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1. Wyrażenia, których wartość zależy od dwóch zmiennych nazywamy funkcjami dwóch zmiennych. Na
przykład f(x, y) = x+2y− 50 i g(x, y) = sin(xy2) są funkcjami dwóch zmiennych x, y. Za dziedzinę
funkcji f(x, y) dwóch zmiennych x, y uważamy zbiór Df tych wszystkich par liczb (x, y), dla których
da się obliczyć wartość f(x, y).

2. Przykład. Niech a(x, y) =
√
x+y+1
xy
oraz b(x, y) = log2(x

2+y2−9). Dziedziną funkcji a(x, y) jest część
płaszczyzny leżąca na prostej x+ y+1 = 0 i powyżej niej za wyjątkiem punktów leżących na osiach
układu współrzędnych. Dziedziną funkcji b(x, y) jest zbiór punktów leżących na zewnątrz okręgu o
środku w punkcie (0, 0) i promieniu 3.

3. Definicja. Wykresem funkcji f(x, y) nazywamy zbiór {(x, y, f(x, y)) ∈ R3 : (x, y) ∈ D}, gdzie D
oznacza dziedzinę funkcji f . Wykres ten można sobie wyobrażać jako powierzchnię unoszącą się
nad lub pod dziedziną, która jest podzbiorem płaszczyzny. Pewną informację o tym, jak ten wykres
wygląda, dają poziomice oraz przekroje pionowe wzdluż osi x oraz wzdłuż osi y.

4. Definicja. Poziomicą funkcji f(x, y) odpowiadającą wartości c nazywamy zbiór If (c) tych wszystkich
punktów (x, y) ∈ Df , w których funkcja f przyjmuje wartość c. Poziomice nazywa się również
warstwicami.

5. Przykład. Poziomica jest podzbiorem dziedziny, więc jest zawarta w płaszczyźnie, jednak patrząc
na nią z góry (tzn. z kierunku osi z), można ją sobie wyobrazić jako ścieżkę na wykresie łączącą
punkty leżące na jednej wysokości. Patrząc na tę poziomicę, a także na poziomice leżące na innych
wysokościach, łatwiej jest wyrobić sobie pogląd na temat wyglądu wykresu danej funkcji. Poziomicę
można też wyobrażać sobie jako linię brzegową po zalaniu wykresu wodą do odpowiedniego poziomu.

6. Przykład. Poziomice funkcji f(x, y) = x2 − y2 odpowiadające wartościom −1, 0, 1, 2, to: hiperbola o
równaniu x2−y2 = −1, para prostych x2−y2 = 0 oraz hiperbole o równaniach x2−y2 = 1, x2−y2 = 2.
Przekroje płaszczyznami x = const są smutnymi parabolami, a przekroje płaszczyznami y = const
są uśmiechniętymi parabolami.Ta powierzchnia ma kształt siodła lub przełęczy.

7. Przykład. Poziomice funkcji f(x, y) = x2 + y2 odpowiadające wartościom −1, 0, 1, 2, to: zbiór pusty,
punkt (0, 0), oraz okręgi o równaniach x2 + y2 = 1 i x2 + y2 = 2. Przekroje płaszczyznami x = const
oraz y = const są uśmiechniętymi parabolami. Ta powierzchnia ma kształt pucharu.

Pewną informację o wyglądzie przekrojów pionowych dają pochodne cząstkowe:

8. Definicja. Pochodną cząstkową funkcji f(x, y) w punkcie (x0, y0) ∈ Df ze względu na zmienną x
nazywamy pochodną funkcji f(x, y0) zmiennej x w punkcie x0. Pochodną tę oznaczamy symbolem
f ′x(x0, y0) lub symbolem

∂f(x0,y0)
∂x
. Podobnie określamy pochodną cząstkową f ′y(x0, y0) ze względu

na zmienną y. Zamiast mówić ”pochodna ze względu na y” mówi się też w skrócie ”pochodna po
zmiennej y” lub ”pochodna po y”.

Pochodne cząstkowe oblicza się tak samo, jak zwykłe pochodne, należy tylko pamiętać, że licząc
pochodną po jednej zmiennej, drugą zmienną traktujemy jako stałą.

9. Przykład. Obliczymy pochodne cząstkowe funkcji f(x, y) = x5y3 − 2xy2 + 6 w punkcie (2,−1).
Obliczamy najpierw pochodne w dowolnym punkcie: f ′x(x, y) = 5x

4y3 − 2y2, f ′y(x, y) = 3x5y2 − 4xy,
a następnie wstawiamy x = 2, y = −1 i otrzymujemy f ′x(2,−1) = −82, f ′y(2,−1) = 104.

10. Uwaga. Dalej będziemy rozpatrywać tylko funkcje mające ciągłe pochodne cząstkowe i nie będziemy
tego założenia powtarzać w kolejnych twierdzeniach. Odpowiada ono różniczkowalności. Funkcje
opisane jednym wzorem (bez klamerki) przy pomocy funkcji elementarnych spełniają to założenie.

11. Twierdzenie. Wzór przybliżony na wartość funkcji, dla liczb x, y niewiele różniących się od x0 i y0:
f(x, y) ≈ f(x0, y0) + f ′x(x0, y0) · (x− x0) + f ′y(x0, y0) · (y − y0).
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12. Przykład. Obliczymy przybliżoną wartość wyrażenia 4
√
2.112 + 3 · 1.952. Niech f(x, y) = 4

√
x2 + 3y2.

Chcemy obliczyć wartość f(2.11; 1.95), przyjmujemy x0 = 2, y0 = 2 i obliczamy f(x0, y0) = f(2, 2) =
2, f ′x(x, y) = ((x

2 + 3y2)1/4)′x =
1
4(x
2 + 3y2)−3/4 · 2x, zatem f ′x(2, 2) = 14 · 16

−3/4 · 4 = 18 ; f
′
y(x, y) =

((x2 + 3y2)1/4)′y =
1
4(x
2 + 3y2)−3/4 · 6y, zatem f ′y(2, 2) = 14 · 16

−3/4 · 12 = 38 . Z podanego wyżej wzoru
wynika, że f(2.11; 1.95) ≈ 2 + 18 · 0.11 +

3
8 · (−0.05) = 1.995. Kalkulator daje wynik 1.995598....

13. Definicja. Wektor grad f(x0, y0) = [f ′x(x0, y0), f
′
y(x0, y0)] nazywamy gradientem funkcji f(x, y) w

punkcie (x0, y0) ∈ Df . Jego współrzędnymi są pochodne cząstkowe funkcji f po zmiennych x i y w
punkcie (x0, y0).

14. Przykład. Na rysunku obok są przedstawione po-
ziomice funkcji f(x, y) = xy oraz jej gradient
w niektórych punktach (skrocony pięć razy dla
zwiększenia czytelności rysunku). Zauważmy, że
każdy z tych wektorów wskazuje kierunek najwięk-
szego wzrostu wartości funkcji i że jest prostopa-
dły do poziomicy przechodzącej przez dany punkt.
Wartości funkcji na poziomicach są zaznaczone po
bokach rysunku. Gradient w punkcie (0, 0) jest ze-
rowy.

15. Twierdzenie. Gradient grad f(x0, y0) funkcji f(x, y) w punkcie (x0, y0) ma następujące własności:
1. jest prostopadły do poziomicy przechodzącej przez punkt (x0, y0),
2. wskazuje kierunek największego wzrostu wartości funkcji f ,
3. jego długość zależy od nachylenia wykresu w punkcie (x0, y0): długi gradient oznacza, że wykres jest
stromy w punkcie (x0, y0), zerowy gradient oznacza, że w punkcie (x0, y0) wykres nie jest nachylony
w żadnym kierunku.

16. Definicja. Punktem stacjonarnym funkcji f(x, y) nazywamy każdy taki punkt (x0, y0) ∈ Df , że
grad f(x0, y0) = [0, 0], tzn. taki punkt, w którym obie pochodne cząstkowe funkcji f są równe 0.
Można go sobie wyobrazić w sposób następujący: jeśli na wykresie w tym punkcie położymy piłkę,
to się ona nie stoczy, bo wykres nie jest nachylony w żadnym kierunku. Dla funkcji f(x, y) = xy
punktem stacjonarnym jest (0, 0).

17. Definicja. Oprócz pochodnych cząstkowych stosuje są czasem także pochodne cząstkowe pochodnych
cząstkowych, czyli tzw. pochodne cząstkowe drugiego rzędu. Funkcja dwóch zmiennych f(x, y) ma
cztery takie pochodne: f ′′xx(x, y) = (f

′
x)
′
x(x, y), f

′′
xy(x, y) = (f

′
x)
′
y(x, y), f

′′
yx(x, y) = (f

′
y)
′
x(x, y), f

′′
yy(x, y) =

(f ′y)
′
y(x, y). Wiadomo, że jeśli te pochodne drugiego rzędu są funkcjami ciągłymi dwóch zmiennych,

to zachodzi równość f ′′xy(x, y) = f
′′
yx(x, y). Pochodne drugiego rzędu często zapisujemy w postaci

macierzy (tzw. macierzy Hessego)

f ′′(x, y) =
(
f ′′xx(x, y) f

′′
xy(x, y)

f ′′yx(x, y) f
′′
yy(x, y)

)
.

W wielu zastosowaniach matematyki bardzo istotne jest znajdowanie ekstremów lokalnych funkcji
dwóch zmiennych.

18. Definicja. Funkcja f(x, y) ma w punkcie (x0, y0) ∈ Df maksimum lokalne wtedy i tylko wtedy, gdy
jej wartość f(x0, y0) jest większa lub równa od wartości we wszystkich punktach leżących w pobliżu
punktu (x0, y0). Podobnie, funkcja f(x, y) ma w punkcie (x0, y0) ∈ Df minimum lokalne wtedy i tylko
wtedy, gdy jej wartość f(x0, y0) jest mniejsza lub równa od wartości we wszystkich punktach leżących
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w pobliżu punktu (x0, y0). Obie te sytuacje możemy sobie wyobrazić, jako górkę lub odpowiednio
dołek na wykresie. Mówimy, że funkcja f(x, y) ma w punkcie (x0, y0) ∈ Df ekstremum lokalne wtedy
i tylko wtedy, gdy ma w tym punkcie maksimum lokalne lub minimum lokalne.

19. Uwaga. Jeśli funkcja f ma w punkcie (x0, y0) ekstremum lokalne, to ten punkt jest punktem stacjo-
narnym.

20. Ekstrema lokalne funkcji f(x, y) znajdujemy w następujący sposób.
1. Obliczamy pochodne cząstkowe funkcji f(x, y).
2. Znajdujemy punkty stacjonarne P1 = (x1, y1), P2 = (x2, y2), ... funkcji f(x, y).
3. Dla każdego z punktów stacjonarnych Pi obliczamy wyznacznik H(xi, yi) (tzw. hesjan) macierzy
pochodnych cząstkowych drugiego rzędu w tym punkcie.
3a. Jeśli H(xi, yi) < 0, to Pi jest tzw. punktem siodłowym i funkcja f nie ma w nim ekstremum
lokalnego.
3b. Jeśli H(xi, yi) > 0, to funkcja f ma w punkcie Pi ekstremum lokalne:
jest to minimum lokalne, jeśli f ′′xx(xi, yi) > 0,
a jest to maksimum lokalne, jeśli f ′′xx(xi, yi) < 0.

21. Przykład. Znajdziemy ekstrema lokalne funkcji f(x, y) = x3 + y2 + 2xy − 21. Zaczynamy od obli-
czenia pochodnych cząstkowych pierwszego rzędu: f ′x(x, y) = 3x

2 + 2y, f ′y(x, y) = 2y + 2x. Punkty

stacjonarne znajdujemy rozwiązując układ równań:
{
3x2 + 2y = 0
2y + 2x = 0

⇐⇒
{
3x2 + 2y = 0
2y = −2x ⇐⇒{

3x2 − 2x = 0
y = −x ⇐⇒ (x = 0, y = 0) lub (x = 2

3 , y = −
2
3). Mamy więc dwa punkty stacjonarne:

P1 = (0, 0) oraz P1 = (23 ,−
2
3). Obliczamy pochodne cząstkowe drugiego rzędu i ustawiamy je w ma-

cierz: f ′′(x, y) =
(
6x 2
2 2

)
. Ponieważ H(0, 0) =

∣∣∣∣∣ 0 22 2
∣∣∣∣∣ = −4 < 0, to P1 jest punktem siodłowym

i funkcja f nie ma w nim ekstremum lokalnego. Widzimy, że H(23 ,−
2
3) =

∣∣∣∣∣ 4 22 2
∣∣∣∣∣ = 4 > 0, więc

funkcja f ma w punkcie P2 = (23 ,−
2
3) ekstremum lokalne. Ponieważ f

′′
xx(
2
3 ,−

2
3) = 4 > 0, jest to

minimum lokalne.

22. Rozpatrzmy teraz funkcję dwóch zmiennych f(x, y) określoną na zbiorze D ⊂ R2 oraz krzywą G
opisaną w D równaniem g(x, y) = 0. Funkcja f jest określona na zbiorze D, ale nas będą interesować
tylko jej wartości w punktach krzywej G. Omówimy metodę Lagrange’a znajdowania ekstremów
lokalnych funkcji f na krzywej G.

23. Definicja. Funkcja f ma na krzywej G w punkcie P ∈ G maksimum lokalne wtedy i tylko wtedy,
gdy istnieje taka liczba dodatnia r, że f(x, y) ¬ f(P ) dla wszystkich punktów (x, y) leżących na G
w odległości mniejszej niż r od punktu P . Analogicznie określa się mimimum lokalne.

24. Twierdzenie. Jeśli funkcja f(x, y) ma na krzywej G w punkcie (x0, y0) ∈ G ekstremum lokalne oraz
grad g(x0, y0) ̸= 0, to istnieje taka liczba λ ∈ R, że grad f(x0, y0) = λgrad g(x0, y0). Punkty krzywej
G spełniającę ten warunek nazywają się punktami stacjonarnymi.

(Jeśli gradient funkcji f(x, y) w jakimś punkcie krzywej G jest rówoległy do tej krzywej, to funkcja f
rośnie (lub maleje), gdy posuwamy się po krzywej w kierunku tego wektora. Podobnie dzieje się, jeśli
wektor grad f(x, y) ma kierunek ukośny w stosunku do krzywej G. Zatem w takich punktach funkcja
f nie może mieć ekstremum lokalnego na G. Pozostają więc punkty, w których grad f(x, y) jest
prostopadły do krzywej G. Zwróćmy uwagę na to, że krzywa G opisana równaniem g(x, y) = 0 jest
poziomicą funkcji g(x, y). Z tego wynika, że w każdym punkcie krzywej G jest do niej prostopadły
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wektor grad g(x, y). Widać więc, że jeśli funkcja f ma ekstremum lokalne na G w punkcie (x, y),
to wektory grad f(x, y) i grad g(x, y) są równoległe, a więc grad f(x, y) = λgrad g(x, y) dla pewnej
liczby λ.)

25. Uwaga. Powyższy warunek jest konieczny, ale nie wystarczający, tzn. równość grad f(x0, y0) =
= λgrad g(x0, y0) nie gwarantuje tego, że funkcja f(x, y) ma ekstremum lokalne w punkcie (x0, y0).

26. Definicja. W sytuacji jak wyżej, niech L(λ, x, y) = f(x, y)−λg(x, y). Jest to tzw. funkcja Lagrange’a.

Wyznacznik H(λ, x, y) =

∣∣∣∣∣∣∣
0 g′x g′y
g′x L

′′
xx L

′′
xy

g′y L
′′
yx L

′′
yy

∣∣∣∣∣∣∣ nazywa się hesjanem, a liczba λ mnożnikiem Lagrange’a.
Zauważmy, że L′x(λ, x, y) = f

′
x(x, y)− λg′x(x, y), L′y(λ, x, y) = f ′y(x, y)− λg′y(x, y), L′λ = g(x, y).

27. Twierdzenie. (Warunek wystarczający istnienia ekstremum lokalnego. ) Niech punkt (x0, y0) leży na
krzywej G oraz gradL(λ, x0, y0) = 0. Jeśli H(λ, x0, y0) > 0, to funkcja f ma na G maksimum lokalne
w punkcie (x0, y0). Jeśli H(λ, x0, y0) < 0, to funkcja f ma na G minimum lokalne w punkcie (x0, y0).

28. Uwaga. Jeżeli H(λ, x0, y0) = 0, to funkcja f może zarówno mieć jak i nie mieć ekstremum lokalnego
w punkcie (x0, y0).

29. Przykład. Znajdziemy ekstrema lokalne funkcji f(x, y) = xy na elipsie G = {(x, y) : 4x2 + y2 = 8}.
Wyznaczamy funkcję Lagrange’a L(λ, x, y) = xy − λ(4x2 + y2 − 8). Punkty stacjonarne znajdujemy

z równania gradL(λ, x, y) = 0 czyli z układu


f ′x(x, y)− λg′x(x, y) = 0,
f ′y(x, y)− λg′y(x, y) = 0,
g(x, y) = 0,

tzn.


y − 8λx = 0,
x− 2λy = 0,
4x2 + y2 = 8.

Układ ten spełniają następujące trójki liczb (λ, x, y):

tA = (14 , 1, 2), tB = (−
1
4 ,−1, 2), tC = (

1
4 ,−1,−2), tD =

(−14 , 1,−2). Zatem punktami stacjonarnymi są
A = (1, 2), B = (−1, 2), C = (−1,−2), D = (1,−2).

Znajdujemy hesjan H(λ, x, y) =

∣∣∣∣∣∣∣
0 8x 2y
8x −8λ 1
2y 1 −2λ

∣∣∣∣∣∣∣ i
obliczamy jego wartość dla każdej znalezionej trójki.
Ponieważ H(14 , 1, 2) = H(

1
4 ,−1,−2) = 128 > 0 oraz

H(−14 ,−1, 2) = H(−
1
4 , 2,−2) = −128 < 0, to f ma mak-

sima lokalne w punktach A = (1, 2) oraz C = (−1,−2),
a minima lokalne w punktach B = (−1, 2) i C = (1,−2).

30. Przykład. Spróbujemy sprawdzić, czy funkcja f(x, y) = y ma ekstremum lokalne na krzywej G =
{(x, y) : y − x4 = 0} w jej punkcie P = (0, 0). Wyznaczamy funkcję Lagrange’a L(λ, x, y) =
y−λ(y−x3). Sprawdzamy, że P jest punktem stacjonarnym i znajdujemy odpowiadającą mu wartość

λ = 1. Znajdujemy hesjan H(λ, x, y) =

∣∣∣∣∣∣∣
0 −3x2 1
−3x2 6λx 0
1 0 0

∣∣∣∣∣∣∣ , H(1, 0, 0) =
∣∣∣∣∣∣∣
0 0 1
0 0 0
1 0 3

∣∣∣∣∣∣∣. Widzimy, że
H(1, 1, 0) = 0. Zatem przy pomocy poznanego twierdzenia nie da się stwierdzić, czy funkcja f ma
na G w punkcie (1, 1) ekstremum lokalne. Proponuję naszkicować poziomice funkcji f oraz krzywą
G i odczytać odpowiedź z uzyskanego szkicu.


