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1. Na tym wykładzie zajmować się będziemy przekształceniami liniowymi f : V → V (z przestrzeni V
w tę samą przestrzeń V ). Nazywają się one endomorfizmami przestrzeni V .

Rozpatrując endomorfizm f : V → V zwykle wybieramy tę samą bazę w obu przestrzeniach V .

2. Definicja. Niech A oznacza bazę przestrzeni liniowej V . Macierzą endomorfizmu f : V → V w bazie
A nazywamy macierz M(f)A := M(f)AA. Inaczej mówiąc, zamiast M(f)

A
A będziemy pisać po prostu

M(f)A.

3. Twierdzenie. Niech f : V → V oznacza endomorfizm przestrzeni liniowej V i niech A oraz B
oznaczają dwie bazy przestrzeni V . Wtedy M(f)B =M(id)BA ·M(f)A · (M(id)BA)−1.
Dowód wynika z Wniosków 23 i 24 z wykładu 11.

Wektor v ∈ V i jego obraz f(v) przy endomorfizmie f : V → V należą do tej samej przestrzeni i
może się zdarzyć, że mają ten sam kierunek (tzn. są proporcjonalne).

4. Przykład. Niech f(x, y) = (x + 2y, 3x + 2y). Macierz f w bazie standardowej jest równa M(f)st =(
1 2
3 2

)
. Postaramy się wyobrazić sobie, jak f przekształca płaszczyznę R2. Będzie to znacznie ła-

twiejsze, gdy zauważymy, że macierz f w bazie W : (2, 3), (1,−1), jest równa M(f)W =
(
4 0
0 −1

)
(tak jest, bo f(2, 3) = (8, 12) = 4(2, 3) oraz f(1,−1) = (−1, 1) = −(1,−1)). Oznacza to że prze-
kształcenie f rozciąga cztery razy wektory o kierunku (2, 3) i odwraca (zamienia na przeciwne)
wektory o kierunku (1,−1).

5. Uwaga. Macierz endomorfizmu f : V → V w bazie B : w1, ..., wn jest diagonalna wtedy i tylko
wtedy, gdy obraz każdego z wektorów tej bazy przy f jest do niego proporcjonalny, dokładniej:
M(f)B = D(a1, ..., an) ⇐⇒ f(w1) = a1w1, ..., f(wn) = anwn.
Nasuwają się pytania, czy dla każdego endomorfizmu f istnieje taka baza W , w której macierz jest
diagonalna oraz jak (jeśli istnieje) znaleźć taką bazę W .

6. Definicja. Niech f oznacza dowolny endomorfizm przestrzeni V . Liczba λ nazywa się wartością własną
endomorfizmu f wtedy i tylko wtedy, gdy istnieje taki niezerowy wektor v ∈ V , że f(v) = λv.

7. Definicja. Niech f oznacza dowolny endomorfizm przestrzeni V . Niezerowy wektor v ∈ V nazywa
się wektorem własnym endomorfizmu f wtedy i tylko wtedy, gdy istnieje taka liczba λ ∈ R, że
f(v) = λv.

8. Przykład. Wektory (2, 3), (1,−1) są wektorami własnymi endomorfizmu z Przykładu 4. Pierwszemu
z nich odpowiada wartość własna 4, a drugiemu wartość własna −1.

9. Twierdzenie. Macierz endomorfizmu f : V → V w bazie B jest diagonalna wtedy i tylko wtedy, gdy
wszystkie wektory bazy B są wektorami własnymi endomorfizmu f .

10. Uwaga. Wartościami własnymi macierzy kwadratowej A ∈M(n×n) nazywamy wartości własne prze-
kształcenia f(v) = Av, a wektorami własnymi macierzy A nazywamy wektory własne przekształcenia
f(v) = Av.

11. Przykład. Wektor (1, 2, 5) jest wektorem własnymmacierzy

 3 1 0
−2 1 2
1 2 4

, bo
 3 1 0
−2 1 2
1 2 4


 12
5

 =
 510
25

 = 5
 12
5

. Odpowiada mu wartość własna 5.
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12. Twierdzenie. Liczba λ jest wartością własną macierzy A wtedy i tylko wtedy, gdy det(A− λIn) = 0.
Wielomian char(x) = det(A− xIn) nazywa się wielomianem charakterystycznym macierzy A.
Dowód. Liczba λ jest wartością własną macierzy A wtedy i tylko wtedy, gdy istnieje taki wektor
v ̸= 0, że (A−λI)v = 0, to oznacza, że jednorodny układ równań o macierzy wspólczynników A−λI
ma niezerowe rozwiązanie, a to z kolei jest równoważne z warunkiem r(A−λI) < n, czyli z warunkiem
det(A− λI) = 0.

13. Przykład. Wartościami własnymi macierzy trójkątnej są wyrazy przekątnej głównej (bo wyznacznik
macierzy trójkątnej jest równy iloczynowi wyrazów z przekątnej).

14. Wniosek. Aby znaleźć wektory własne macierzy A, postępujemy tak:
1. znajdujemy wielomian charakterystyczny char(x) = det(A− xI),
2. znajdujemy wartości własne, tzn. rozwiązujemy równanie det(A− xI) = 0.
3. dla każdej wartości własnej λ rozwiązujemy równanie macierzowe Av = λiv lub równoważne z
nim równanie (A− λiI)v = 0. Zbiór rozwiązań tego równania oznaczamy symbolem Vλ i nazywamy
przestrzenią własną odpowiadającą wartości własnej λ. Następnie odrzucamy z Vλ wektor zerowy –
otrzymujemy w ten sposób zbiór wektorów własnych odpowiadających tej wartości własnej.

15. Przykład. Znajdziemy wartości własne i odpowiadające im wektory własne macierzy A =
(
4 2
−1 1

)
(czyli wartości własne i wektory własne przekształcenia f(x, y) = (4x + 2y,−x + y)). Wielomian

charakterystyczny jest równy char(x) = det
(
4− x 2
−1 1− x

)
= x2 − 5x+ 6 =

(x− 2)(x− 3). Wartości własne, czyli pierwiastki wielomianu charakterystycznego, są zatem równe
λ1 = 2 oraz λ2 = 3. Dla każdej z tych wartości znajdziemy odpowiadające jej wektory własne.
I. λ1 = 2. Wektor v jest wektorem własnym odpowiadającym λ1 wtedy i tylko wtedy, gdy Av = 2v,

czyli (A− 2I2)v = 0, tzn.
(
2 2
−1 −1

)(
x
y

)
=
(
0
0

)
, tzn. v =

(
t
−t

)
= t

(
1
−1

)
, t ̸= 0.

II. λ1 = 3. Wektor v jest wektorem własnym odpowiadającym λ2 wtedy i tylko wtedy, gdy Av = 3v,

czyli (A− 3I2)v = 0, tzn.
(
1 2
−1 −2

)(
x
y

)
=
(
0
0

)
, tzn. v =

(
2t
−t

)
= t

(
2
−1

)
, t ̸= 0.

16. Twierdzenie. a) Jeśli wektory własne w1, ..., wk macierzy A odpowiadają różnym wartościom własnym
λ1, ..., λk macierzy A, to są liniowo niezależne. b) Jeśli λ, µ, ..., ω oznaczają różne wartości własne
macierzy A, to ustawiając po kolei wektory baz przestrzeni własnych Vλ, Vµ, ..., Vω otrzymujemy
układ liniowo niezależny.

17. Twierdzenie. Endomorfizm f : V → V ma w pewnej bazie macierz diagonalną wtedy i tylko wtedy,
gdy suma wymiarów przestrzeni własnych jest równa wymiarowi przestrzeni V .

18. Uwaga. Nie dla każdego przekształcenia f : Rn → Rn istnieje baza złożona z wektorów własnych.

19. Przykład. Macierz
(
0 1
−1 0

)
(macierz obrotu o kąt prosty) nie ma wcale wektorów własnych, bo

jej wielomian charakterystyczny char(x) =

∣∣∣∣∣ −x 1
−1 −x

∣∣∣∣∣ = x2 + 1 nie ma pierwiastków.
20. Przykład. Przekształcenie f : R2 → R2 jest zadane wzorem f(x1, x2) = (x1 + x2, x2). Jego macierzą

jest A =
(
1 1
0 1

)
, a wielomianem charakterystycznym char(x) = det

(
1− x 1
0 1− x

)
= (1− x)2.

Wielomian ten ma tylko jeden pierwiastek (czyli wartość własną) λ = 1. Wektory własne odpowia-

dające tej wartości własnej, to rozwiązania równania (A−I)v = 0, czyli równania
(
0 1
0 0

)(
x
y

)
=
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(
0
0

)
, czyli wektory postaci (t, 0). Nie rozpinają one całej przestrzeni R2, więc nie uda się z nich

wybrać bazy (jest jedna przestrzeń własna, ale jej wymiar jest mniejszy od wymiaru przestrzeni R2).

Z drugiej strony, jest też cała klasa macierzy mających dużo wektorów własnych:

21. Twierdzenie. Jeśli macierz A ∈M(n× n) jest macierzą symetryczną (tzn. AT = A), to istnieje baza
przestrzeni Rn złożona z wektorów własnych macierzy A.

22. Definicja. Macierz kwadratowa A nazywa się diagonalizowalna wtedy i tylko wtedy, gdy istnieje taka
macierz kwadratowa C, że A = CDC−1 dla pewnej macierzy diagonalnej D.

23. Twierdzenie. Macierz kwadratowa A stopnia n jest diagonalizowalna wtedy i tylko wtedy, gdy istnieje
baza przestrzeni Rn złożona z wektorów własnych macierzy A.

24. Wniosek. Dla macierzy diagonalizowalnej A możemy w prosty sposób obliczyć jej n−tą potęgę:
An = (CDC−1)(CDC−1)...(CDC−1) = CD(C−1C)D(C−1...C)DC−1 = CDnC−1.

25. Przykład 15, cd. Obliczymy n−tą potęgę macierzyA =
(
4 2
−1 1

)
. Oznaczmy przez w1 = (1,−1), w2 =

(2,−1) wybraną parę wektorów własnych, po jednym od każdej wartości własnej. Wektory w1, w2 są
liniowo niezależne, więc tworzą bazę R2, oznaczmy jąW . Z definicji macierzy przekształcenia wynika,

że macierz M(f)W przekształcenia f w bazie W jest równa D :=
(
2 0
0 3

)
oraz że C :=M(id)stW =(

1 2
−1 −1

)
. Z Twierdzenia 3 wynika równość A = M(f)stst = M(id)

st
W ·M(f)W · (M(id)stW )−1 =

CDC−1. Teraz możemy łatwo obliczyć wzór na n−tą potęgę macierzy A: An = CDnC−1 =

=
(
1 2
−1 −1

)(
2n 0
0 3n

)(
−1 −2
1 1

)
=
(
−2n + 2 · 3n −2n+1 + 2 · 3n
2n − 3n 2n+1 − 3n

)
.

26. Przykład. W roku 1202 włoski matematyk Leonardo Fibonacci wydał książkę pod tytułem Liber
Abaci, w której przedstawił takie oto zadanie. Króliki rozmnażają się w sposób następujący: para
młodych (świeżo urodzonych) królików po miesiącu dojrzewa, a po każdym następnym wydaje na
świat parę młodych królików. Oblicz liczbę par dojrzałych królików po n miesiącach od dzisiaj,
jeśli za miesiąc dostaniemy do hodowli jedną parę młodych królików. Mówiliśmy o tym zadaniu
na zajęciach o macierzach. Teraz jesteśmy gotowi, aby je rozwiązać. Niech Fn oznacza liczbę par
królików po n miesiącach. Wtedy F0 = 0, F1 = 1 oraz Fn+2 = Fn + Fn+1 dla n ∈ N. Można

zauważyć, że ciąg ten jest związany z macierzą A =
(
0 1
1 1

)
, mianowicie, An =

(
Fn−1 Fn
Fn Fn+1

)
(równość tę można udowodnić przez indukcję). Jeśli wyznaczymy wzór jawny na An, to dostaniemy
z niego wzór jawny na n−ty wyraz ciągu Fibonacciego. Wielomian charakterystyczny macierzy jest
równy char(x) = −x(1 − x) − 1 = x2 − x − 1 = (x − λ)(x − µ), gdzie λ = 1−

√
5
2 , µ =

1+
√
5
2 ,

zatem wartościami własnymi są liczby λ, µ. Wektory własne odpowiadające wartości własnej λ są
postaci t(1, λ), t ̸= 0, wybieramy z nich wektor w1 = (1, λ). Wektory własne odpowiadające wartości
własnej µ są postaci t(1, µ), t ̸= 0, wybieramy z nich wektor w2 = (1, µ). Układ wektorów w1, w2
jest bazą R2. Oznaczmy tę bazę symbolem W i niech C = M(id)stW =

(
1 1
λ µ

)
. Wtedy A =

C · D(λ, µ)C−1 =
(
1 1
λ µ

)
·
(
λ 0
0 µ

)
· 1√
5

(
µ −1
−λ 1

)
. Zatem, jak w poprzednim przykładzie,

An =
(
1 1
λ µ

)
·
(
λn 0
0 µn

)
· 1√
5

(
µ −1
−λ µ

)
= 1√

5

(
µn−1 − λn−1 µn − λn
µn − λn µn+1 − λn+1

)
. Wynika stąd,

że Fn = 1√
5
(µn−λn) dla n ­ 0. Zatem wzór jawny ma postać Fn = 1√

5
[(1+

√
5
2 )

n− (1−
√
5
2 )

n] dla n ­ 0.


