
Quiz, April 7, 2020

Name and surname (type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student number (type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NOTE! The first step is to calculate your parameters a, b, r and s as follows. Let p = the third

digit of your student number and q = the last digit of your student number, then

a = 1 + |p− q|, b = 2 + p+ q, r =
a

b
, s =

b

a
.

Step 2. Answer the questions below using your values for the parameters a amd b:

1. Calculate the indefinite integral

∫

1

x2(ax+ b)
dx. answer: a

b2
ln |ax+b|

|x| − 1
bx

+ C

Solution.

∫

1

x2(ax+ b)
dx =

∫ (−a

b2x
+

1

bx2
+

a2

b2(ax+ b)

)

dx =
−a

b2
ln |x|− 1

bx
+

a

b2
ln |ax+b|+C =

=
a

b2
ln

∣

∣

∣

∣

ax+ b

x

∣

∣

∣

∣

− 1

bx
+ C. �

2. Calculate the definite integral

∫

√
π/2

0

x cos(x2)dx. answer: 1
2
.

Solution.

∫

√
π/2

0

x cos(x2)dx
u=x2

========
du=2xdx

1

2

∫ π/2

0

cosudu = 1
2
sin u

∣

∣

π/2

0
= 1

2
sin π

2
− 1

2
sin 0 = 1

2
. �

3. Calculate the definite integral

∫ ∞

0

xe−axdx. answer: 1
a2

Solution. We shall integrate by parts. Le us start with indefinite integral.
∫

xe−axdx = − 1
a
e−ax · x+ 1

a

∫

e−axdx = − 1
a
e−ax · x− 1

a2
e−ax +C. For evaluating the definite integral

we may choose a number C as we want to. Let C = 0 and let F (x) = − 1
a
e−ax · x − 1

a2
e−ax. Recall

that in all papers a > 0. We have F (0) = − 1
a2
and lim

x→∞
F (x) = 0. The last equality is a consequence

of the estimate eax =
∞
∑

n=0

(ax)n

n!
> 1

2
a2x2 for x > 0 and therefore xe−ax = x

eax
< 2x

a2x2 = 2
a2x

−−−−→
x→∞

0.

One also may use the d’Hospital’s rule instead of the estimate. This implies that

∫ ∞

0

xe−axdx = lim
x→∞

F (x)− F (0) = 0 +
1

a2
=

1

a2
.



4. Is the set {(x, y) ∈ R
2 : x2 + y2 6 s, ax+ by < b}:

closed Yes/No: No

open Yes/No: No

bounded Yes/No: Yes

compact Yes/No: No

connected Yes/No: Yes

convex Yes/No: Yes

Solution. Let A = {(x, y) ∈ R
2 : x2 + y2 6 s, ax + by < b}. A is not a closed set because

(0, n−1
n
) ∈ A for n = 1, 2, 3, . . . while lim

n→∞
(0, n−1

n
) = (0, 1) 6∈ A. A is not open because (−√

s, 0) ∈ A

and no point on x–axis to the left of (−√
s, 0) is in A – the first inequality in the definition of A is

n ot satisfied. A is bounded since it is contained in the disk of radius
√
s centered at (0, 0). A is

not compact since it is not closed. It follows from the definition of convexity that A is a convex set:

each segment with ends in A is entirely contained in A. A is connected because each convex set is

connected.

Uwaga 0.1 In general every set which is convex is also connected. It is not hard to prove that if

every 2 points of a set B can be joined with a path contained in B then the set is connected. In the

almost simplest case you may think that a path is a sequence of straight line segments S1, S2,. . . ,Sk

such that the end of Si is the begining of Si+1 for i = 1, 2, 3, ..., k− 1. Sometimes such path is called

a polygonal chain, see https://en.wikipedia.org/wiki/Polygonal chain

5. Find the following limit or state that it does not exist

lim
n→∞

(

n

√
n2,

lnn√
n
,
(

1 +
b

n

)n
)

. answer:
(

1, 0, eb
)

Solution. lim
n→∞

n

√
n2 =

(

lim
n→∞

n

√
n
)2

= 12 = 1. lnn√
n
= 4 ln 4

√
n√

n
<

4 4
√
n√
n

= 4
4
√
n
−−−−→
n→∞

0 thus lim
n→∞

lnn√
n
= 0.

lim
n→∞

(

1 + b
n

)n

= eb. �

6. Find the following limit or state that it does not exist

lim
(x,y)→(0,0)

xy2

ax4 + by2
answer: 0.

Solution. We have
∣

∣

∣

xy2

ax4+by2

∣

∣

∣
= |x| · y2

ax4+by2
= |x|

b
· by2

ax4+by2
6

|x|
b
−−−−−−−→
(x,y)→(0,0)

0.



7. Let A = (0, 0), B = (2, 6) and C = (5, 0). Is the angle ABC smaller than 90◦?

Yes/No: Yes

Solution. The dot product of the vectors A− B = (−2,−6) and C −B = (3,−6) equals

(−2) · 3 + (−6) · (−6) = 30 > 0 so the cosine of the angle made by these vectors is positive. Thus

the angle is less than 90◦.

Solution 2. Let D = (2, 0). Then tan<)ABD = 1
3
and tan<)CBD = 1

2
. This implies that

tan<)ABC =
1

3
+ 1

2

1− 1

3
· 1
2

= 1. This implies that <)ABC = 45◦ < 90◦. �

8. Let A = (0, 0), B = (2, 6) and C = (5, 0). LetX = (x1, y1), Y = (x2, y2), Z = (x3, y3) be points

that lie on the straight line segments AB, BC and CA respectively. Let K =⊂ R
6 be the set consi-

sting of the sequences (x1, y1, x2, y2, x3, y3). Let f(x1, y1, x2, y2, x3, y3) =
√

(x1 − x2)2 + (y1 − y2)2 +

+
√

(x2 − x3)2 + (y2 − y3)2 +
√

(x3 − x1)2 + (y3 − y1)2 = ‖X − Y ‖2 + ‖Y − Z‖2 + ‖Z − X‖2 for
(x1, y1, x2, y2, x3, y3) ∈ K.

Does the function f : K −→ R attains its least upper bound? Yes/No: . . . . . . . . . . . . . . . .

Does the function f : K −→ R attains its greatest lower bound? Yes/No: . . . . . . . . . . . . . . . .

Solution. We have 0 6 x1 6 2, 0 6 y1 6 6, 2 6 x2 6 5, 0 6 y2 6 6, 0 6 x3 6 5, y3 = 0. This proves

the setK is bounded. It is also closed. This follows from the fact that the straight line segment which

contains its end points is closed. The function in question is continuous: if (X, Y, Z) and (X ′, Y ′, Z ′)

are two triples then ‖X−Y ‖2+‖Y −Z‖2+‖Z−X‖2− (‖X ′ − Y ′‖2 + ‖Y ′ − Z ′‖2 + ‖Z ′ −X ′‖2) 6
6 ‖X −X ′‖2 + ‖Y − Y ′‖2 + ‖Y − Y ′‖2 + ‖Z − Z ′‖2 + ‖Z − Z ′‖2 + ‖X −X ′‖2 =
= 2 (‖X −X ′‖2 + ‖Y − Y ′‖2 + ‖Z − Z ′‖2). This inequality proves the continuity of the function f .
A continuous function defined on a compact set attains its sup and inf. This Weierstrass maximum/

minimum theorem.

9. Let f(x, y) = x2(1 + y)3 + y2.

Find all critical points of f : R2 −→ R. answer: (0, 0)

Find all points at which f : R2 −→ R has a local minimum. answer: (0, 0)

Find inf{f(x, y) : (x, y) ∈ R
2}. answer: −∞

Find inf{f(x, y) : (x, y) ∈ R
2, y > −1}. answer: 0

Find sup{f(x, y) : (x, y) ∈ R
2, y > −1}. answer: ∞

Solution.
∂f
∂x

= 2x(1+y)3, ∂f
∂y

= 3x2(1+y)2+2y. If ∂f
∂x

= 2x(1+y)3 = 0 then either x = 0 or y = −1.

If also ∂f
∂y

= 3x2(1+ y)2+2y = 0 then y = 0 in both cases but it is impossible in the second case. So

f has one critical point namely (0, 0). If y > −1 then f(x, y) > 0 with one exception: f(0, 0) = 0.

This prove that at (0, 0) the function f has a local minimum and if f is restricted to the half–plane

y > −1 then 0 = f(0, 0) is its smallest value. f(1, y) = (1+y)3+y2 so it is a cubic polynomial in y so

it is unbounded from below and from above: lim
y→∞

(1+ y)3+ y2 = +∞ and lim
y→−∞

(1+ y)3+ y2 = −∞.



This justifies answers to the third and to the fifth questions. �

10. Let f(x, y) = cosx · tan y.
Does f have a local maximum at the point (0, 0)? Yes/No: No

Does f have a local minimum at the point (0, 0)? Yes/No: No

f neither has local minimum nor local maximum at (0, 0). Yes/No: Yes

Solution.
∂f
∂y

= cosx · (1 + tan2 y), so ∂f
∂y
(0, 0) = 1 6= 0. This proves that (0, 0) is not a critical point

of f . Therefore f has neither local minimum nor local maximum at (0, 0). �

11. Let f(x, y) = sin2 x+ 2a ln(1 + x) tan y − 2 cos y.

For what a ∈ R the equality grad f(0, 0) = (0, 0) holds? answer: a ∈ R

For what a ∈ R the function f has a local minimum at the point (0, 0)? answer: −1 < a < 1

For what a ∈ R the function f has a local maximum at the point (0, 0)? answer: a ∈ ∅
For what a ∈ R the function f has a saddle at the point (0, 0)? answer: a 6∈ (−1, 1)

Solution.
∂f
∂x

= 2 sin x cosx+ 2a tan y
1+x
, ∂f

∂y
= 2a ln(1 + x)(1 + tan2 y) + 2 sin y. From these equalities it

follows that grad f(0, 0) = (0, 0) for all a ∈ R.

∂2f
∂x2 = 2 cos2 x−2 sin2 x− 2a tan y

(1+x)2
, ∂2f
∂x∂y

= 2a
1+x

(1+tan2 y), ∂
2f
∂y

= 4a ln(1+x) tan y(1+tan2 y)+2 cos y.

From these equalities it follows that D2f(0, 0) =





2 2a

2a 2



. The determinant of this matrix

equals 4− 4a2 = 4(1− a2) so the determinant is positive iff a2 < 1. Since the entry at the left upper

corner is positive too the matrix is positively defined for −1 < a < 1 which proves that f has a

local minimum for such a. If a2 > 1 then the determinant is negative so the function has a saddle

at (0, 0).

Now let us look at a = 1. Then f(x, y) = sin2 x + 2 ln(1 + x) tan y − 2 cos y. Now we have

f(x,−x) = sin2 x − 2 ln(1 + x) tanx − 2 cosx. We have d
dx

(

sin2 x − 2 ln(1 + x) tanx − 2 cosx
)

=

=2 sin x cosx− 2 tan x
1+x

−2 ln(1+x)(1+tan2 x)+2 sin x. Then d2

dx2

(

sin2 x−2 ln(1+x) tan x−2 cos x
)

=

=2 cos2 x− 2 sin2 x+ 2 tan x
(1+x)2

− 2(1+tan2)x
1+x

− 2(1+tan2 x)
1+x

+ 4 ln(1 + x) tanx(1 + tan2 x) + 2 cosx =

= 2 cos2 x− 2 sin2 x+ 2 tanx
(1+x)2

− 4(1+tan2 x)
1+x

+ 4 ln(1 + x) tanx(1 + tan2 x) + 2 cosx. Substitute 0 for x

in this formula. The result is 0. So the first and the second derivatives of x 7→ f(x,−x) vanish. Let

us compute the third derivative of this function at 0 only. Obviously d
dx
(2 cos2 x− 2 sin2 x+ 2 cosx)

is 0 at 0. It is so because the function attains its maximal value at 0. The derivative of

2 tan x
(1+x)2

+ 4 ln(1 + x) tanx(1 + tan2 x) at 0 is 2 because lim
x→0

tan x
x

= 1 – to obtain this result we use

the definition of the derivative. The last part is −4(1+tan2 x)
1+x

= −4
1+x

− −4 tan2 x
1+x
. The derivative of −4

1+x

equals 4
(1+x)2

so at 0 it is 4. lim
x→0

−4 tan2 x
x(1+x)

= lim
x→0

−4 tan x
x

· lim
x→0

tan x
(1+x)

= −4 · 0 = 0 so by definition of

the derivative we know that the derivative at 0 of −4 tan2 x
1+x

is 0. Therefore the third derivative of

x 7→ f(x,−x) at 0 is 6. Thus proves that the function assumes positive and negative values at any



neighbourhood of 0. So the function f has a saddle at (0, 0).

The same method applies to f(x, y) = sin2 x− 2 ln(1 + x) tan y− 2 cos y. The only difference is that

this time we look at f(x, x) but this the same function we just finished to investigate. �

Uwaga 0.2 Instead of computing the third derivative one might use Taylor expansions. This

would give the same result faster. sin x = x − x3

6
+ o(x3). This is an abbreviation of the sen-

tence lim
x→0

sinx−(x−x
3

6
)

x3 = 0. From this it follows that sin2 x = (x − x3

6
+ o(x3))2 = x2 + o(x3).

Then ln(1 + x) = x − x2

2
+ x3

3
+ o(x3) and tanx = x + x3

3
+ o(x3). Therefore ln(1 + x) tan x =

=(x− x2

2
+ x3

3
+o(x3))(x+ x3

3
+o(x3)) = x2− x3

2
+o(x3). The last expansion is cos x = 1− x2

2
+o(x3).

The final result is

sin2 x−2 ln(1+x) tan x−2 cosx = x2+o(x3)−2(x2− x3

2
+o(x3))−2(1− x2

2
+o(x3)) = −2+x3+o(x3).

The function −2 + x3 assumes at any neighbourhood of 0 values less than −2 (for negative x) and

values greater than −2 (for positive x). The remainder o(x3) is too little for small x to be able to

change the sign of x3. The nonexistence of local extremum follows. �


