Egzamin z Programowania obiektowego, 22 VI 2009

Tematem zadania jest interpreter obiektowego jezyka programowania Zaba. Oczekujemy od Paristwa projektu
reprezentacji poprawnych sktadniowo programéw oraz implementacji tej czesci interpretera, ktéra bedzie sprawdzata,
czy poprawny sktadniowo program spetnia pozostate warunki poprawnosci.

Skladnia jezyka

Sktadnig Zaby opiszemy w rozszerzonej notacji BNF. Symbole nieterminalne zostaty ujete w nawiasy katowe a
symbole terminalne w cudzystowy. Symbolami terminalnymi sa tez: IDENTYFIKATOR, czyli ciag liter i cyfr
zaczynajacy si¢ od litery, oraz NAPIS, bedacy ujetym w cudzystowy ciagiem znakéw, w ktérym moga wystapic¢ znane z
C i Javy sekwencje \n, \t, \"i \\.

Lewa strong produkceji od prawej oddziela : : =. Fragmenty opcjonalne ujgte sa w nawiasy kwadratowe, a w klamrowe
te, ktére moga si¢ powtdrzy¢ zero lub wigcej razy. Kreska pionowa oddziela warianty alternatywne.

<program> ::= { <deklaracja-klasy> }

<deklaracja-klasy> ::= <nazwa-klasy-pochodnej> [":" <nazwa-klasy>]

"{" { <deklaracja-atrybutu>
| <deklaracja-metody> } "}"

<nazwa-klasy-pochodnej> ::= IDENTYFIKATOR

<nazwa-klasy> ::= "_" | <nazwa-klasy-pochodnej>
<deklaracja-atrybutu> ::= <typ> <nazwa-atrybutu> ";"
<typ> ::= <nazwa-klasy>
<nazwa-atrybutu> ::= IDENTYFIKATOR
<deklaracja-metody> ::= <typ> <nazwa-metody>

"(" [<deklaracja-parametru>
{ "," <deklaracja-parametru> }] ")"
"{" <tresé-metody> "}"

<nazwa-metody> ::= IDENTYFIKATOR
<deklaracja-parametru> ::= <typ> <nazwa-parametru>
<nazwa-parametru> ::= IDENTYFIKATOR

<tresé-metody>
<wyrazenie>
<przypisanie>

.
.
1}

{ <wyrazenie> ";" }

<przypisanie> | <wyrazenie-proste>

<wyrazenie-proste> "=" <wyrazenie>
<aktualny-obiekt> | <nowy-obiekt>

| <napis-na-wyjscie> | <warto$é-parametru>

| <wartosé-atrybutu> | <komunikat>
| "(" <wyrazenie> ")"

.
.
1}

.
.
1}

<wyrazenie-proste>

.o
.o

<aktualny-obiekt> = "GV
<nowy-obiekt> ::= "@" <nazwa-klasy>
<napis-na-wyjscie> ::= NAPIS

<warto$é-parametru>
<wartos$é-atrybutu>
<wybér-sktadowej>
<nazwa-sktadowej>

.
.
1}

<nazwa-parametru>

<wybdér-sktadowej>

<wyrazenie-proste> "." <nazwa-sktadowej>
<nazwa-atrybutu> | <nazwa-metody>

o e
o e
o

.
.
1}

<komunikat> ::= <wybdér-sktadowej>
"(" [<wyrazenie> { "," <wyrazenie> }] ")"
Opis jezyka

Program w jezyku Zaba to ciag deklaracji klas. Tworza one hierarchie, ktérej korzeniem jest wbudowana klasa o
nazwie ,,_” (czytaj ,,co$”), bedaca odpowiednikiem klasy Object w Javie. Deklarujac klasg, podajemy jej nazwe

2

(identyfikator) i wskazujemy nadklasg. Pominigcie deklaracji nadklasy oznacza, ze jest nia klasa ,,_".
W programie nie moze by¢ dwéch klas o tej samej nazwie. W hierarchii klas nie moze by¢ cyklu.
Zaba, tak jak Java, jest jezykiem z silnym, statycznym systemem typéw. Wyrazenia, oprécz wartosci, maja tez
okreslony typ. Analizujac program przed jego uruchomieniem, na podstawie typu wyrazenia decydujemy, czy jego
uzycie jest poprawne. System typow jezyka Zaba gwarantuje, ze podczas wykonania poprawnego pod wzgledem typéw
programu, nie wystapi btad.

Typy w Zabie sa zwiazane z klasami i odpowiadaja typom referencyjnym jezyka Java. Wartoscia wyrazenia, ktérego
typ jest zwiazany z klasa K, jest obiekt klasy K, lub klasy dziedziczacej (bezposrednio lub posrednio) z klasy K.

W Zabie jest tez typ, ktéry bedziemy nazywali ,,nic”. Jest on odpowiednikiem typu ,null” w Javie i ma jedna wartos¢,
ktéra réwniez nazywamy ,,nic”. Typ ten nie ma swojego identyfikatora, nie mozemy wigc uzy¢ go w deklaracji.

W opisie jezyka Zaba postugujemy sie relacja bycia podtypem. Powiemy, ze typ T1 jest podtypem T2, gdy oba typy sa
zwiazane z klasami i klasa typu T1 jest w czgsci hierarchii klas, ktérej korzeniem jest klasa typu T2. W szczegdlnosci,
kazdy typ jest swoim podtypem. Dodatkowo, ,,nic” jest podtypem kazdego typu.

Deklaracja klasy zawiera ciag deklaracji sktadowych: atrybutéw i metod. Oprécz nich klasa ma tez sktadowe, ktore
dziedziczy z nadklasy. W klasie ,,_” zadnych sktadowych nie ma.

Deklaracja atrybutu okresla jego typ i nazweg. Wartoscia poczatkowa wszystkich atrybutéw jest ,,nic”.

Deklaracja metody okresla typ jej wyniku, nazwe, parametry i tre$¢. Kazdy parametr ma typ i nazwg. Nazwy
parametréw metody musza by¢ rézne.

W klasie nie moze by¢ dwéch sktadowych o tej samej nazwie nawet, jesli jedna z nich jest atrybutem a druga metoda.
Wolno jednak w podklasie przedefiniowaé metode z nadklasy. W takim wypadku liczba parametréw obu metod musi
by¢ réwna, typ wyniku metody z podklasy powinien by¢ podtypem typu wyniku metody z nadklasy (kowariancja typu
wyniku), a typy parametréw metody z nadklasy podtypami odpowiadajacych im parametréw metody z podklasy
(kontrawariancja typéw parametrow).

Trescia metody jest ciag wyrazen, ktdre sg obliczane podczas jej wykonania. Wynikiem metody jest warto$¢ ostatniego
z nich. Jego typ musi by¢ podtypem typu wyniku metody. Jesli tres¢ metody jest pusta, jej wynikiem jest ,,nic”.

W wyrazeniach jezyka Zaba, oprécz nawiaséw stuzacych do grupowania, moga wystapic:

e przypisanie (,,lewa=prawa’):
Laczy dwa wyrazenia, nazywane lewa strona i prawa strona. Ma typ taki, jak lewa strona. Typ prawej strony musi
by¢ podtypem typu lewej strony. Lewa strona musi by¢ odwotaniem do atrybutu obiektu lub do parametru metody.
Wynik jej obliczenia okresla miejsce, w ktérym ma si¢ znalez¢ warto$¢ prawej strony. Obliczenie wartosci
przypisania powoduje obliczenie jego lewej strony, nastgpnie prawej i przypisanie warto$ci prawej strony na lewa.
Wartoscia przypisania jest obliczona wartos¢ jego prawej strony.

e aktualny obiekt (,,$”):
Odwotanie do obiektu, dla ktérego wykonuje si¢ metoda (odpowiednik ,,this” w Javie). Typem tego wyrazenia jest
klasa, w ktorej zostata zadeklarowana metoda, w tresci ktdérej wystgpuje to wyrazenie.

* nowy obiekt (,,@Nazwa”):
Utworzenie nowego obiektu wskazanej klasy (odpowiednik ,,new” w Javie). Typem wyrazenia jest klasa, ktorej
obiekt tworzymy. Wyrazenie jest poprawne, jesli istnieje klasa o podanej nazwie.

* napis na wyjscie (,,"..."”):
Ma typ ,,nic” i warto$¢ ,,nic”, a skutkiem ubocznym jego obliczenia jest wypisanie tresci napisu na wyjscie.

e warto$¢ parametru (,,nazwa”):
Odczytanie wartosci parametru metody. Typ jest okreslony przez jego deklaracjg. Wyrazenie jest poprawne, jesli
metoda ma parametr o tej nazwie.

e warto$¢ atrybutu (,,obiekt.nazwa”):
Odczytanie wartosci atrybutu obiektu. Obiekt jest okreslony przez wyrazenie, ktérego typem musi by¢ klasa
posiadajaca atrybut o podanej nazwie (moze by¢ dziedziczony z nadklasy). Typ calego wyrazenia odczytujemy z
deklaracji tego atrybutu.Jesli wartoscig wyrazenia przed kropka jest ,,nic”, wartoscia calego wyrazenia jest ,,nic”.

e komunikat (,,obiekt.nazwa (argumentl, ...,argumentN)”):
Wystanie komunikatu do obiektu, bgdacego wartoscia wyrazenia przed kropka, z argumentami, ktérymi sa wartosci
wyrazen podanych w nawiasach. Wyrazenie to jest poprawne, jesli w klasie, ktora jest typem wyrazenia przed
kropka, jest metoda o wskazanej nazwie (moze by¢ dziedziczona z nadklasy), ma tyle parametréw, ile argumentow
przesytamy, a typy wyrazen okreslajacych argumenty sa podtypami typéw odpowiadajacych im parametréw. Typ
calego wyrazenia jest taki, jak wyniku tej metody. Obliczenie wyrazenia powoduje obliczenie warto$ci wyrazenia
wskazujacego odbiorcg i argumenty, od lewej do prawej. Nast¢pnie, sposréd metod odbiorcy, wybieramy metodeg o
nazwie takiej, jak nazwa komunikatu i wykonujemy ja z zadanymi argumentami. Wartoscig calego wyrazenia jest
wynik metody. Gdy odbiorca jest ,,nic”, wartoscia catego wyrazenia staje si¢ ,,nic”.

Doktadnie jedna z klas poprawnego programu powinna mie¢ metod¢ o nazwie ,,main”. Ma to by¢ metoda
bezparametrowa o typie wyniku ,,_”. Wykonanie programu oznacza utworzenie obiektu tej klasy i wystanie do niego
komunikatu ,,main”.

Przyklad programu poprawnego

Ponizej mamy przyktad poprawnego programu w Zabie. Wypisuje on, w kolejnych wierszach, wyrazy ciagu Collatza,
zaczynajac od liczby 13 a koriczac na 1. Kazda liczba jest zapisana w postaci ciagu gwiazdek odpowiedniej dtugosci.

Liczba {
Liczba pomoc;
— kolejna() {1}
Liczba plusl() { @JedenPlus.inicjalizacja($); }
Liczba razy2() { $.plus($); }
— pisz() { "*\n"; }
Liczba plus(Liczba x) { x.plusl(); }

_ polowaO(Liczba liczba) { liczba.kolejna(); }
_ polowal (Liczba liczba) { ($.pomoc=liczba.razy2().plusl())
.razy2() .plus ($.pomoc) .plusl () .kolejna(); }
}

JedenPlus : Liczba {
Liczba ogon;

Liczba inicjalizacja(Liczba x) { $.ogon=x; $; }
_ kolejnal() { $.pisz(); $.ogon.potowal (QJeden); }
— pisz() { "*"; $.ogon.pisz(); }
Liczba plus(Liczba x) { $.ogon.plus(x.plusl()); }
_ polowal(Liczba liczba) { $.ogon.potowal(liczba); }
_ polowal (Liczba liczba) { $.ogon.potowal(liczba.plusl()); }
}
Jeden : Liczba {
}
Giéwna {
_ main() { @Jeden.razy2().plusl().razy2().razy2().plusl().kolejna(); "*\n"; }
}

Przyklady programow niepoprawnych

Ponizej sa przyktady programéw poprawnych sktadniowo, ktdre jednak nie spetniaja dodatkowych warunkéw
poprawnosci wymienionych w opisie jezyka:

brak deklaracji metody main: A{ }

niewtasciwa deklaracja metody main: A{ A main(A x){} }

podwdjna deklaracja metody main: A{ _ main(){"A";} } B{ _ main(){"B";} }

brak deklaracji klasy: A:B{ C x; _main(){} D £(E y) {@F;} }
cykl w hierarchii klas: A:C{ } B:A{ _main(){} } C:B{ }

konflikt nazw klas: A{ } A{ _ main(){} }

konflikt nazw sktadowych: A{ A x; } B:A{ _ x; }

konflikt nazw sktadowych: A{ _main(){} A x; _ x(){} }

konflikt nazw parametréw: A{ _main(){} _ £(A x,A x){} }

brak deklaracji: A{ A x;_ main(){x;} }

brak deklaracji: A{ _main() {$.x="";} }

nieprawidlowa lewa strona przypisania: A{ _ £(){} _ main() {$.£="";QA=Q@A;} }
niewtasciwy typ wyniku metody: A{ } B{ _main(){} A £(){@B;} }

niewtasciwy typ wyniku metody: B:A{ _main(){} } A{ B £(){S$;} }

niewlasciwe typy w przypisaniu: A{ _main(){} } B{ A x; _ £(B y){$.x=y;} }
Zle przedefiniowana metoda: A{ _main(){} _ £(){} } B:A{ _ £(A x){} }

Zle przedefiniowana metoda: A{ _main(){} B £(){} } B:A{ A £(0){} }

7Zle przedefiniowana metoda: A{ _main(){} _ £(A x){} } B:A{ _ £(B x){} }
brak deklaracji atrybutu: A{ _main(){} } B:A{ A x;_ £(A y){y=@B;y.x="";} }

brak deklaracji metody: A{ _ main(){$.£(@B);} _ £(A x){} } B{ }

Polecenie

Pracujemy nad interpreterem wykonujacym programy w jezyku Zaba. Oto gtéwna klasa pakietu:

package zaba;

import java.io.Reader;

import java.io.BufferedReader;
import java.io.FileReader;

import java.io.InputStreamReader;
import java.io.IOException;

public class Interpreter ({

}

public static void main(String []args) {

try {
Reader dane = null;
try {
if (args.length > 0) {
dane = new BufferedReader (new FileReader (args[0]));
}
else {
dane = new BufferedReader (new InputStreamReader (System.in));
}
new AnalizatorSktadniowy(dane) .wczytaj() .sprawdZ () .wykonaj();
}
finally {
if (dane != null) {
dane.close();
}
}
}

catch(IOException wyjatek) {

System.err.println("Biad podczas wczytywania programu");
}
catch(BtadSktadniowy wyjatek) {

System.err.println("Biad skitadniowy");

}

catch(BtagdSemantyczny wyjatek) {
System.err.println("Biad semantyczny");

}

catch (Exception wyjatek) {
System.err.println("Biad w interpreterze");

}

Interpreter bedzie si¢ sktadat z czterech czgsci:

analizatora leksykalnego, ktéry w tekscie wejSciowym rozpozna reprezentacje terminali gramatyki jezyka.

analizatora sktadniowego, ktéry sprawdzi, czy ciag terminali, przekazany mu przez analizator leksykalny, jest
stowem jezyka bezkontekstowego zdefiniowanego gramatyka jezyka Zaba. Analizator sktadniowy zbuduje tez
reprezentacj¢ programu. Zadania analizatora leksykalnego i sktadniowego wykona metoda ,,wczytaj () ”, ktéra
zgtosi wyjatek BtgdSktadniowy, jesli stwierdzi, ze program wczytany z wejscia nie jest poprawny sktadniowo.

analizatora semantycznego, ktéry sprawdzi, czy program, o ktérym juz wiemy, ze jest poprawny sktadniowo, spetnia
tez pozostale warunki poprawnosci programéw w Zabie, w szczegdlnosci te, ktére dotycza typéw. Analize
semantyczng przeprowadzi metoda ,,sprawdz () ”, ktdéra zglosi wyjatek BtadSemantyczny, gdy wykryje btad.

modutu wykonujacego program, uruchamianego metoda ,,wykonaj () ”. Analizator semantyczny musi
zagwarantowac, ze podczas wykonania programu, ktéry pomyslnie przeszedt badanie poprawnosci, nie wystapi biad.
Nie moze si¢ wigc zdarzy¢ np. préba siegnigcia do sktadowej obiektu, ktérej on nie posiada, préba przypisania na
co$, na co przypisac si¢ nie da itp.

Zaprojektuj reprezentacj¢ programu, ktéra ma zbudowa¢ analizator sktadniowy.

Zrealizuj w Javie analizator semantyczny - metodg ,,sprawdZ () ” i niestandardowe metody, z ktérych ona korzysta.
Pozostatych czgsci interpretera nie trzeba implementowac.

