n = e^b. \quad \Box$$

6. Find the following limit or state that it does not exist

 $\lim_{(x,y)\to(0,0)} \frac{xy^2}{ax^4 + by^2} \qquad \text{answer:} \quad 0.$ Solution. We have $\left|\frac{xy^2}{ax^4 + by^2}\right| = |x| \cdot \frac{y^2}{ax^4 + by^2} = \frac{|x|}{b} \cdot \frac{by^2}{ax^4 + by^2} \leqslant \frac{|x|}{b} \xrightarrow[(x,y)\to(0,0)]{} 0.$ 7. Let A = (0, 0), B = (2, 6) and C = (5, 0). Is the angle ABC smaller than 90°?

Solution. The dot product of the vectors A - B = (-2, -6) and C - B = (3, -6) equals $(-2) \cdot 3 + (-6) \cdot (-6) = 30 > 0$ so the cosine of the angle made by these vectors is positive. Thus the angle is less than 90°.

Solution 2. Let D = (2,0). Then $\tan \measuredangle ABD = \frac{1}{3}$ and $\tan \measuredangle CBD = \frac{1}{2}$. This implies that $\tan \measuredangle ABC = \frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \cdot \frac{1}{2}} = 1$. This implies that $\measuredangle ABC = 45^{\circ} < 90^{\circ}$. \Box

8. Let A = (0, 0), B = (2, 6) and C = (5, 0). Let $X = (x_1, y_1), Y = (x_2, y_2), Z = (x_3, y_3)$ be points that lie on the straight line segments AB, BC and CA respectively. Let $K = \subset \mathbb{R}^6$ be the set consisting of the sequences $(x_1, y_1, x_2, y_2, x_3, y_3)$. Let $f(x_1, y_1, x_2, y_2, x_3, y_3) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} +$ $<math>+\sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2} + \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2} = ||X - Y||_2 + ||Y - Z||_2 + ||Z - X||_2$ for $(x_1, y_1, x_2, y_2, x_3, y_3) \in K$.

Does the function $f: K \longrightarrow \mathbb{R}$ attains its least upper bound? Yes/No: Does the function $f: K \longrightarrow \mathbb{R}$ attains its greatest lower bound? Yes/No: Solution. We have $0 \le x_1 \le 2, 0 \le y_1 \le 6, 2 \le x_2 \le 5, 0 \le y_2 \le 6, 0 \le x_3 \le 5, y_3 = 0$. This proves the set K is bounded. It is also closed. This follows from the fact that the straight line segment which contains its end points is closed. The function in question is continuous: if (X, Y, Z) and (X', Y', Z')are two triples then $||X - Y||_2 + ||Y - Z||_2 + ||Z - X||_2 - (||X' - Y'||_2 + ||Y' - Z'||_2 + ||Z' - X'||_2) \le$ $\le ||X - X'||_2 + ||Y - Y'||_2 + ||Z - Z'||_2 + ||Z - Z'||_2 + ||Z - X'||_2 =$ $= 2(||X - X'||_2 + ||Y - Y'||_2 + ||Z - Z'||_2)$. This inequality proves the continuity of the function f. A continuous function defined on a compact set attains its sup and inf. This Weierstrass maximum/

minimum theorem.

9. Let $f(x, y) = x^2(1+y)^3 + y^2$. Find all critical points of $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$. (0, 0)answer: Find all points at which $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ has a local minimum. answer: (0, 0)Find $\inf \{ f(x, y) \colon (x, y) \in \mathbb{R}^2 \}.$ $-\infty$ answer: Find $\inf \{ f(x, y) : (x, y) \in \mathbb{R}^2, y > -1 \}.$ 0 answer: Find sup{f(x, y): $(x, y) \in \mathbb{R}^2, y > -1$ }. answer: ∞ Solution. $\frac{\partial f}{\partial x} = 2x(1+y)^3$, $\frac{\partial f}{\partial y} = 3x^2(1+y)^2 + 2y$. If $\frac{\partial f}{\partial x} = 2x(1+y)^3 = 0$ then either x = 0 or y = -1. If also $\frac{\partial f}{\partial y} = 3x^2(1+y)^2 + 2y = 0$ then y = 0 in both cases but it is impossible in the second case. So f has one critical point namely (0,0). If y > -1 then f(x,y) > 0 with one exception: f(0,0) = 0. This prove that at (0,0) the function f has a local minimum and if f is restricted to the half-plane y > -1 then 0 = f(0,0) is its smallest value. $f(1,y) = (1+y)^3 + y^2$ so it is a cubic polynomial in y so it is unbounded from below and from above: $\lim_{y\to\infty} (1+y)^3 + y^2 = +\infty$ and $\lim_{y\to-\infty} (1+y)^3 + y^2 = -\infty$. This justifies answers to the third and to the fifth questions. \Box

10. Let $f(x, y) = \cos x \cdot \tan y$. Does f have a local maximum at the point (0, 0)? **Yes/No:** No Does f have a local minimum at the point (0, 0)? **Yes/No:** No f neither has local minimum nor local maximum at (0, 0). **Yes/No:** Yes *Solution.* $\frac{\partial f}{\partial y} = \cos x \cdot (1 + \tan^2 y)$, so $\frac{\partial f}{\partial y}(0, 0) = 1 \neq 0$. This proves that (0, 0) is not a critical point of f. Therefore f has neither local minimum nor local maximum at (0, 0). \Box **11**. Let $f(x, y) = \sin^2 x + 2a \ln(1 + x) \tan y - 2\cos y$. For what $a \in \mathbb{R}$ the equality grad f(0, 0) = (0, 0) holds? answer: $a \in \mathbb{R}$

For what $a \in \mathbb{R}$ the function f has a local minimum at the point (0,0)? answer: -1 < a < 1

For what $a \in \mathbb{R}$ the function f has a local maximum at the point (0,0)? answer: $a \in \emptyset$

For what $a \in \mathbb{R}$ the function f has a saddle at the point (0,0)? answer: $a \notin (-1,1)$ Solution. $\frac{\partial f}{\partial x} = 2 \sin x \cos x + \frac{2a \tan y}{1+x}, \frac{\partial f}{\partial y} = 2a \ln(1+x)(1+\tan^2 y) + 2 \sin y$. From these equalities it follows that grad f(0,0) = (0,0) for all $a \in \mathbb{R}$.

$$\frac{\partial^2 f}{\partial x^2} = 2\cos^2 x - 2\sin^2 x - \frac{2a\tan y}{(1+x)^2}, \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{2a}{1+x}(1+\tan^2 y), \quad \frac{\partial^2 f}{\partial y} = 4a\ln(1+x)\tan y(1+\tan^2 y) + 2\cos y.$$

From these equalities it follows that $D^2 f(0,0) = \begin{pmatrix} 2 & 2a \\ 2a & 2 \end{pmatrix}$. The determinant of this matrix equals $4 - 4a^2 = 4(1 - a^2)$ so the determinant is positive iff $a^2 < 1$. Since the entry at the left upper corner is positive too the matrix is positively defined for -1 < a < 1 which proves that f has a local minimum for such a. If $a^2 > 1$ then the determinant is negative so the function has a saddle at (0,0).

Now let us look at a = 1. Then $f(x, y) = \sin^2 x + 2\ln(1+x) \tan y - 2\cos y$. Now we have $f(x, -x) = \sin^2 x - 2\ln(1+x) \tan x - 2\cos x$. We have $\frac{d}{dx} (\sin^2 x - 2\ln(1+x) \tan x - 2\cos x) = 2\sin x \cos x - \frac{2\tan x}{1+x} - 2\ln(1+x)(1+\tan^2 x) + 2\sin x$. Then $\frac{d^2}{dx^2} (\sin^2 x - 2\ln(1+x) \tan x - 2\cos x) = 2\cos^2 x - 2\sin^2 x + \frac{2\tan x}{(1+x)^2} - \frac{2(1+\tan^2 x)}{1+x} - 4\ln(1+x) \tan x(1+\tan^2 x) + 2\cos x = 2\cos^2 x - 2\sin^2 x + \frac{2\tan x}{(1+x)^2} - \frac{4(1+\tan^2 x)}{1+x} + 4\ln(1+x) \tan x(1+\tan^2 x) + 2\cos x$. Substitute 0 for x in this formula. The result is 0. So the first and the second derivatives of $x \mapsto f(x, -x)$ vanish. Let us compute the third derivative of this function at 0 only. Obviously $\frac{d}{dx}(2\cos^2 x - 2\sin^2 x + 2\cos x)$ is 0 at 0. It is so because the function attains its maximal value at 0. The derivative of $\frac{2\tan x}{(1+x)^2} + 4\ln(1+x) \tan x(1+\tan^2 x) = \frac{-4}{1+x}$. The derivative of $\frac{-4}{1+x}$ equals $\frac{4}{(1+x)^2}$ so at 0 it is 4. $\lim_{x\to 0} \frac{-4\tan^2 x}{x(1+x)} = \lim_{x\to 0} \frac{-4\tan x}{x} + \lim_{x\to 0} \frac{\tan x}{(1+x)} = -4 \cdot 0 = 0$ so by definition of the derivative at 0 of $\frac{-4\tan^2 x}{1+x}$ is 0. Therefore the third derivative of $x \mapsto f(x, -x)$ at 0 is 6. Thus proves that the function assumes positive and negative values at any

neighbourhood of 0. So the function f has a saddle at (0, 0).

The same method applies to $f(x, y) = \sin^2 x - 2\ln(1+x)\tan y - 2\cos y$. The only difference is that this time we look at f(x, x) but this the same function we just finished to investigate. \Box

Uwaga 0.2 Instead of computing the third derivative one might use Taylor expansions. This would give the same result faster. $\sin x = x - \frac{x^3}{6} + o(x^3)$. This is an abbreviation of the sentence $\lim_{x\to 0} \frac{\sin x - (x - \frac{x^3}{6})}{x^3} = 0$. From this it follows that $\sin^2 x = (x - \frac{x^3}{6} + o(x^3))^2 = x^2 + o(x^3)$. Then $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$ and $\tan x = x + \frac{x^3}{3} + o(x^3)$. Therefore $\ln(1+x) \tan x = (x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3))(x + \frac{x^3}{3} + o(x^3)) = x^2 - \frac{x^3}{2} + o(x^3)$. The last expansion is $\cos x = 1 - \frac{x^2}{2} + o(x^3)$. The final result is

 $\sin^2 x - 2\ln(1+x)\tan x - 2\cos x = x^2 + o(x^3) - 2(x^2 - \frac{x^3}{2} + o(x^3)) - 2(1 - \frac{x^2}{2} + o(x^3)) = -2 + x^3 + o(x^3).$ The function $-2 + x^3$ assumes at any neighbourhood of 0 values less than -2 (for negative x) and values greater than -2 (for positive x). The remainder $o(x^3)$ is too little for small x to be able to change the sign of x^3 . The nonexistence of local extremum follows. \Box