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Wykład poświęcony będzie standardowemu iloczynowi skalarnemu w przestrzeni Rn.

1. Definicja. Niech v = (v1, ..., vn) oraz w = (w1, ..., wn) będą dowolnymi wektorami przestrzeni Rn.
Standardowym iloczynem skalarnym wektorów v, w nazywamy liczbę rzeczywistą ⟨v, w⟩ = v1w1 +

v2w2 + ... + vnwn =
n∑
k=1

vkwk. Od tej pory będziemy opuszczać przymiotnik ”standardowy”, bo nie

będziemy rozpatrywać innych iloczynów skalarnych.

2. Przy zapisie wektorów w postaci kolumn iloczyn skalarny wektorów wyraża się poprzez mnożenie
macierzowe wektora-wiersza przez wektor-kolumnę: ⟨v, w⟩ = vTw.

3. Iloczyn skalarny ma następujące własności:

(a) jest symetryczny, tzn. ⟨v, w⟩ = ⟨w, v⟩ dla dowolnych wektorów v, w ∈ Rn.
(b) jest dwuliniowy, tzn. ⟨au + bv, w⟩ = a⟨u,w⟩ + b⟨v, w⟩ oraz ⟨v, au + bw⟩ = a⟨v, u⟩ + b⟨v, w⟩ dla
dowolnych wektorów u, v, w ∈ Rn oraz dowolnych liczb rzeczywistych a, b.

(c) jest dodatnio określony, tzn. ⟨v, v⟩ > 0 dla dowolnego wektora v ∈ Rn, v ̸= 0.

Przy pomocy iloczynu skalarnego określa się m.in. następujące pojęcia: długość wektora, kąt między
wektorami, prostopadłość wektorów.

4. Definicja. Długością wektora v = (v1, ..., vn) ∈ Rn nazywamy liczbę |v| =
√
⟨v, v⟩ =

√∑n
k=1 v

2
k.

5. Przykład. Długości wektorów ek = (0, ..., 0, 1, 0, ..., 0) (jedynka na k−tym miejscu) bazy standardowej
są równe 1.

6. Przykład. Długość wektora (1, 1, ..., 1) ∈ Rn jest równa
√
n.

7. Definicja. Kąt między wektorami v, w ∈ Rn jest określony jako taki kąt α ∈ [0, π], że cosα = ⟨v,w⟩
|v|·|w| ,

tzn. α = arc cos ⟨v,w⟩|v|·|w| .

8. Definicja. Wektory v, w ∈ Rn nazywają się prostopadłe (inaczej: ortogonalne) wtedy i tylko wtedy,
gdy ⟨v, w⟩ = 0.

9. Przykład. Obliczymy kąt α między wektorami v = (1, 1, 1,−1), w = (−1, 1,−1, 1) ∈ R4. Długości
tych wektorów są równe 2, ich iloczyn skalarny jest równy ⟨v, w⟩ = −2, więc cosα = −12 . Zatem
α = 2π3 .

10. Przykład. Zbiór v⊥ wszystkich wektorów w Rn prostopadłych do wektora v = (a1, a2, ..., an) ∈ Rn
jest podprzestrzenią liniową opisaną w Rn równaniem a1x1 + a2x2 + ...+ anxn = 0.

11. Definicja. Układ wektorów v1, v2, ..., vk ∈ Rn nazywa się układem ortogonalnym wtedy i tylko wtedy,
gdy każde dwa wektory tego układu są ortogonalne.

12. Definicja. Układ wektorów v1, v2, ..., vk ∈ Rn nazywa się układem ortonormalnym wtedy i tylko
wtedy, gdy jest ortogonalny oraz długości wszystkich wektorów są równe 1.

13. Przykład. Układ wektorów (1, 2, 3), (1, 1,−1), (5,−4, 1) ∈ R3 jest ortogonalny. Dzieląc te wektory
przez ich długości otrzymujemy układ ortonormalny: 1√

14
(1, 2, 3), 1√

3
(1, 1,−1), 1√

42
(5,−4, 1) ∈ R3.

14. Przykład. Baza standardowa przestrzeni Rn jest ortonormalna.

15. Przykład. Układ wektorów 12(1, 1, 1, 1),
1
2(1, 1,−1,−1),

1
2(1,−1, 1,−1),

1
2(1,−1,−1, 1) ∈ R

4 jest bazą
ortonormalną.
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16. Twierdzenie. Współrzędne wektora v w bazie ortogonalnej u1, u2, ..., un są równe
⟨v,u1⟩
⟨u1,u1⟩ ,

⟨v,u2⟩
⟨u2,u2⟩ , ...,

⟨v,un⟩
⟨un,un⟩ .

Dowód. Zapiszmy wektor v jako kombinację liniową wektorów u1, u2, ..., un : v =
n∑
j=1

ajuj. Mnożąc tę

równość skalarnie przez wektor uk otrzymujemy ⟨v, uk⟩ = ⟨a1u1, uk⟩+ ⟨a2u2, uk⟩+ ...+ ⟨anun, uk⟩ =
a1⟨u1, uk⟩+ a2⟨u2, uk⟩+ ...+ an⟨un, uk⟩ = ak⟨uk, uk⟩. Zatem ak = ⟨v,uk⟩

⟨uk,uk⟩
.

17. Wniosek. Współrzędne wektora v w bazie ortonormalnej u1, u2, ..., un są równe ⟨v, u1⟩, ⟨v, u2⟩, ..., ⟨v, un⟩.

18. Przykład. Znajdziemy współrzędne wektora v = (1, 1, 1) w bazie U : u1 = (1, 2, 3), u2 = (1, 1,−1), u3 =
(5,−4, 1) przestrzeni R3. U jest bazą ortogonalną, więc te współrzędne są równe 614 ,

1
3 ,
2
42 .

19. Przykład. Znajdziemy współrzędne wektora v = (1, 2, 3, 4) w bazie U : u1 = 1
2(1, 1, 1, 1), u2 =

1
2(1, 1,−1,−1), u3 =

1
2(1,−1, 1,−1), u4 =

1
2(1,−1,−1, 1) przestrzeni R

4. U jest bazą ortonormalną,
więc te współrzędne są równe: ⟨(1, 2, 3, 4), 12(1, 1, 1, 1)⟩ = 5, ⟨(1, 2, 3, 4),

1
2(1, 1,−1,−1)⟩ = −2,

⟨(1, 2, 3, 4), 12(1,−1, 1,−1)⟩ = −1, ⟨(1, 2, 3, 4),
1
2(1,−1,−1, 1)⟩ = 0, zatem v = 5u1 − 2u2 − u3.

Jak widać, znajdowanie współrzędnych wektorów w bazach ortogonalnych, a zwłaszcza w ortonormal-
nych, jest znacznie prostsze niż w innych bazach. W przestrzeni Rn mamy bazę standardową, która
jest ortonormalna. Jednak gdy zajmujemy się jakąś podprzestrzenią V przestrzeni Rn, wygodnie jest
posługiwać się bazą podprzestrzeni V . Jak znaleźć bazę ortonormalną podprzestrzeni przestrzeni
Rn? Zanim odpowiemy na to pytanie, nauczymy się rozkładać wektor na jego sładową równoległą
i składową prostopadłą do danej podprzestrzeni. Zacznijmy od przypadku, gdy podprzestrzeń ma
wymiar 1.

20. Przykład. Rozpatrzmy wektor v ∈ Rn oraz jednowymiarową podprzestrzeń liniową U = lin(u) prze-
strzeni Rn. Zapiszemy v w postaci sumy wektora równoległego do u i wektora prostopadłego do u.
Składowa równoległa do u będzie oczywiście postaci au, gdzie a ∈ R. Zapiszmy więc v = au+(v−au)
i dobierzmy liczbę a tak, żeby wektor v − au był prostopadły do U tzn. ⟨v − au, u⟩ = 0 tzn.
⟨v, u⟩ = a⟨u, u⟩ czyli a = ⟨v,u⟩

⟨u,u⟩ . Zatem składową wektora v równoległą do u jest wektor
⟨v,u⟩
⟨u,u⟩u, a

składową prostopadłą do u jest wektor v − ⟨v,u⟩⟨u,u⟩u.

21. Przykład. Rozłóżmy wektor w = (−1, 10, 3) ∈ R3 na sumę wektora równoległego do wektora
u = (1, 2, 3) i wektora prostopadłego do u. Obliczamy ⟨v, u⟩ = 28, ⟨u, u⟩ = 14. Ze wzoru z poprzed-
niego przykładu wynika, że składowa równoległa do u jest równa 2814(1, 2, 3) = (2, 4, 6), a składowa
prostopadła do u jest równa (−1, 10, 3)− (2, 4, 6) = (−3, 6,−3).
Podobnie można postąpić w celu rozłożenia wektora v ∈ Rn na składową równoległą i składową
prostopadłą do podprzestrzeni większego wymiaru.

22. Twierdzenie. Jeśli u1, ..., uk jest bazą ortogonalną podprzestrzeni U przestrzeni Rn i dany jest wektor
v ∈ Rn, to wektor vU = ⟨v,u1⟩

⟨u1,u1⟩u1+
⟨v,u2⟩
⟨u2,u2⟩u2+ ...+

⟨v,uk⟩
⟨uk,uk⟩

uk jest składową v równoległą do U , a wektor
v − vU jest składową wektora v prostopadłą do U .

23. Wniosek. Jeśli v1, ..., vk jest bazą podprzestrzeni V przestrzeni Rn, to bazę ortogonalną u1, u2, ..., uk
przestrzeni V możemy skonstruować tak:
u1 = v1,
u2 = v2 − ⟨v2,u1⟩⟨u1,u1⟩u1,
. . . . . . . . . . . . . . . . . . . . .
uk = vk − ⟨vk,u1⟩⟨u1,u1⟩u1 −

⟨vk,u2⟩
⟨u2,u2⟩u2 − ...−

⟨vk,uk−1⟩
⟨uk−1,uk−1⟩

uk−1.
Jest to tzw. ortogonalizacja Grama – Schmidta. Polega ona na zastępowaniu kolejnych wektorów
przez ich składowe prostopadłe do podprzestrzeni rozpiętej przez poprzednie wektory.



Wprowadzenie do matematyki II, wykład 13, iloczyn skalarny, 26.05.2025 3

24. Przykład. Znajdziemy bazę ortogonalną przestrzeni R3, której pierwszym wektorem będzie u =
(1, 1,−1). Zaczynamy od dopełnienia wektora u do bazy R3: u = (1, 1,−1), v = (0, 1, 0), w = (0, 0, 1).
Można to było zrobić na wiele sposobów. Wybraliśmy takie wektory, bo skoro tworzą schodki, to są li-
niowo niezależne, a skoro jest ich trzy, to rozpinają całą przestrzeń. Jako pierwszy wektor nowej bazy,
zgodnie z warunkami zadania, przyjmiemy u1 = u = (1, 1,−1). Jako drugi przyjmiemy składową pro-
stopadłą wektora v do przestrzeni lin(u1), tzn. u2 = v− ⟨v,u1⟩⟨u1,u1⟩u1 = (0, 1, 0)−

1
3(1, 1,−1) = (−

1
3 ,
2
3 ,
1
3).

Jako trzeci wektor przyjmiemy składową prostopadłą wektora w do przestrzeni lin(u1, u2), tzn.

u3 = w− ⟨w,u1⟩⟨u1,u1⟩u1−
⟨w,u2⟩
⟨u2,u2⟩u2 = (0, 0, 1)−

−1
3 (1, 1,−1)−

1
3
6
9
(−13 ,

2
3 ,
1
3) = (

1
2 , 0,

1
2). Otrzymaliśmy więc bazę

u1 = u = (1, 1,−1), u2 = (−13 ,
2
3 ,
1
3), u3 = (

1
2 , 0,

1
2). Jeśli wolimy nie mieć ułamków, to możemy za wek-

tory bazy przyjąć wielokrotności otrzymanych wektorów: u′1 = u = (1, 1,−1), u′2 = (−1, 2, 1), u′3 =
(1, 0, 1). One też tworzą bazę ortogonalną. Jeśli natomiast chcemy mieć bazę ortonormalną, to dzie-
limy wektory przez ich długości i otrzymujemy u′′1 =

1√
3
(1, 1,−1), u′′2 = 1√

6
(−1, 2, 1), u′′3 = 1√

2
(1, 0, 1).

Metodę ortogonalizacji można stosować w dowolnej przestrzeni Rn. W przestrzeni R3 może się przy-
dać tzw. iloczyn wektorowy wektorów.

25. Definicja. Niech u = (a, b, c), w = (d, e, f) ∈ R3 oznaczają dowolne wektory. Iloczynem wektorowym

wektorów u,w nazywa się wektor u× w := (
∣∣∣∣∣ b ce f

∣∣∣∣∣ ,−
∣∣∣∣∣ a cd f

∣∣∣∣∣ ,
∣∣∣∣∣ a bd e

∣∣∣∣∣).
26. Twierdzenie. Iloczyn wektorowy wektorów u,w ma następujące własności:
1) u× w jest prostopadły do obu wektorów u,w.
2) wyznacznik macierzy, której wierszami są kolejno wektory u,w, u× w, jest nieujemny.
3) długość wektora u× w jest równa polu równoległoboku rozpiętego na wektorach u,w.

27. Przykład. Wektorem kierunkowym prostej opisanej układem równań
{
x− 2y + z = 5,
3x+ y − z = 0 jest wektor

(1,−2, 1)× (3, 1,−1) = (1, 4, 7).

28. Przykład. Znowu znajdziemy bazę ortogonalną przestrzeni R3, której pierwszym wektorem będzie
u = (1, 1,−1). Jako drugi wektor przyjmiemy dowolny wektor prostopadły do u, np. v = (1, 1, 2), a
jako trzeci w = u× v = (3,−3, 0).
Teraz zajmiemy się przekształceniami.

29. Definicja. Endomorfizm f przestrzeni Rn nazywa się izometrią liniową wtedy i tylko wtedy, gdy
⟨f(v), f(w)⟩ = ⟨v, w⟩ dla wszystkich wektorów v, w ∈ Rn.

30. Wniosek. Izometria liniowa przestrzeni Rn zachowuje długości wektorów (a więc i odległości punk-
tów), kąty oraz wszystkie inne wielkości wyrażające się przez iloczyn skalarny.

31. Uwaga. Przymiotnik ”liniowa” jest użyty dla podkreślenia, że chodzi o te izometrie, które są prze-
kształceniami liniowymi. Matematycy nazywają izometriami dowolne przekształcenia zachowujące
odległości, niektóre z nich nie są liniowe, np. przesunięcie o pewien wektor. Można wykazać, że każda
izometria przestrzeni Rn jest złożeniem izometrii liniowej i przesunięcia.

32. Przykład. Przekształcenie id : Rn → Rn określone wzorem id(v) = v jest izometrią liniową.

33. Przykład. Przekształcenie −id : Rn → Rn określone wzorem −id(v) = −v jest izometrią liniową, bo
⟨−id(v),−id(w)⟩ = ⟨−v,−w⟩ = ⟨v, w⟩ dla wszystkich wektorów v, w ∈ Rn.

34. Twierdzenie. a) Złożenie dwóch izometrii liniowych przestrzeni Rn jest izometrią liniową przestrzeni
Rn. b) Każda izometria liniowa przestrzeni Rn posiada przekształcenie odwrotne, które też jest
izometrią liniową przestrzeni Rn.

Zobaczmy teraz, jak warunek na bycie izometrią liniową wygląda w terminach macierzy.
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35. Twierdzenie. Niech f będzie endomorfizmem przestrzeni Rn i niech A =M(f)stst będzie jego macierzą
w bazie standardowej. Wtedy f jest izometrią liniową wtedy i tylko wtedy, gdy ATA = I.

Dowód. Przypomnijmy, że f(v) = A · v. Endomorfizm f jest izometrią liniową ⇐⇒ równość
⟨f(v), f(w)⟩ = ⟨v, w⟩ zachodzi dla wszystkich v, w ∈ Rn. Ta równość ⇐⇒ ⟨Av,Aw⟩ = ⟨v, w⟩ ⇐⇒
(Av)T (Aw) = vTw ⇐⇒ vTATAw = vT Iw ⇐⇒ vT (ATA− I)w = 0 (*). Jeśli ATA = I, to równość
(*) zachodzi dla wszystkich v, w. Jeśli zachodzi dla wszystkich v, w, to w szczególności zachodzi dla
wektorów v = ek, w = ej bazy standardowej. Zauważmy, że liczba eTk (A

TA− I)ej, to wyraz macierzy
ATA− I na miejscu (k, j). Zatem w macierzy ATA− I na miejscu (k, j) stoi liczba 0.

36. Definicja. Macierz kwadratowa A nazywa się ortogonalna wtedy i tylko wtedy, gdy ATA = I.

37. Wniosek. Macierz kwadratowa A jest ortogonalna ⇐⇒ jej kolumny tworzą bazę ortonormalną
przestrzeni Rn ⇐⇒ jest macierzą izometrii liniowej w bazie standardowej.

38. Stwierdzenie. Wyznacznik macierzy ortogonalnej A jest równy ±1.
Dowód. 1 = det(I) = det(ATA) = det(AT ) · det(A) = det(A)2. Zatem det(A) = 1 lub det(A) = −1.
Omówimy teraz przykłady izometrii Rn.

39. Twierdzenie. Każda izometria liniowa płaszczyzny R2 jest obrotem lub symetrią prostopadłą wzglę-
dem pewnej prostej (tzn. podprzestrzeni liniowej wymiaru 1).

Dowód. Rozpatrzmy dowolną izometrię liniową F przestrzeni R2 i jej macierz M =
(
a b
c d

)
w

bazach standardowych. Z definicji izometrii liniowej wynika, że kolumy macierzy M są prostopa-
dłe i mają długość 1. Zatem liczby w pierwszej kolumnie, to a = cosα, c = sinα dla pewnego
kąta α. W R2 istnieją dokładnie dwa wektory długości 1 prostopadłe do wektora (cosα, sinα),

mianowicie (− sinα, cosα) oraz (sinα,− cosα). Zatem albo macierz M jest równa
(
a −c
c a

)
=(

cosα − sinα
sinα cosα

)
i jest macierzą obrotu o kąt α, albo jest równa

(
a c
c −a

)
=
(
cosα sinα
sinα − cosα

)
i jest macierzą symetrii prostopadłej względem dwusiecznej kąta między e1 i f(e1).

40. Wniosek. Złożenie dwóch symetrii R2 jest obrotem, złożenie dwóch obrotów jest obrotem, złożenie
symetrii z obrotem jest symetrią.

Dowód. Macierze symetrii mają wyznacznik −1, zatem macierz ich złożenia ma wyznacznik równy
(−1)(−1) = 1, zatem złożenie jest obrotem. Podobnie w pozostałych przypadkach.

41. Definicja. Endomorfizm f : Rn → Rn nazywa się symetrią prostopadłą ⇐⇒ w pewnej bazie
ortonormalnej B : u1, ..., uk, uk+1, ..., un ma macierz diagonalną postaci D(−1, ...,−1, 1, , ..., 1) (na
przekątnej najpierw k minus jedynek, potem n − k jedynek). Wtedy f jest symetrią prostopadłą
względem podprzestrzeni lin(uk+1, ..., un).

42. Przykład. Przekształcenie przestrzeni R3 określone wzorem f(x, y, z) = (−x, y, z) jest symetrią pro-
stopadłą względem płaszczyzny x = 0.

43. Definicja. Endomorfizm f : Rn → Rn nazywa się rzutem prostopadłym ⇐⇒ w pewnej bazie
ortonormalnej B : u1, ..., uk, uk+1, ..., un ma macierz diagonalną postaci D(1, ..., 1, 0, , ..., 0) (na prze-
kątnej najpierw k jedynek, potem n− k zer). Wtedy f jest rzutem prostopadłym na podprzestrzeń
lin(u1, ..., uk). Uwaga: jeśli k < n, to rzut prostopadły nie jest izometrią.

44. Przykład. Przekształcenie przestrzeni R3 określone wzorem f(x, y, z) = (x, y, 0) jest rzutem prosto-
padłym na płaszczyznę z = 0.



Wprowadzenie do matematyki II, wykład 13, iloczyn skalarny, 26.05.2025 5

Na zakończenie podamy jeszcze jedną własność macierzy związaną z iloczynem skalarnym. Przypo-
mnijmy, że dla dowolnej macierzy symetrycznej A istnieje baza Rn złożona z wektorów własnych
macierzy A.

45. Twierdzenie. Jeśli macierz A jest symetryczna, to jej wektory własne odpowiadające różnym warto-
ściom własnym są prostopadłe.

Dowód. Rozpatrzmy wektory własne v, w macierzy A, Av = λv,Aw = µw, λ ̸= µ. Traktujemy te
wektory jak kolumny. Zachodzą równości µ⟨v, w⟩ = ⟨v, µw⟩ = vTµw = vTAw = vTATw = (Av)Tw =
(λv)Tw = ⟨λv, w⟩ = λ⟨v, w⟩. Zatem (µ− λ)⟨v, w⟩ = 0. Ponieważ µ− λ ̸= 0, to ⟨v, w⟩ = 0.

46. Wniosek. Dla dowolnej macierzy symetrycznej A ∈M(n×n) istnieje baza ortonormalna Rn złożona
z wektorów własnych macierzy A.

Dowód. Wektory własne odpowiadające jednej wartości własnej λ (z dodanym wektorem zerowym)
tworzą przestrzeń Vλ, wybieramy z niej bazę ortonormalną. Podprzestrzenie Vλ i Vµ odpowiadające
różnym wartościom własnym λ, µ są prostopadłe, zatem wszystkie tak dobrane wektory tworzą bazę
ortonormalną.

47. Wniosek. Każdą macierz symetryczną Amożna zapisać w postaci A = CDC−1, gdzieD jest macierzą
diagonalną, a C macierzą ortogonalną, a więc w szcczególności C−1 = CT .


