Quiz, April 7, 2020
Name and Surname (BYDPe) . ... ..ttt et e
Student NUMDEr (FYPE) . . oot
NOTE! The first step is to calculate your parameters a, b,  and s as follows. Let p = the third
digit of your student number and ¢ = the last digit of your student number, then

a
a=1+lp—q, b=2+4ptq r=y
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Step 2. Answer the questions below using your values for the parameters a amd b:
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1. Calculate the indefinite integral / —— dz. answer: &lpletl_ L
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2. Calculate the definite integral / wcos(z®)dr.  answer:
0

v/ 2 1 w/2
. 2 u=z 1 . /2 1 « = 1 .. 1
Solution. x cos(z?)dr — = cosudu = gsinu|,;'"" = 5sin g — 3sin0 = 5. [
0 du=2zdz 2 0

3. Calculate the definite integral / re “dx. answer: aiz
0
Solution. We shall integrate by parts. Le us start with indefinite integral.
[redr = —Lem . g+ L [em0rdy = —Lemr . g — S e + C. For evaluating the definite integral
we may choose a number C' as we want to. Let C' = 0 and let F(z) = —%e_‘“” Sxr— a%e_“x. Recall

that in all papers a > 0. We have F(0) = —= and lim F(x) = 0. The last equality is a consequence
T—00
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of the estimate e** = (ax) > a 222 for x > 0 and therefore ze ™ = L < 22— 2 ()

eax a?x? ax

One also may use the d’Hospital’s rule instead of the estimate. This implies that

T—00 a a2

o 1 1
/ ze”“dr = lim F(r) - F(0) =0+ — = —.
0



4. Tstheset {(z,y) e R?: 2% +y?><s, ax +by < b}:

closed Yes/No: No
open Yes/No: No
bounded Yes/No:  Yes
compact Yes/No: No
connected Yes/No:  Yes
convex Yes/No:  Yes

Solution. Let A = {(z,y) € R?*: 22+ y*> < s, ar + by < b}. A is not a closed set because
(0,=1) € Aforn=1,2,3,... while nh_)rrolo (0,%=1) = (0,1) & A. A is not open because (—/s,0) € A
and no point on x—axis to the left of (—/s,0) is in A — the first inequality in the definition of A is
n ot satisfied. A is bounded since it is contained in the disk of radius /s centered at (0,0). A is
not compact since it is not closed. It follows from the definition of convexity that A is a convex set:
each segment with ends in A is entirely contained in A. A is connected because each convex set is

connected.

Uwaga 0.1 In general every set which is convex is also connected. It is not hard to prove that if
every 2 points of a set B can be joined with a path contained in B then the set is connected. In the
almost simplest case you may think that a path is a sequence of straight line segments S, Ss,...,S%
such that the end of S; is the begining of S;y; fori =1,2,3, ...,k — 1. Sometimes such path is called
a polygonal chain, see https://en.wikipedia.org/wiki/Polygonal_chain

5. Find the following limit or state that it does not exist

Inn b\"
lim ( Vn2, =2 @_ —) . . (1,0,¢
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Solution. nh_)rrolo vn? = (nh_{Iolo \/ﬁ> =1%2=1. =k < w = %mo thus nh_)II;o\/ﬁ_O.
lim (1+2)" = O
n—oo

6. Find the following limit or state that it does not exist
: Y
(m,y)lE}%O,O) ax* + by?
2 =] | _ by? |z
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answer: 0.

Solution. We have
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7. Let A=(0,0), B=(2,6) and C = (5,0). Is the angle ABC' smaller than 90°7
Yes/No: Yes
Solution. The dot product of the vectors A — B = (—2,—6) and C — B = (3, —6) equals
(—=2) -3+ (—6) - (—6) = 30 > 0 so the cosine of the angle made by these vectors is positive. Thus
the angle is less than 90°.
Solution 2. Let D = (2,0). Then tan ¥ABD = % and tan <xCBD =
tan ¥<ABC = 52 — 1. This implies that *ABC = 45° < 90°. [J
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1 . . .
5. This implies that

8. Let A=(0,0), B=(2,6)and C = (5,0). Let X = (z1,v1), Y = (22,y2), Z = (23, y3) be points
that lie on the straight line segments AB, BC and CA respectively. Let K =C R® be the set consi-

sting of the sequences (xhyl, X2, Y2, T3, y3)- Let f(x1,y1, T, Yo, ¥3,Y3) = /(21 — 22)2 + (y1 — y2)? +

+y/ (w2 — 23)% + 2+ V(s =)+ (s —y)? = X = Yo+ Y = Z|l2 + | Z — X for
(xl,y1>I2,y2,933>y3) € K.
Does the function f: K — R attains its least upper bound? Yes/No:  ................

Does the function f: K — R attains its greatest lower bound? Yes/No:  ................
Solution. We have 0 <21 <2,0<y; <6,2< 25 <5, 0<yy <6,0 <23 <5, y3 =0. This proves

the set K is bounded. It is also closed. This follows from the fact that the straight line segment which
contains its end points is closed. The function in question is continuous: if (XY, Z) and (X', Y, Z’)
are two triples then || X —V{la+ |Y = Z ]2+ [1Z = X o — (| X" = ¥'ll2 + [Y* = Z/|ls + 2" = X']l>) <
X = X+ IV =Y+ IV = Y+ 12 = Z s+ |2 — Z]|s + | X — X[, =

=2(|X = X'l + |[Y = Y'||a+ ||Z — Z'||2). This inequality proves the continuity of the function f.
A continuous function defined on a compact set attains its sup and inf. This Weierstrass maximum/

minimum theorem.

9. Let f(z,y) = 2%(1 +y)* + 2

Find all critical points of f: R?* — R. answer: (0,0)
Find all points at which f: R? — R has a local minimum. answer: (0,0)
Find inf{f(z,y): (z,y) € R*}. answer:  —00
Find inf{f(z,y): (z,y) € R? y> —1}. answer: 0
Find sup{f(z,y): (x,y) € R? y> —1}. answer: 00

Solution. i =2z(1+y)* 5 8f =323 (1+y)?+2y. If g—j: = 2z(1+y)? = 0 then either x = 0 or y = —1.
If also g—; =32%(1+y)*+ 2y = 0 then y = 0 in both cases but it is impossible in the second case. So
f has one critical point namely (0,0). If y > —1 then f(x,y) > 0 with one exception: f(0,0) = 0.
This prove that at (0,0) the function f has a local minimum and if f is restricted to the half-plane
y > —1then 0 = f(0,0) is its smallest value. f(1,y) = (14+)>+%? so it is a cubic polynomial in y so
it is unbounded from below and from above: Z}LI&(l +y)? +y* = +oo and yg@w(l +y)?+y* = —o0.



This justifies answers to the third and to the fifth questions. [J

10. Let f(z,y) = cosz - tany.

Does f have a local maximum at the point (0,0)? Yes/No: No
Does f have a local minimum at the point (0,0)? Yes/No: No
f neither has local minimum nor local maximum at (0, 0). Yes/No: Yes
Solution. % = cosx - (1 + tan?y), so %(O, 0) =1 # 0. This proves that (0,0) is not a critical point

of f. Therefore f has neither local minimum nor local maximum at (0,0). O

11. Let f(z,y) =sin’z + 2aIn(1 + x) tany — 2 cos y.
For what a € R the equality grad f(0,0) = (0,0) holds? answer: a € R

For what a € R the function f has a local minimum at the point (0,0)? answer: —1 <a <1

For what a € R the function f has a local maximum at the point (0,0)? answer: a € ()

For what a € R the function f has a saddle at the point (0,0)7 answer: a ¢ (—1,1)
Solution. 9L = 2sinz cosx + 2“1:“_123/, gg = 2aIn(1 + z)(1 + tan?y) + 2siny. From these equalities it

follows that grad f(0,0) = (0,0) for all a € R.

2(‘11353, ;;gy = 1er(l +tan?y), (,%f = 4aln(1+z) tany(1 + tan® y) + 2 cos y.

gf =2cos?x—2sin’x—

2 2a
From these equalities it follows that D?f(0,0) = . The determinant of this matrix

2a 2
equals 4 —4a® = 4(1 — a?) so the determinant is positive iff a?> < 1. Since the entry at the left upper
corner is positive too the matrix is positively defined for —1 < a < 1 which proves that f has a
local minimum for such a. If a® > 1 then the determinant is negative so the function has a saddle
at (0,0).
Now let us look at a = 1. Then f(z,y) = sin’z + 2In(1 + x)tany — 2cosy. Now we have
d

f(z,—x) = sin?z — 2In(1 + x) tanx — 2cosz. We have d—(sian — 2In(1 + z) tanz — 2cosx) =

=2sinz cosz — H28L —21n(14x)(1+tan® z) +2sinz. Then (sm r—2In(l1+z)tanz —2cosz) =

=2cos?x — 2sin®z + ?ltj;;g - 2(“;3?; Jz _ (lﬁf;l 2 4 4In(1 + ) tan (1 + tan? z) + 2 cos z =
=2cos’x — 2sin’x + (21:?2)@ — 4(1J;tf22 2 4+ 41n(1 + z) tanz(1 + tan? z) + 2 cos z. Substitute 0 for z

in this formula. The result is 0. So the first and the second derivatives of x — f(x, —x) vanish. Let
us compute the third derivative of this function at 0 only. Obviously %(2 cos? x — 2sin® x + 2 cos x)

is 0 at 0. It is so because the function attains its maximal value at 0. The derivative of

(21:?23 + 4In(1 + z) tanz(1 + tan®z) at 0 is 2 because lim T — ] — o obtain this result we use

the definition of the derivative. The last part is —W = ﬁ‘; — % The derivative of == T +w
—4tan?z __ 1 —4tanx  1; tanz  _ _ 4 | — 143

equals 1+ e S0 at 0 it is 4. hm P = glgli% " ilir(l] gy 4-0 = 0 so by definition of

the derivative we know that the derivative at 0 of % is 0. Therefore the third derivative of

x+— f(x,—x) at 0 is 6. Thus proves that the function assumes positive and negative values at any



neighbourhood of 0. So the function f has a saddle at (0,0).
The same method applies to f(z,y) = sin®z — 2In(1+z) tany — 2 cosy. The only difference is that

this time we look at f(z,x) but this the same function we just finished to investigate. [

Uwaga 0.2 Instead of computing the third derivative one might use Taylor expansions. This
would give the same result faster. sinx = = — 966—3 + o(x?). This is an abbreviation of the sen-

3
sinz—(z—%)
3

tence lim = 0. From this it follows that sinz = (v — & + o(2?))? = 2 + o(z?).

Then fn_El +a) =2 %L + 2 4 o(z%) and tanz = o + £ + o(z®). Therefore In(1 + ) tanz =
=(z— 2+ 2 4 o(z?))(x+ % +o(a?)) = 2% — & +o0(z?). The last expansion is cosz = 1— & +o(z?).
The final result is

sin? 2 —21In(1+2) tanz—2cosz = 2 +0(2%) —2(2% = L +0(2?)) —2(1 — L +o0(2?)) = —2+23+o(2?).
The function —2 + 23 assumes at any neighbourhood of 0 values less than —2 (for negative x) and

values greater than —2 (for positive z). The remainder o(z?) is too little for small z to be able to

change the sign of 22. The nonexistence of local extremum follows. [J



