
Egzamin z Programowania obiektowego, 22 VI 2OO9
Tematem zadania jest interpreter obiektowego j zyka programowania ę abaŻ . Oczekujemy od Pa stwa projektuń

reprezentacji poprawnych sk adniowo programów oraz implementacji tej cz ci interpretera, która b dzie sprawdza a,ł ęś ę ł

czy poprawny sk adniowo program spe nia pozosta e warunki poprawno ci.ł ł ł ś

Sk adnia j zykał ę

Sk adni ł ę abyŻ opiszemy w rozszerzonej notacji BNF. Symbole nieterminalne zosta y uj te w nawiasy k towe ał ę ą

symbole terminalne w cudzys owy. Symbolami terminalnymi s te : ł ą ż IDENTYFIKATOR, czyli ci g liter i cyfrą

zaczynaj cy si od litery, oraz ą ę NAPIS, b d cy uj tym w cudzys owy ci giem znaków, w którym mog wyst pi znane zę ą ę ł ą ą ą ć

C i Javy sekwencje \n, \t, \" i \\.

Lew stron produkcji od prawej oddziela ą ę ::=. Fragmenty opcjonalne uj te s w nawiasy kwadratowe, a w klamroweę ą

te, które mog si powtórzy zero lub wi cej razy. Kreska pionowa oddziela warianty alternatywne.ą ę ć ę

<program> ::= { <deklaracja-klasy> }

<deklaracja-klasy> ::= <nazwa-klasy-pochodnej> [":" <nazwa-klasy>]

 "{" { <deklaracja-atrybutu>

 | <deklaracja-metody> } "}"

<nazwa-klasy-pochodnej> ::= IDENTYFIKATOR

<nazwa-klasy> ::= "_" | <nazwa-klasy-pochodnej>

<deklaracja-atrybutu> ::= <typ> <nazwa-atrybutu> ";"

<typ> ::= <nazwa-klasy>

<nazwa-atrybutu> ::= IDENTYFIKATOR

<deklaracja-metody> ::= <typ> <nazwa-metody>

 "(" [<deklaracja-parametru>

 { "," <deklaracja-parametru> }] ")"

 "{" <tre -metody> "}"ść

<nazwa-metody> ::= IDENTYFIKATOR

<deklaracja-parametru> ::= <typ> <nazwa-parametru>

<nazwa-parametru> ::= IDENTYFIKATOR

<tre -metody> ::= { <wyra enie> ";" }ść ż

<wyra enie> ::= <przypisanie> | <wyra enie-proste>ż ż

<przypisanie> ::= <wyra enie-proste> "=" <wyra enie>ż ż

<wyra enie-proste> ::= <aktualny-obiekt> | <nowy-obiekt>ż

 | <napis-na-wyj cie> | <warto -parametru>ś ść

 | <warto -atrybutu> | <komunikat>ść

 | "(" <wyra enie> ")"ż

<aktualny-obiekt> ::= "$"

<nowy-obiekt> ::= "@" <nazwa-klasy>

<napis-na-wyj cie> ::= NAPISś

<warto -parametru> ::= <nazwa-parametru>ść

<warto -atrybutu> ::= <wybór-sk adowej>ść ł

<wybór-sk adowej> ::= <wyra enie-proste> "." <nazwa-sk adowej>ł ż ł

<nazwa-sk adowej> ::= <nazwa-atrybutu> | <nazwa-metody>ł

<komunikat> ::= <wybór-sk adowej>ł

 "(" [<wyra enie> { "," <wyra enie> }] ")"ż ż

Opis j zykaę

Program w j zyku ę abaŻ to ci g deklaracji klas. Tworz one hierarchi , której korzeniem jest wbudowana klasa oą ą ę

nazwie „_” (czytaj „co ”), b d ca odpowiednikiem klasy ś ę ą Object w Javie. Deklaruj c klas , podajemy jej nazwą ę ę

(identyfikator) i wskazujemy nadklas . Pomini cie deklaracji nadklasy oznacza, e jest ni klasa „ę ę ż ą _”.

W programie nie mo e by dwóch klas o tej samej nazwie. W hierarchii klas nie mo e by cyklu.ż ć ż ć

abaŻ , tak jak Java, jest j zykiem z silnym, statycznym systemem typów. Wyra enia, oprócz warto ci, maj teę ż ś ą ż

okre lony typ. Analizuj c program przed jego uruchomieniem, na podstawie typu wyra enia decydujemy, czy jegoś ą ż

u ycie jest poprawne. System typów j zyka ż ę abaŻ gwarantuje, e podczas wykonania poprawnego pod wzgl dem typówż ę

programu, nie wyst pi b d.ą łą

Typy w abieŻ s zwi zane z klasami i odpowiadaj typom referencyjnym j zyka ą ą ą ę Java. Warto ci wyra enia, któregoś ą ż

typ jest zwi zany z klas ą ą K, jest obiekt klasy K, lub klasy dziedzicz cej (bezpo rednio lub po rednio) z klasy ą ś ś K.

W abieŻ jest te typ, który b dziemy nazywali „nic”. Jest on odpowiednikiem typu „ż ę null” w Javie i ma jedn warto ,ą ść

któr równie nazywamy „nic”. Typ ten nie ma swojego identyfikatora, nie mo emy wi c u y go w deklaracji.ą ż ż ę ż ć

W opisie j zyka ę abaŻ pos ugujemy si relacj bycia podtypem. Powiemy, e typ ł ę ą ż T1 jest podtypem T2, gdy oba typy są

zwi zane z klasami i klasa typu ą T1 jest w cz ci hierarchii klas, której korzeniem jest klasa typu ęś T2. W szczególno ci,ś

ka dy typ jest swoim podtypem. Dodatkowo, „nic” jest podtypem ka dego typu.ż ż

Deklaracja klasy zawiera ci g deklaracji sk adowych: atrybutów i metod. Oprócz nich klasa ma te sk adowe, któreą ł ż ł

dziedziczy z nadklasy. W klasie „_” adnych sk adowych nie ma.ż ł

Deklaracja atrybutu okre la jego typ i nazw . Warto ci pocz tkow wszystkich atrybutów jest „nic”.ś ę ś ą ą ą

Deklaracja metody okre la typ jej wyniku, nazw , parametry i tre . Ka dy parametr ma typ i nazw . Nazwyś ę ść ż ę

parametrów metody musz by ró ne.ą ć ż

W klasie nie mo e by dwóch sk adowych o tej samej nazwie nawet, je li jedna z nich jest atrybutem a druga metod .ż ć ł ś ą

Wolno jednak w podklasie przedefiniowa metod z nadklasy. W takim wypadku liczba parametrów obu metod musić ę

by równa, typ wyniku metody z podklasy powinien by podtypem typu wyniku metody z nadklasy (kowariancja typuć ć

wyniku), a typy parametrów metody z nadklasy podtypami odpowiadaj cych im parametrów metody z podklasyą

(kontrawariancja typów parametrów).

Tre ci metody jest ci g wyra e , które s obliczane podczas jej wykonania. Wynikiem metody jest warto ostatniegoś ą ą ż ń ą ść

z nich. Jego typ musi by podtypem typu wyniku metody. Je li tre metody jest pusta, jej wynikiem jest „nic”.ć ś ść

W wyra eniach j zyka ż ę abaŻ , oprócz nawiasów s u cych do grupowania, mog wyst pi :ł żą ą ą ć

� przypisanie („lewa=prawa”):

czy dwa wyra enia, nazywane lew stron i praw stron . Ma typ taki, jak lewa strona. Typ prawej strony musiŁą ż ą ą ą ą

by podtypem typu lewej strony. Lewa strona musi by odwo aniem do atrybutu obiektu lub do parametru metody.ć ć ł

Wynik jej obliczenia okre la miejsce, w którym ma si znale warto prawej strony. Obliczenie warto ciś ę źć ść ś

przypisania powoduje obliczenie jego lewej strony, nast pnie prawej i przypisanie warto ci prawej strony na lew .ę ś ą

Warto ci przypisania jest obliczona warto jego prawej strony.ś ą ść

� aktualny obiekt („$”):

Odwo anie do obiektu, dla którego wykonuje si metoda (odpowiednik „ł ę this” w Javie). Typem tego wyra enia jestż

klasa, w której zosta a zadeklarowana metoda, w tre ci której wyst puje to wyra enie.ł ś ę ż

� nowy obiekt („@Nazwa”):

Utworzenie nowego obiektu wskazanej klasy (odpowiednik „new” w Javie). Typem wyra enia jest klasa, którejż

obiekt tworzymy. Wyra enie jest poprawne, je li istnieje klasa o podanej nazwie.ż ś

� napis na wyj cie („ś "…"”):

Ma typ „nic” i warto „nic”, a skutkiem ubocznym jego obliczenia jest wypisanie tre ci napisu na wyj cie.ść ś ś

� warto parametru („ść nazwa”):

Odczytanie warto ci parametru metody. Typ jest okre lony przez jego deklaracj . Wyra enie jest poprawne, je liś ś ę ż ś

metoda ma parametr o tej nazwie.

� warto atrybutu („ść obiekt.nazwa”):

Odczytanie warto ci atrybutu obiektu. Obiekt jest okre lony przez wyra enie, którego typem musi by klasaś ś ż ć

posiadaj ca atrybut o podanej nazwie (mo e by dziedziczony z nadklasy). Typ ca ego wyra enia odczytujemy zą ż ć ł ż

deklaracji tego atrybutu.Je li warto ci wyra enia przed kropk jest „nic”, warto ci ca ego wyra enia jest „nic”.ś ś ą ż ą ś ą ł ż

� komunikat („obiekt.nazwa(argument1,...,argumentN)”):

Wys anie komunikatu do obiektu, b d cego warto ci wyra enia przed kropk , z argumentami, którymi s warto cił ę ą ś ą ż ą ą ś

wyra e podanych w nawiasach. Wyra enie to jest poprawne, je li w klasie, która jest typem wyra enia przedż ń ż ś ż

kropk , jest metoda o wskazanej nazwie (mo e by dziedziczona z nadklasy), ma tyle parametrów, ile argumentówą ż ć

przesy amy, a typy wyra e okre laj cych argumenty s podtypami typów odpowiadaj cych im parametrów. Typł ż ń ś ą ą ą

ca ego wyra enia jest taki, jak wyniku tej metody. Obliczenie wyra enia powoduje obliczenie warto ci wyra eniał ż ż ś ż

wskazuj cego odbiorc i argumenty, od lewej do prawej. Nast pnie, spo ród metod odbiorcy, wybieramy metod oą ę ę ś ę

nazwie takiej, jak nazwa komunikatu i wykonujemy j z zadanymi argumentami. Warto ci ca ego wyra enia jestą ś ą ł ż

wynik metody. Gdy odbiorc jest „nic”, warto ci ca ego wyra enia staje si „nic”.ą ś ą ł ż ę

Dok adnie jedna z klas poprawnego programu powinna mie metod o nazwie „ł ć ę main”. Ma to by metodać

bezparametrowa o typie wyniku „_”. Wykonanie programu oznacza utworzenie obiektu tej klasy i wys anie do niegoł

komunikatu „main”.

Przyk ad programu poprawnegoł

Poni ej mamy przyk ad poprawnego programu w ż ł abieŻ . Wypisuje on, w kolejnych wierszach, wyrazy ci gu Collatza,ą

zaczynaj c od liczby ą 13 a ko cz c na ń ą 1. Ka da liczba jest zapisana w postaci ci gu gwiazdek odpowiedniej d ugo ci.ż ą ł ś

Liczba {

 Liczba pomoc;

 _ kolejna() { }

 Liczba plus1() { @JedenPlus.inicjalizacja($); }

 Liczba razy2() { $.plus($); }

 _ pisz() { "*\n"; }

 Liczba plus(Liczba x) { x.plus1(); }

 _ po owa0(Liczba liczba) { liczba.kolejna(); }ł

 _ po owa1(Liczba liczba) { ($.pomoc=liczba.razy2().plus1())ł

 .razy2().plus($.pomoc).plus1().kolejna(); }

}

JedenPlus : Liczba {

 Liczba ogon;

 Liczba inicjalizacja(Liczba x) { $.ogon=x; $; }

 _ kolejna() { $.pisz(); $.ogon.po owa0(@Jeden); }ł

 _ pisz() { "*"; $.ogon.pisz(); }

 Liczba plus(Liczba x) { $.ogon.plus(x.plus1()); }

 _ po owa0(Liczba liczba) { $.ogon.po owa1(liczba); }ł ł

 _ po owa1(Liczba liczba) { $.ogon.po owa0(liczba.plus1()); }ł ł

}

Jeden : Liczba {

}

G ówna {ł

 _ main() { @Jeden.razy2().plus1().razy2().razy2().plus1().kolejna(); "*\n"; }

}

Przyk ady programów niepoprawnychł

Poni ej s przyk ady programów poprawnych sk adniowo, które jednak nie spe niaj dodatkowych warunkówż ą ł ł ł ą

poprawno ci wymienionych w opisie j zyka:ś ę

brak deklaracji metody main: A{ }

niew a ciwa deklaracja metody main:ł ś A{ A main(A x){} }

podwójna deklaracja metody main: A{ _ main(){"A";} } B{ _ main(){"B";} }

brak deklaracji klasy: A:B{ C x; _ main(){} D f(E y){@F;} }

cykl w hierarchii klas: A:C{ } B:A{ _main(){} } C:B{ }

konflikt nazw klas: A{ } A{ _ main(){} }

konflikt nazw sk adowych:ł A{ A x; } B:A{ _ x; }

konflikt nazw sk adowych:ł A{ _ main(){} A x; _ x(){} }

konflikt nazw parametrów: A{ _ main(){} _ f(A x,A x){} }

brak deklaracji: A{ A x;_ main(){x;} }

brak deklaracji: A{ _ main(){$.x="";} }

nieprawid owa lewa strona przypisania:ł A{ _ f(){} _ main(){$.f="";@A=@A;} }

niew a ciwy typ wyniku metody:ł ś A{ } B{ _ main(){} A f(){@B;} }

niew a ciwy typ wyniku metody:ł ś B:A{ _ main(){} } A{ B f(){$;} }

niew a ciwe typy w przypisaniu:ł ś A{ _ main(){} } B{ A x; _ f(B y){$.x=y;} }

le przedefiniowana metoda:ź A{ _ main(){} _ f(){} } B:A{ _ f(A x){} }

le przedefiniowana metoda:ź A{ _ main(){} B f(){} } B:A{ A f(){} }

le przedefiniowana metoda:ź A{ _ main(){} _ f(A x){} } B:A{ _ f(B x){} }

brak deklaracji atrybutu: A{ _ main(){} } B:A{ A x;_ f(A y){y=@B;y.x="";} }

brak deklaracji metody: A{ _ main(){$.f(@B);} _ f(A x){} } B{ }

Polecenie

Pracujemy nad interpreterem wykonuj cym programy w j zyku ą ę abaŻ . Oto g ówna klasa pakietu:ł

package aba;ż

import java.io.Reader;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.InputStreamReader;

import java.io.IOException;

public class Interpreter {

 public static void main(String []args) {

 try {

 Reader dane = null;

 try {

 if (args.length > 0) {

 dane = new BufferedReader(new FileReader(args[0]));

 }

 else {

 dane = new BufferedReader(new InputStreamReader(System.in));

 }

 new AnalizatorSk adniowy(dane).wczytaj().sprawd ().wykonaj();ł ź

 }

 finally {

 if (dane != null) {

 dane.close();

 }

 }

 }

 catch(IOException wyj tek) {ą

 System.err.println("B d podczas wczytywania programu");łą

 }

 catch(B dSk adniowy wyj tek) {łą ł ą

 System.err.println("B d sk adniowy");łą ł

 }

 catch(B dSemantyczny wyj tek) {łą ą

 System.err.println("B d semantyczny");łą

 }

 catch(Exception wyj tek) {ą

 System.err.println("B d w interpreterze");łą

 }

 }

}

Interpreter b dzie si sk ada z czterech cz ci:ę ę ł ł ęś

� analizatora leksykalnego, który w tek cie wej ciowym rozpozna reprezentacje terminali gramatyki j zyka.ś ś ę

� analizatora sk adniowego, który sprawdzi, czy ci g terminali, przekazany mu przez analizator leksykalny, jestł ą

s owem j zyka bezkontekstowego zdefiniowanego gramatyk j zyka ł ę ą ę abaŻ . Analizator sk adniowy zbuduje teł ż

reprezentacj programu. Zadania analizatora leksykalnego i sk adniowego wykona metoda „ę ł wczytaj()”, która

zg osi wyj tek ł ą B dSk adniowyłą ł , je li stwierdzi, e program wczytany z wej cia nie jest poprawny sk adniowo. ś ż ś ł

� analizatora semantycznego, który sprawdzi, czy program, o którym ju wiemy, e jest poprawny sk adniowo, spe niaż ż ł ł

te pozosta e warunki poprawno ci programów w ż ł ś abieŻ , w szczególno ci te, które dotycz typów. Analizś ą ę

semantyczn przeprowadzi metoda „ą sprawd ()ź ”, która zg osi wyj tek ł ą B dSemantycznyłą , gdy wykryje b d.łą

� modu u wykonuj cego program, uruchamianego metod „ł ą ą wykonaj()”. Analizator semantyczny musi

zagwarantowa , e podczas wykonania programu, który pomy lnie przeszed badanie poprawno ci, nie wyst pi b d.ć ż ś ł ś ą łą

Nie mo e si wi c zdarzy np. próba si gni cia do sk adowej obiektu, której on nie posiada, próba przypisania naż ę ę ć ę ę ł

co , na co przypisa si nie da itp.ś ć ę

Zaprojektuj reprezentacj programu, któr ma zbudowa analizator sk adniowy.ę ą ć ł

Zrealizuj w Javie analizator semantyczny - metod „ę sprawd ()ź ” i niestandardowe metody, z których ona korzysta.

Pozosta ych cz ci interpretera nie trzeba implementowa .ł ęś ć

